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We restrict ourselves to a discussion of the ‘Méthodes nouvelles de la mécanique
célèste’ (based on [17]), leaving aside for instance the interesting thesis and the
Mémoire on differential equations. The following key results are in the field of
dynamical systems, the chapter indication refers to the ‘Méthodes nouvelles’:

• Poincaré-expansion with respect to a small parameter around a particular
solution of a differential equation (chapter 2).

• The Poincaré-Lindstedt expansion method (chapter 3) as continuation method
and as bifurcation method for periodic solutions.

• Characteristic exponents and expansion of exponents in the presence of a
small parameter; exponents when first integrals exist (chapter 4).

• The famous proof that in general for time-independent Hamiltonian sys-
tems no other first integrals exist besides the energy (chapter 5).

• The idea of ‘asymptotic series’ as opposed to convergent series (chapters 7
and 8).

• The divergence of series expansions in celestial mechanics (chapters 9 and
13).

• The Poincaré-domain to characterise resonance in normal forms (chapter
13 and in his thesis).

• The notion of ‘asymptotic invariant manifold’ (chapter 25).
• The recurrence theorem (chapter 26).
• The Poincaré-map as a tool for dynamical systems (chapter 27).
• Homoclinic (doubly asymptotic) and heteroclinic solutions; the image of

the corresponding orbit structure.

The term ‘New methods’ contrasts with the old methods of Lagrange,
Laplace, Delaunay, Jacobi that are correct and classical, but leaving a great
many unsolved problems. This holds in particular for integrability questions,
convergence of series which is related to Poisson-stability and bifurcation the-
ory.

2 The deception of two degrees-of-freedom

A time-independent Hamiltonian produces equations of motion that have in
general only one first integral, the energy. So, for integrability of a two d-o-f
Hamiltonian system, a second independent integral is needed, but near stable
equilibrium both numerics and analytic approximation suggests integrability
in this case. Why?

The reason is, that the measure of chaos in two d-o-f near stable equilibrium
is exponentially small. We will discuss this in more detail in section four. A
famous example is the Hénon-Heiles problem [6] that was published in 1964.
For small values of the energy it looks integrable and many futile expansions
were computed to pinpoint this apparent second integral. The ‘proofs’were
futile, but as we shall see, such expansions are not useless. For small values of
the energy they describe the KAM-tori that abound near stable equilibrium of
near-integrable systems.

The dynamics of a time-independent Hamiltonian system corresponds with
a two-dimensional area-preserving Poincaré-map. We can turn this around:



Chaotic Modeling and Simulation (CMSIM) 1: 3–16, 2011 5

a two-dimensional area-preserving map has a suspension that is Hamiltonian.
Consider as an example a two-dimensional area-preserving map TH studied by
Igor Hoveijn [9]:(

x
y

)
→
(

cosα − sinα
sinα cosα

)(
x
y

)
+ sinx

(
− sinα
cosα

)
. (1)

Fig. 1. The area-preserving map TH produced by eq. (1) for α = 3π/5. In the centre
of the plane there is a dominant family of closed KAM-curves. In between the curves
there are again stable and unstable periodic solutions but they can not be observed at
this level of precision. Outside this family of closed curves one finds stable periodic
solutions associated with unstable periodic solutions. Moving out one observes a
stable and unstable 10-periodic solution and further on another pair of 10-periodic
solutions. The unstable solutions have stable and unstable manifolds that intersect
an infinite number of times producing chaotic behaviour. The dots correspond with
orbits returning chaotically in the plane when applying the map repeatedly. Poincaré
described the folding process, see [17], that can be seen dynamically by considering
a small square in the plane and following its subsequent mappings (figure courtesy
Igor Hoveijn).

In fig. 1 we took α = 3π/5. The closed KAM-curves around the centre
suggest that for small values of x and y the map is nearly integrable. For larger
values of x and y the chaotic nature of the map becomes more transparent.

3 Critical exponents, the (1 : 2 : 2)-resonance

Chapter four of the ‘Méthodes nouvelles’ introduces characteristic exponents.
Consider an n-dimensional autonomous equation of the form

ẋ = X(x),
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and suppose we know a particular solution x = φ(t). We call this a generating
solution. When studying neighbouring solutions of φ(t) we put

x = φ(t) + ξ.

The variational equations of φ(t) are obtained by substituting x = φ(t)+ξ into
the differential equation and linearising for small ξ to obtain

ξ̇ =
∂X

∂x
|x=φ(t)ξ.

If φ(t) is a periodic solution, the variational equations are a Floquet system.
Using the variational equations we can obtain a linear system of equations

of which the characteristic eigenvalue equation produces the characteristic ex-
ponents. There are some important cases:

• It is clear from the linear system determining the characteristic exponents
that if X(x, t) does not depend explicitly on t, the autonomous case, φ̇(t)
is a solution, so one of the characteristic exponents is zero.

• If the vector field is time-dependent (ẋ = X(x, t)) and contains a small
parameter µ, can be expanded with respect to this parameter and admits
a T -periodic solution φ(t) for µ = 0, a periodic solution for small nonzero
values of µ exists if all the characteristic exponents of φ(t) are nonzero.

• If the vector field X is autonomous, has a periodic solution and we have
one and only one zero characteristic exponent, the same conclusion for the
existence of a periodic solution holds.

• If we have a T -periodic equation of ẋ = X(x, t) with T -periodic solution
φ(t) and in addition an analytic first integral F (x) = constant, at least one
of the characteristic exponents of φ(t) is zero; the rather exceptional case
for this result is if all the partial derivatives ∂F/∂x vanish for x = φ(t).
• If the vector field X is autonomous and we have p independent first inte-

grals, p < n, we have at least p+ 1 characteristic exponents zero.

A number of special results hold in the case that our nonlinear system of dif-
ferential equations is Hamiltonian and autonomous. Poincaré proves, that in
this case the 2n characteristic exponents of a periodic solution, emerge in pairs
λi,−λi, equal in size and of opposite sign. In addition, the energy integral
produces two characteristic exponents zero; if there exist p other independent
first integrals we have either 2p + 2 characteristic exponents zero or, in the
exceptional case, the functional determinants of the integrals restricted to the
periodic solution vanish. For the proof, Poincaré uses Poisson brackets and the
theory of independent solutions of linear systems.

If the time-independent Hamiltonian system has a periodic solution with
more than two zero characteristic exponents, this can be caused by the presence
of another first integral besides the energy or it may be the exceptional case.

Examples of more than two zero characteristic exponents are found in the
normal forms of three degrees-of-freedom systems in 1 : 2 : n-resonance with
n > 4, where normalization to H3 produces two families of periodic solutions on
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the energy manifold. The normal form truncated to cubic terms is integrable.
The families break up when adding higher order normal form terms; see [13].
The technical problems connected with drawing conclusions from the presence
of more than two zero characteristic exponents, have probably prevented its use
in research of conservative dynamics, but the statement “a continuous family
of periodic solutions on the energy manifold is a non-generic phenomenon” is
one of the remaining features in the literature. Nowadays the analysis is easier
by the use of numerical continuation methods.

Fig. 2. The three d-o-f (1 : 2 : 2)-Hamiltonian resonance, left the periodic solutions
in an action simplex of the Hamiltonian normlised to H3, right normalization to H4

(figure courtesy Springer).

Regarding the complications it is of interest to look at the general (1 :
2 : 2)-resonance, see fig. 2. The general Hamiltonian has 56 cubic terms,
normalization leaves three cubic terms. Remarkably enough, the cubic normal
form is integrable with energy integral, a quadratic integral and a cubic integral.
However, on the energy manifold we find one continuous family of periodic
solutions and two isolated solutions. So we have here an exceptional case as
described by Poincaré. It turns out that the cubic normal form displays a
hidden symmetry that vanishes at higher order. The interpretation is that the
phase-flow shows this symmetry with accuracy O(ε) on the timescale 1/ε, the
integrability is asymptotic with error estimate O(ε2t) (see the next section for
the error estimates). In fig. 2 the action simplex of the normal form to H4

(before normalization 126 terms) shows the break-up of the continuous family
of periodic solutions into six periodic solutions on the energy manifold.

4 Measures of chaos

Most Hamiltonian systems are not integrable. However, as we shall see, this
is a very deceptive statement although it is mathematically correct. To get
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this in the right perspective, we shall start by outlining suitable approximation
methods. These are canonical normal form methods, sometimes called after
Birkhoff-Gustavson, and averaging performed in a canonical way. The meth-
ods admit precise error estimates and enable us therefore to determine local
measures of regularity and chaos. The methods also permit us to locate normal
modes and other short-periodic solutions.
We recall that two d-o-f time-independent Hamiltonian systems near stable
equilibrium can be normalized and that the normal form is always integrable
to any order. The integrals are the Hamiltonian and its quadratic part. The
motion on the KAM-tori dominates phase-space and this result expresses that
the amount of chaos near stable equilibrium is exponentially small. Explicitly:
near stable equilibrium, the measure of chaos is O(εa exp(−1/εb) for suitable
positive constants a, b where the energy E = O(ε2). An illustrative example is
studied in [7].

4.1 Approximations and normal forms

Consider the n degrees of freedom time-independent Hamiltonian

H(p, q) =
1

2

n∑
i=1

ωi
(
p2i + q2i

)
+H3 +H4 + · · · . (2)

with Hk, k ≥ 3 a homogeneous polynomial of degree k and positive frequencies
ωi. We introduce a small parameter ε into the system by rescaling the variables
by qi = εqi, pi = εpi, i = 1, · · · , n and dividing the Hamiltonian by ε2. This
implies that we localize near stable equilibrium with energy O(ε2).
We can define successive, nonlinear coordinate (or near-identity) transforma-
tions that will bring the Hamiltonian into the so-called Birkhoff normal form;
see [3] and [14] for details and references. For a general dynamical systems ref-
erence see [1,4], for symmetry in the context of Hamiltonian systems see [4,10].
A stimulating text on chaos and resonance is [5]. In action-angle variables τ, φ,
a Hamiltonian H is said to be in Birkhoff normal form of degree 2k if it can be
written as

H =

n∑
i=1

ωiτi + ε2P2(τ) + ε4P3(τ) + · · ·+ ε2k−2Pk(τ),

where τ = (τ1, · · · , τn) and Pi(τ) is a homogeneous polynomial of degree i in
τi = 1

2 (pi
2 + qi

2), i = 1, · · · , n. The variables τi are called actions; note that
if Birkhoff normalization is possible, the angles have been eliminated. If a
Hamiltonian can be transformed into Birkhoff normal form, the dynamics is
fairly regular. The system is integrable with integral manifolds which are tori
described by taking τi constant. The flow on the tori is quasi-periodic.
Suppose a Hamiltonian is in Birkhoff normal form to degree m, but the fre-
quencies are satisfying a resonance relation of order m + 1. This means that
Hm+1, Hm+2 etc. may contain resonant terms which can not be transformed
away. The procedure is now to split Hm+1, Hm+2 etc. in resonant terms and
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terms to which the Birkhoff normalization process can be applied. The result-
ing normal form will generally contain resonant terms and is called Birkhoff-
Gustavson normal form. It contains terms dependent on the action τ and on
resonant combination angles of the form χi = k1φ1 + · · · + knφn. In practice
we have to consider a truncation of the Birkhoff-Gustavson normal form H̄ at
some degree p ≥ m:

H̄ = H2 + εH̄3 + ε2H̄4 + · · ·+ εp−2H̄p. (3)

Because of the construction we have the following results:

• H̄ is conserved for the original Hamiltonian system (2) with error O(εp−1)
for all time.

• H2 is conserved for the original Hamiltonian system (2) with error O(ε)
for all time. So the normal form has at least two integrals. Symmetry can
enhance the regularity, see [13].

• If we find other integrals of the Birkhoff-Gustavson normal form, we have
slightly weaker error estimates. Explicitly, suppose that F (p, q) is an inde-
pendent integral of the truncated Hamiltonian system (3), we have for the
solutions of the original Hamiltonian system (2) the estimate

F (p, q)− F (p(0), q(0)) = O(εp−1t).

An important consequence is the following statement: if the phaseflow induced
by the truncated Hamiltonian (3) is completely integrable, the flow of the orig-
inal Hamiltonian (2) is approximately integrable or asymptotically integrable
in the sense described above. In this case the original system is called formally
integrable. This implies that the irregular, chaotic component in the flow of
the original Hamiltonian is limited by the given error estimates and must be a
small-scale phenomenon on a long timescale. For details see [14] and [13].

4.2 Normal modes and short-periodic solutions

Liapunov proved that if the frequencies ωi satisfy no resonance relation, the
normal modes, obtained by linearization, can be continued for the full, non-
linear Hamiltonian system (2), resulting in at least n short-periodic solutions
with periods ε-close to 2π/ωi.
Weinstein [18] proved that even in the case of resonance, there exist at least n
short-periodic solutions of Hamiltonian system (2). Note, that these periodic
solutions are not necessarily continuations of the linear modes, the term ‘nor-
mal modes’ in this context can be confusing. Another important point is that n
short-periodic solutions is really the minimum number. For instance in the case
of two degrees of freedom, 2 short-periodic solutions are guaranteed to exist by
the Weinstein theorem. But in the 1 : 2 resonance case one finds generically 3
short-periodic solutions for each (small) value of the energy. One of these is a
continuation of a linear normal mode, the other two are not. For higher-order
resonances like 3 : 7 or 2 : 11, there exist for an open set of parameters four
short-periodic solutions of which two are continuations of the normal modes.
Of course symmetry and special Hamiltonian examples may change this picture
drastically.
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4.3 Three degrees of freedom

The question of asymptotic integrability is different for more than two degrees
of freedom. First we consider the genuine first order resonances of three d-o-f
systems.

First-order resonances
As we have seen, the cubic normal form of the (1 : 2 : 2)-resonance is integrable;
this is caused by a hidden symmetry which reveals itself by normalization. The
(1 : 2 : 1)-resonance and the (1 : 2 : 3)-resonance on the other hand are not
integrable for an open set of parameters of the Hamiltonian. The results are
illustrated for the four first-order resonances in the table from [13].
If three independent integrals of the normalized system can be found, the nor-
malized system is integrable. The integrability depends in principle on how
far the normalization is carried out (Hk represents the normal form of Hk, the
homogeneous part of the Hamiltonian of degree k). The formal integrals have
a precise asymptotic meaning as discussed in section 4.1. We use the following
abbreviations: no cubic integral for no quadratic or cubic third integral; discr.
symm. qi for discrete (or mirror) symmetry in the pi, qi-degree of freedom; 2
subsystems at Hk for the case that the normalized system decouples into a one
and a two degrees of freedom subsystem upon normalizing to Hk. In the second
and third column one finds the number of known integrals when normalizing
to H3 respectively H4.

The remarks which have been added to the table reflect some of the re-
sults known on the non-existence of third integrals. Note that the results pre-
sented here are for the general Hamiltonian and that additional assumptions,
in particular involving symmetry, may change the results. In this respect it
is interesting that in a number of applications, chaotic dynamics appears to
be of relatively small size. An example is the dynamics of elliptical galaxies
that display three-axial symmetry. Astrophysical observations suggest highly
nonlinear but integrable motion. The statements above with indication ‘As-
sumptions’: ‘general’, are for Hamiltonian systems in general form near stable
equilibrium.

Example: the (1 : 2 : 3)-resonance
This resonance was analyzed in [8] and [15]. We will summarize some results
and formulate some open problems. When normalizing to H4 one finds 7 short-
periodic (families of) solutions. One of them is for an open set of parameters
complex unstable (for the complementary set it is unstable of saddle type). This
complex instability is a source of chaotic behaviour. Using S̆ilnikov-Devaney
theory, it is shown in [8] that a horseshoe map exists in the normal form to H4

which makes the normal form chaotic.
Numerics indicate that the normal form H̄ = H2 + H̄3 is already chaotic, but
a proof is missing. Also the dynamics of the case where the periodic solution
is unstable, but of saddle type, has still to be characterized.
Discrete symmetry in either the first or the last degree of freedom makes the
normal form to H4 integrable.
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Table 1. Integrability of the normal forms of the four genuine first order resonances.

Resonance Assumptions H3 H4 Remarks

1:2:1 general 2 2 no analytic third integral

discr.symm. q1 2 2 no analytic third integral

discr.symm. q2 3 3 H3 = 0; 2 subsystems at H4

discr.symm. q3 2 2 no analytic third integral

1:2:2 general 3 2 no cubic third integral at H4

discr.symm. q2 and q3 3 3 H3 = 0; 2 subsystems at H4

1:2:3 general 2 2 no analytic third integral

discr.symm. q1 3 3 2 subsystems at H3 and H4

discr.symm. q2 3 3 H3 = 0

discr.symm. q3 3 3 2 subsystems at H3 and H4

1:2:4 general 2 2 no cubic third integral

discr.symm. q1 2 2 no cubic third integral

discr.symm. q2 or q3 3 3 2 subsystems at H3 and H4

Higher-order resonances
Higher order resonances abound in applications. The results discussed thus far
are mostly general, but, with regards to applications, it is very important to
look again at the part played by symmetries. This will be illustrated for the
(1 : 3 : 7)-resonance and will be discussed in some detail. This also serves as an
example that resonances with odd resonance numbers are particularly sensitive
to symmetries.
Example: the (1 : 3 : 7)-resonance
We start with the general Hamiltonian with this resonance in H2:

H2 = τ1 + 3τ2 + 7τ3.

At H3 level there is no resonance and we find after normalization, H̄3 = 0.
There are two combination angles active at H4 level:

χ1 = 3φ1 − φ2 and χ2 = φ1 + 2φ2 − φ3.

At H5 level no combination angles are added, H5 can be brought in Birkhoff
normal form. We list the consequences of mirror symmetry in each respective
degree of freedom:

• In the first d-o-f: χ1 and χ2 not active; formal integrability until H̄5, chaotic
dynamics has measure O(ε4t).
• In the second d-o-f: χ1 not active; formal integrability until H̄7, chaotic

dynamics has measure O(ε6t).
• In the third d-o-f: χ2 not active; formal integrability until H̄7, chaotic

dynamics has measure O(ε6t).
• The case of mirror symmetry in all three d-o-f. is discussed below.

One can continue the analysis to higher order normal forms to obtain more
precise estimates of the remaining chaotic dynamics. We discuss an example.
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Three-axial elliptical galaxies in (1 : 3 : 7)-resonance
In this case we have discrete (mirror) symmetry in three degrees of freedom.
Until H7 the system can be brought into Birkhoff normal form, chaotic dynam-
ics has measure O(ε6t) which predicts regular behaviour on a long timescale.
The Birkhoff-Gustavson normal form H̄8 contains the combination angles 6φ1−
2φ2 and 2φ1 + 4φ2 − 2φ3.
The situation needs a very high degree of normalization as becomes clear when
considering the analysis of periodic solutions. Because of the discrete symmetry
τi = 0, i = 1, 2, 3 each corresponds with a two d-o-f submanifold of the original
(symmetric) Hamiltonian. The normal modes are exact periodic solutions of
the normal form and the original Hamiltonian. The normal forms in these 4-
dimensional submanifolds are all integrable (section 4.1) and chaotic behaviour
takes place in exponentially small sets. Consider the question of how far we
have at least to normalize the flow in these submanifolds.
Case τ1 = 0. This is the worst case, as it involves the 3 : 7-resonance. In the
symmetric case this system has to be normalized to H20 to characterize the
periodic solutions.
Case τ2 = 0 involving the 1 : 7-resonance. The system has to be normalized to
H16 to characterize the periodic solutions.
Case τ3 = 0 involving the 1 : 3-resonance. This relatively well-known system
has to be normalized to H8 to characterize the periodic solutions. In [13] it is
described how to deal with such higher-order cases.

4.4 A remark on chains of oscillators

Our knowledge of chains of oscillators is still restricted. Remarkably enough
the normal form of the 1 : 2 : · · · : 2-resonance with n degrees of freedom is
integrable. Consider the Hamiltonian

H(p, q) =
1

2
(p21 + q21) +

n∑
i=2

(p2i + q2i ) +H3 + · · · ,

where H3+· · · represents the general cubic and higher order terms. The Hamil-
tonian is formally integrable and the proof runs along the lines of the analysis
of the (1 : 2 : 2)-resonance, displaying again hidden symmetry.
A spectacular result arises for the classical Fermi-Pasta-Ulam problem which is
a chain of identical oscillators coupled by nearest neighbour interaction. At low
energy levels the chain shows recurrence and no chaos. Recently it was shown
in [12] by normal form methods and symmetry considerations, that a nearby
integrable system exists which make the KAM-theorem applicable. This solves
the recurrence phenomenon at low energy.

5 Bifurcations

The analysis of periodic solutions is based on the implicit function theorem. If
the conditions of the theorem are not satisfied we have a bifurcation.
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The treatment in the ‘Méthodes nouvelles’ is very general, it applies to
nonlinear ODEs, including dissipative systems. The bifurcations discussed have
a universal character:

• Hopf bifurcation (continuation near an equilibrium).
• Transcritical bifurcation, exchange of stability.
• Emergence and vanishing of periodic solutions in pairs.

A bifurcation that plays a very prominent role in nonlinear dynamics is the
Hopf bifurcation, also referred to as Poincaré-Andronov-Hopf bifurcation. It
may happen that, when an equilibrium point of which the eigenvalues depend
on parameters, will have two purely imaginary eigenvalues if one of the pa-
rameters (µ) assumes a critical value, say µ0. In this case, depending on the
nonlinearities, there may exist a nearby periodic solution. If the periodic solu-
tion emerges for µ < µ0 it is called subcritical, for µ > µ0 it is supercritical.

For periodic solutions and fixed points of a map, there are analogous results,
where one usually refers to generalized Hopf, Hopf-Hopf or Neimark-Sacker
bifurcation.

The first place where the Hopf bifurcation arises in the literature is in
the Méthodes nouvelles. Poincaré considers an equilibrium of an autonomous
equation in Rn

ẋ = X(x)

and views this equilibrium as a periodic solution with arbitrary period. Suppose
that there is a parameter µ in the equation and that x1 = x2 = · · · = xn = 0 is
an equilibrium for any value of µ. We will look for a periodic solution near the
origin x = 0 for µ = 0, with initial value x(0) = β and x(T ) = ψ+β. If we can
determine T with ψ = 0 and non-trivial β, we have found a periodic solution.
Poincaré finds from the determinant of the Jacobian J :

J =
∂X

∂x
|µ=0,x=0,

that if |J | 6= 0, we will have only the trivial solution β = 0, corresponding with
the equilibrium solution x = 0. The condition |J | = 0 to obtain a nontrivial
solution corresponds with (at least) two eigenvalues to be purely imaginary
and conjugate. This condition makes the existence of a small periodic solution
branching off equilibrium x = 0 possible, but we still have to consider the
nonlinear terms to see whether a periodic solution actually emerges.

The eigenvalues λi will depend on µ. Adding the condition that at the
critical value µ0 = 0, we have two conjugate imaginary eigenvalues λi,j with
dλi,j/dµ 6= 0, we will call such a bifurcation value of µ a Hopf point.

Poincaré considers in the ‘Méthodes nouvelles’ as an example the equations
formulated by Hill for the motion of the Moon, two second-order equations with
one nontrivial equilibrium. The equilibrium corresponds with the Moon being
in constant conjunction or opposition at constant distance of the Earth. The
eigenvalues of the Jacobian as formulated above, have two real values and two
conjugate imaginary ones. The conclusion is that a periodic solution exists near
this equilibrium in near-opposition or near-conjunction with an amplitude that
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grows with the small parameter
√
µ. As two conjugate eigenvalues are real, it

will be unstable.
The classical example of the Van der Pol-equation is easier to analyse.

Poincaré’s interest in wireless telegraphy induced him to use periodic solutions
obtained by this type of bifurcation, see [17].

5.1 Tori created by Neimark-Sacker bifurcation

Another important scenario to create a torus, arises from the Neimark-Sacker
bifurcation. For an instructive and detailed introduction see Kuznetsov (2004)
[11]. Suppose that we have obtained an averaged equation ẋ = εf(x, a), with
dimension 3 or higher, by variation of constants and subsequent averaging; a
is a parameter or a set of parameters. It is well-known that if this equation
contains a hyperbolic critical point, the original equation contains a periodic
solution. The first order approximation of this periodic solution is character-
ized by the time variables t and εt.
Suppose now that by varying the parameter a a pair of eigenvalues of the crit-
ical point becomes purely imaginary. For this value of a the averaged equation
undergoes a Hopf bifurcation producing a periodic solution of the averaged
equation; the typical time variable of this periodic solution is εt and so the
period will be O(1/ε). As it branches off an existing periodic solution in the
original equation, it will produce a torus; it is associated with a Hopf bifur-
cation of the corresponding Poincaré map and the bifurcation has a different
name: Neimark-Sacker bifurcation. The result will be a two-dimensional torus
which contains two-frequency oscillations, one on a timescale of order 1 and
the other with timescale O(1/ε).

A special case of a system studied by Bakri et al. (2004) [2] is:

ẍ+ εκẋ+ (1 + ε cos 2t)x+ εxy = 0,

ÿ + εẏ + 4(1 + ε)y − εx2 = 0.

This is a system with parametric excitation and nonlinear coupling; κ is a
positive damping coefficient which is independent of ε. Away from the coordi-
nate planes we may use amplitude-phase variables by x = r1 cos(t + ψ1), ẋ =
−r1 sin(t + ψ1), y = r2 cos(2t + ψ2), ẏ = −2r2 sin(2t + ψ1); after first order
averaging we find, omitting the subscripts a, the system

ṙ1 = εr1(
r2
4

sin(2ψ1 − ψ2) +
1

4
sin 2ψ1 −

1

2
κ),

ψ̇1 = ε(
r2
4

cos(2ψ1 − ψ2) +
1

4
cos 2ψ1),

ṙ2 = ε
r2
2

(
r21
4r2

sin(2ψ1 − ψ2)− 1),

ψ̇2 =
ε

2
(− r21

4r2
cos(2ψ1 − ψ2) + 2).

Putting the righthand sides equal to zero produces a nontrivial critical point
corresponding with a periodic solution of the system for the amplitudes and
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phases and so a quasi-periodic solution of the original coupled system in x and
y. We find for this critical point the relations

r21 = 4
√

5r2, cos(2ψ1−ψ2) =
2√
5
, sin(2ψ1−ψ2) =

1√
5
, r1 = 2

√
2κ+

√
5− 16κ2.

This periodic solution exists if the damping coefficient is not too large: 0 ≤ κ <√
5
4 . Linearization of the averaged equations at the critical point while using

these relations produces a (4× 4) matrix A.
A condition for the existence of the periodic solution is that the critical

point is hyperbolic, i.e. the eigenvalues of the matrix A have no real part zero.
It is possible to express the eigenvalues explicitly in terms of κ by using a soft-
ware package like Mathematica. However, the expressions are cumbersome.

Hyperbolicity is the case if we start with values of κ just below
√
5
4 = 0.559.

Diminishing κ we find that, when κ = 0.546, the real part of two eigenvalues
vanishes. This value corresponds with a Hopf bifurcation producing a noncon-
stant periodic solution of the averaged equations. This in its turn corresponds
with a torus in the original equations (in x and y) by a Neimark-Sacker bi-
furcation. As stated before, the result will be a two-dimensional torus which
contains two-frequency oscillations, one on a timescale of order 1 and the other
with timescale O(1/ε).

6 Breakdown and bifurcations of tori

Complementary to the emergence of tori, their breakdown is of great theoretical
and practical interest. In particular we would like to have a general idea of how
two-dimensional invariant tori break down and how nontrivial limit sets are
created when certain parameters are varied. To obtain insight the analysis of
maps can be very helpful as the phenomena governed by differential equations
are much more implicit.
A common feature is the presence of stable and unstable periodic solutions in
p/q-resonance on a torus. Breakup can be triggered by heteroclinic tangencies,
arising when a parameter is varied. This leads rather quickly to strange, chaotic
behaviour. There are other scenarios producing strange behaviour where the
normal hyperbolicity of the torus decreases more gradually. For an introduction
and references see [16].
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Stability of Solutions to Some Evolution
Problems
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Abstract. Large time behavior of solutions to abstract differential equations is stud-
ied. The corresponding evolution problem is:

u̇ = A(t)u+ F (t, u) + b(t), t ≥ 0; u(0) = u0. (∗)

Here u̇ := du
dt

, u = u(t) ∈ H, H is a Hilbert space, t ∈ R+ := [0,∞), A(t) is a linear
dissipative operator: Re(A(t)u, u) ≤ −γ(t)(u, u), γ(t) ≥ 0, F (t, u) is a nonlinear
operator, ‖F (t, u)‖ ≤ c0‖u‖p, p > 1, c0, p are constants, ‖b(t)‖ ≤ β(t), β(t) ≥ 0 is a
continuous function.

Sufficient conditions are given for the solution u(t) to problem (*) to exist for all
t ≥ 0, to be bounded uniformly on R+, and a bound on ‖u(t)‖ is given. This bound
implies the relation limt→∞ ‖u(t)‖ = 0 under suitable conditions on γ(t) and β(t).

The basic technical tool in this work is the following nonlinear inequality:

ġ(t) ≤ −γ(t)g(t) + α(t, g(t)) + β(t), t ≥ 0; g(0) = g0,

which holds on any interval [0, T ) on which g(t) ≥ 0 exists and has bounded derivative

from the right, ġ(t) := lims→+0
g(t+s)−g(t)

s
. It is assumed that γ(t), and β(t) are

real-valued, continuous functions of t, defined on R+ := [0,∞), the function α(t, g) is
defined for all t ∈ R+, locally Lipschitz with respect to g uniformly with respect to t on
any compact subsets [0, T ], T <∞.If there exists a function µ(t) > 0, µ(t) ∈ C1(R+),
such that

α

(
t,

1

µ(t)

)
+ β(t) ≤ 1

µ(t)

(
γ(t)− µ̇(t)

µ(t)

)
, ∀t ≥ 0; µ(0)g(0) ≤ 1,

then g(t) exists on all of R+, that is T =∞, and the following estimate holds:

0 ≤ g(t) ≤ 1

µ(t)
, ∀t ≥ 0.
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1 Introduction

Consider an abstract nonlinear evolution problem

u̇ = A(t)u+ F (t, u) + b(t), u̇ :=
du

dt
, (1)

u(0) = u0, (2)

where u(t) is a function with values in a Hilbert space H, A(t) is a linear
bounded dissipative operator in H, which satisfies inequality

Re(A(t)u, u) ≤ −γ(t)‖u‖2, t ≥ 0; ∀u ∈ H, (3)

where F (t, u) is a nonlinear map in H,

‖F (t, u)‖ ≤ c0‖u(t)‖p, p > 1, (4)

‖b(t)‖ ≤ β(t), (5)

γ(t) > 0 and β(t) ≥ 0 are continuous function, defined on all of R+ := [0,∞),
c0 > 0 and p > 1 are constants.

Recall that a linear operator A in a Hilbert space is called dissipative if
Re(Au, u) ≤ 0 for all u ∈ D(A), where D(A) is the domain of definition of
A. Dissipative operators are important because they describe systems in which
energy is dissipating, for example, due to friction or other physical reasons.
Passive nonlinear networks can be described by equation (1) with a dissipative
linear operator A(t), see [14], [15], Chapter 3, and [16].

Let σ := σ(A(t)) denote the spectrum of the linear operator A(t), Π := {z :
Rez < 0}, ` := {z : Rez = 0}, and ρ(σ, `) denote the distance between sets σ
and `. We assume that

σ ⊂ Π, (6)

but we allow limt→∞ ρ(σ, `) = 0. This is the basic novel point in our theory.
The usual assumption in stability theory (see, e.g., [1]) is supz∈σ Rez ≤ −γ0,
where γ0 = const > 0. For example, if A(t) = A∗(t), where A∗ is the adjoint
operator, and if the spectrum of A(t) consists of eigenvalues λj(t), 0 ≥ λj(t) ≥
λj+1(t), then, we allow limt→∞ λ1(t) = 0. This is in contrast with the usual
theory, where the assumption is λ1(t) ≤ −γ0, γ0 > 0 is a constant, is used.

Moreover, our results cover the case, apparently not considered earlier in
the literature, when Re(A(t)u, u) ≤ γ(t) with γ(t) > 0, limt→∞ γ(t) = 0. This
means that the spectrum of A(t) may be located in the half-plane Rez ≤ γ(t),
where γ(t) > 0, but limt→∞ γ(t) = 0.

Our goal is to give sufficient conditions for the existence and uniqueness of
the solution to problem (1)-(2) for all t ≥ 0, that is, for global existence of u(t),
for boundedness of supt≥0 ‖u(t)‖ <∞, or to the relation limt→∞ ‖u(t)‖ = 0.

If b(t) = 0 in (1), then u(t) = 0 solves equation (1) and u(0) = 0. This
equation is called zero solution to (1) with b(t) = 0.

Recall that the zero solution to equation (1) with b(t) = 0 is called Lyapunov
stable if for any ε > 0, however small, one can find a δ = δ(ε) > 0, such that



Chaotic Modeling and Simulation (CMSIM) 1: 17–27, 2011 19

if ‖u0‖ ≤ δ, then the solution to Cauchy problem (1)-(2) satisfies the estimate
supt≥0 ‖u(t)‖ ≤ ε. If, in addition, limt→∞ ‖u(t)‖ = 0, then the zero solution to
equation (6) is called asymptotically stable in the Lyapunov sense.

If b(t) 6≡ 0, then one says that (1)-(2) is the problem with persistently acting
perturbations. The zero solution is called Lyapunov stable for problem (1)-(2)
with persistently acting perturbations if for any ε > 0, however small, one can
find a δ = δ(ε) > 0, such that if ‖u0‖ ≤ δ, and supt≥0 ‖b(t)‖ ≤ δ, then the
solution to Cauchy problem (1)-(2) satisfies the estimate supt≥0 ‖u(t)‖ ≤ ε.

The approach, developed in this work, consists of reducing the stability
problems to some nonlinear differential inequality and estimating the solutions
to this inequality.

In Section 2 the formulation and a proof of two theorems, containing the
result concerning this inequality and its discrete analog, are given. In Section
3 some results concerning Lyapunov stability of zero solution to equation (1)
are obtained. In Section 4 we derive stability results in the case when γ(t) > 0.
This means that the linear operator A(t) in (1) may have spectrum in the
half-plane Rez > 0.

The results of this paper are based on the works [6]- [15]. They are closely
related to the Dynamical Systems Method (DSM), see [10], [7], [8], [11].

In the theory of chaos one of the reasons for the chaotic behavior of a
solution to an evolution problem to appear is the lack of stability of solutions
to this problem ([2], [3]). The results presented in Section 3 can be considered as
sufficient conditions for chaotic behavior not to appear in the evolution system
described by problem (1)-(2).

2 Differential inequality

In this Section a self-contained proof is given of an estimate for solutions of a
nonlinear inequality

ġ(t) ≤ −γ(t)g(t) + α(t, g(t)) + β(t), t ≥ 0; g(0) = g0; ġ :=
dg

dt
. (7)

In Section 3 some of the many possible applications of this estimate (estimate
(11)) are demonstrated.

It is not assumed a priori that solutions g(t) to inequality (7) are defined
on all of R+, that is, that these solutions exist globally. In Theorem 1 we give
sufficient conditions for the global existence of g(t). Moreover, under these
conditions a bound on g(t) is given, see estimate (11) in Theorem 1. This
bound yields the relation limt→∞ g(t) = 0 if limt→∞ µ(t) =∞ in (11).

Let us formulate our assumptions.
Assumption A1 ). We assume that the function g(t) ≥ 0 is defined on some

interval [0, T ), has a bounded derivative ġ(t) := lims→+0
g(t+s)−g(t)

s from the
right at any point of this interval, and g(t) satisfies inequality (7) at all t at
which g(t) is defined. The functions γ(t), and β(t), are real-valued, defined
on all of R+ and continuous there. The function α(t, g) ≥ 0 is continuous on
R+ × R+ and locally Lipschitz with respect to g. This means that

|α(t, g)− α(t, h)| ≤ L(T,M)|g − h|, (8)
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if t ∈ [0, T ], |g| ≤ M and |h| ≤ M , M = const > 0, where L(T,M) > 0 is a
constant independent of g, h, and t.
Assumption A2 ). There exists a C1(R+) function µ(t) > 0, such that

α

(
t,

1

µ(t)

)
+ β(t) ≤ 1

µ(t)

(
γ(t)− µ̇(t)

µ(t)

)
, ∀t ≥ 0, (9)

and
µ(0)g(0) ≤ 1. (10)

Theorem 1. If Assumptions A1 ) and A2 ) hold, then any solution g(t) ≥ 0
to inequality (7) exists on all of R+, i.e., T = ∞, and satisfies the following
estimate:

0 ≤ g(t) ≤ 1

µ(t)
∀t ∈ R+. (11)

Remark 1. If limt→∞ µ(t) =∞, then limt→∞ g(t) = 0.

Proof of Theorem 1. Let us rewrite inequality for µ

−γ(t)µ−1(t) + α(t, µ−1(t)) + β(t) ≤ dµ−1(t)

dt
. (12)

Let φ(t) solve the following Cauchy problem:

φ̇(t) = −γ(t)φ(t) + α(t, φ(t)) + β(t), t ≥ 0, φ(0) = φ0. (13)

The assumption that α(t, g) is locally Lipschitz guarantees local existence and
uniqueness of the solution φ(t) to problem (13). From the known comparison
result (see, e.g., [4], Theorem III.4.1) it follows that

φ(t) ≤ µ−1(t) ∀t ≥ 0, (14)

provided that φ(0) ≤ µ−1(0), where φ(t) is the unique solution to problem
(14). Let us take φ(0) = g(0). Then φ(0) ≤ µ−1(0) by the assumption, and an
inequality, similar to (14), implies that

g(t) ≤ φ(t) t ∈ [0, T ). (15)

Inequalities φ(0) ≤ µ−1(0), (14), and (15) imply

g(t) ≤ φ(t) ≤ µ−1(t), t ∈ [0, T ). (16)

By the assumption, the function µ(t) is defined for all t ≥ 0 and is bounded
on any compact subinterval of the set [0,∞). Consequently, the functions φ(t)
and g(t) ≥ 0 are defined for all t ≥ 0, and estimate (11) is established.

Theorem 1 is proved. 2

Let us formulate and prove a discrete version of Theorem 1.

Theorem 2. Assume that gn ≥ 0, α(n, gn) ≥ 0,

gn+1 ≤ (1− hnγn)gn + hnα(n, gn) + hnβn; hn > 0, 0 < hnγn < 1, (17)
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and α(n, gn) ≥ α(n, pn) if gn ≥ pn. If there exists a sequence µn > 0 such that

α(n,
1

µn
) + βn ≤

1

µn
(γn −

µn+1 − µn
hnµn

), (18)

and

g0 ≤
1

µ0
, (19)

then

0 ≤ gn ≤
1

µn
, ∀n ≥ 0. (20)

Proof. For n = 0 inequality (20) holds because of (19). Assume that it holds
for all n ≤ m and let us check that then it holds for n = m+ 1. If this is done,
Theorem 2 is proved.

Using the inductive assumption, one gets:

gm+1 ≤ (1− hmγm)
1

µm
+ hmα(m,

1

µm
) + hmβm.

This and inequality (18) imply:

gm+1 ≤ (1− hmγm)
1

µm
+ hm

1

µm
(γm −

µm+1 − µm
hmµm

)

= µ−1m −
µm+1 − µm

µ2
m

≤ µ−1m+1.

The last inequality is obvious since it can be written as

−(µm − µm+1)2 ≤ 0.

Theorem 2 is proved.

Theorem 2 was formulated in [5] and proved in [6]. We included for com-
pleteness a proof, which is shorter than the one in [6].

3 Stability results 1

In this Section we develop a method for a study of stability of solutions to
the evolution problems described by the Cauchy problem (1)-(2) for abstract
differential equations with a dissipative bounded linear operator A(t) and a
nonlinearity F (t, u) satisfying inequality (4). Condition (4) means that for
sufficiently small ‖u(t)‖ the nonlinearity is of the higher order of smallness
than ‖u(t)‖. We also study the large time behavior of the solution to problem
(1)-(2) with persistently acting perturbations b(t).

In this paper we assume that A(t) is a bounded linear dissipative operator,
but our methods are valid also for unbounded linear dissipative operators A(t),
for which one can prove global existence of the solution to problem (1)-(2). We
do not go into further detail in this paper.

Let us formulate the first stability result.
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Theorem 3. Assume that Re(Au, u) ≤ −k‖u‖2 ∀u ∈ H, k = const > 0,
and inequality (3) holds with γ(t) = k. Then the solution to problem (1)-
(2) with b(t) = 0 satisfies an esimate ‖u(t)‖ = O(e−(k−ε)t) as t → ∞. Here
0 < ε < k can be chosen arbitrarily small if ‖u0‖ is sufficiently small.

This theorem implies asymptotic stability in the sense of Lyapunov of the
zero solution to equation (1) with b(t) = 0. Our proof of Theorem 3 is new and
very short.

Proof of Theorem 3. Multiply equation (1) (in which b(t) = 0 is assumed)
by u, denote g = g(t) := ‖u(t)‖, take the real part, and use assumption (3)
with γ(t) = k > 0, to get

gġ ≤ −kg2 + c0g
p+1, p > 1. (21)

If g(t) > 0 then the derivative ġ does exist, and

ġ(t) = Re

(
u̇(t),

u(t)

‖u(t)‖

)
,

as one can check. If g(t) = 0 on an open subset of R+, then the derivative ġ
does exist on this subset and ġ(t) = 0 on this subset. If g(t) = 0 but in in any
neighborhood (t− δ, t+ δ) there are points at which g does not vanish, then by
ġ we understand the derivative from the right, that is,

ġ(t) := lim
s→+0

g(t+ s)− g(t)

s
= lim
s→+0

g(t+ s)

s
.

This limit does exist and is equal to ‖u̇(t)‖. Indeed, the function u(t) is con-
tinuously differentiable, so

lim
s→+0

‖u(t+ s)‖
s

= lim
s→+0

‖su̇(t) + o(s)‖
s

= ‖u̇(t)‖.

The assumption about the existence of the bounded derivative ġ(t) from the
right in Theorem 3 was made because the function ‖u(t)‖ does not have, in
general, the derivative in the usual sense at the points t at which ‖u(t)‖ = 0,
no matter how smooth the function u(t) is at the point τ . Indeed,

lim
s→−0

‖u(t+ s)‖
s

= lim
s→−0

‖su̇(t) + o(s)‖
s

= −‖u̇(t)‖,

because lims→−0
|s|
s = −1. Consequently, the right and left derivatives of ‖u(t)‖

at the point t at which ‖u(t)‖ = 0 do exist, but are different. Therefore, the
derivative of ‖u(t)‖ at the point t at which ‖u(t)‖ = 0 does not exist in the
usual sense.

However, as we have proved above, the derivative ġ(t) from the right does
exist always, provided that u(t) is continuously differentiable at the point t.

Since g ≥ 0, inequality (21) yields inequality (7) with γ(t) = k > 0, β(t) = 0,
and α(t, g) = c0g

p, p > 1. Inequality (9) takes the form

c0
µp(t)

≤ 1

µ(t)

(
k − µ̇(t)

µ(t)

)
, ∀t ≥ 0. (22)
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Let
µ(t) = λebt, λ, b = const > 0. (23)

We choose the constants λ and b later. Inequality (9), with µ defined in (23),
takes the form

c0
λp−1e(p−1)bt

+ b ≤ k, ∀t ≥ 0. (24)

This inequality holds if it holds at t = 0, that is, if

c0
λp−1

+ b ≤ k. (25)

Let ε > 0 be arbitrary small number. Choose b = k− ε > 0. Then (25) holds if

λ ≥
(c0
ε

) 1
p−1 . (26)

Condition (10) holds if

‖u0‖ = g(0) ≤ 1

λ
. (27)

We choose λ and b so that inequalities (26) and (27) hold. This is always
possible if b < k and ‖u0‖ is sufficiently small.

By Theorem 1, if inequalities (25)-(27) hold, then one gets estimate (11):

0 ≤ g(t) = ‖u(t)‖ ≤ e−(k−ε)t

λ
, ∀t ≥ 0. (28)

Theorem 3 is proved. 2

Remark 3. One can formulate the result differently. Namely, choose λ =
‖u0‖−1. Then inequality (27) holds, and becomes an equality. Substitute this λ
into (25) and get

c0‖u0‖p−1 + b ≤ k.

Since the choice of the constant b > 0 is at our disposal, this inequality can
always be satisfied if c0‖u0‖p−1 < k. Therefore, condition

c0‖u0‖p−1 < k

is a sufficient condition for the estimate

‖u(t)‖ ≤ ‖u0‖e−(k−c0‖u0‖p−1)t,

to hold (assuming that c0‖u0‖p−1 < k).
Let us formulate the second stability result.
Theorem 4. Assume that inequalities (3)-(5) hold and

γ(t) =
c1

(1 + t)q1
, q1 ≤ 1; c1, q1 = const > 0. (29)

Suppose that ε ∈ (0, c1) is an arbitrary small fixed number,

λ ≥
(c0
ε

)1/(p−1)
and ‖u(0)‖ ≤ 1

λ
.
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Then the unique solution to (1)-(2) with b(t) = 0 exists on all of R+ and

0 ≤ ‖u(t)‖ ≤ 1

λ(1 + t)c1−ε
, ∀t ≥ 0. (30)

Theorem 4 gives the size of the initial data, namely, ‖u(0)‖ ≤ 1
λ , for which

estimate (30) holds. For a fixed nonlinearity F (t, u), that is, for a fixed con-
stant c0 from assumption (4), the maximal size of ‖u(0)‖ is determined by the
minimal size of λ.

The minimal size of λ is determined by the inequality λ ≥
(
c0
ε

)1/(p−1)
, that

is, by the maximal size of ε ∈ (0, c1). If ε < c1 and c1 − ε is very small, then

λ > λmin :=
(
c0
c1

)1/(p−1)
and λ can be chosen very close to λmin.

Proof of Theorem 4. Let

µ(t) = λ(1 + t)ν , λ, ν = const > 0. (31)

We will choose the constants λ and ν later. Inequality (9) (with β(t) = 0)
holds if

c0
λp−1(1 + t)(p−1)ν

+
ν

1 + t
≤ c1

(1 + t)q1
, ∀t ≥ 0. (32)

If
q1 ≤ 1 and (p− 1)ν ≥ q1, (33)

then inequality (32) holds if

c0
λp−1

+ ν ≤ c1. (34)

Let ε > 0 be an arbitrary small number. Choose

ν = c1 − ε. (35)

Then inequality (34) holds if inequality (26) holds. Inequality (10) holds be-
cause we have assumed in Theorem 4 that ‖u(0)‖ ≤ 1

λ . Combining inequalities
(26), (27) and (11), one obtains the desired estimate:

0 ≤ ‖u(t)‖ = g(t) ≤ 1

λ(1 + t)c1−ε
, ∀t ≥ 0. (36)

Condition (26) holds for any fixed small ε > 0 if λ is sufficiently large. Condition
(27) holds for any fixed large λ if ‖u0‖ is sufficiently small.

Theorem 4 is proved. 2

Let us formulate a stability result in which we assume that b(t) 6≡ 0. The
function b(t) has physical meaning of persistently acting perturbations.

Theorem 5. Let b(t) 6≡ 0, conditions (3)- (5) and (29) hold, and

β(t) ≤ c2
(1 + t)q2

, (37)

where c2 > 0 and q2 > 0 are constants. Assume that

q1 ≤ min{1, q2 − ν, ν(p− 1)}, ‖u(0)‖ ≤ λ−10 , (38)



Chaotic Modeling and Simulation (CMSIM) 1: 17–27, 2011 25

where λ0 > 0 is a constant defined in (45), and

c
1− 1

p

2 c
1
p

0 (p− 1)
1
p

p

p− 1
+ ν ≤ c1. (39)

Then problem (1)-(2) has a unique global solution u(t), and the following esti-
mate holds:

‖u(t)‖ ≤ 1

λ0(1 + t)ν
, ∀t ≥ 0. (40)

Proof of Theorem 5. Let g(t) := ‖u(t)‖. As in the proof of Theorem 4,
multiply (1) by u, take the real part, use the assumptions of Theorem 5, and
get the inequality:

ġ ≤ − c1
(1 + t)q1

g + c0g
p +

c2
(1 + t)q2

. (41)

Choose µ(t) by formula (31). Apply Theorem 1 to inequality (41). Condition
(9) takes now the form

c0
λp−1(1 + t)(p−1)ν

+
λc2

(1 + t)q2−ν
+

ν

1 + t
≤ c1

(1 + t)q1
∀t ≥ 0. (42)

If assumption (38) holds, then inequality (42) holds provided that it holds for
t = 0, that is, provided that

c0
λp−1

+ λc2 + ν ≤ c1. (43)

Condition (10) holds if

g(0) ≤ 1

λ
. (44)

The function h(λ) := c0
λp−1 + λc2 attains its global minimum in the interval

[0,∞) at the value

λ = λ0 :=

(
(p− 1)c0

c2

)1/p

, (45)

and this minimum is equal to

hmin = c
1
p

0 c
1− 1

p

2 (p− 1)
1
p

p

p− 1
.

Thus, substituting λ = λ0 in formula (43), one concludes that inequality (43)
holds if the following inequality holds:

c
1
p

0 c
1− 1

p

2 (p− 1)
1
p

p

p− 1
+ ν ≤ c1, (46)

while inequality (44) holds if

‖u(0)‖ ≤ 1

λ0
. (47)
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Therefore, by Theorem 1, if conditions (46)-(47) hold, then estimate (11) yields

‖u(t)‖ ≤ 1

λ0(1 + t)ν
, ∀t ≥ 0, (48)

where λ0 is defined in (45).
Theorem 5 is proved. 2

4 Stability results 2

Let us assume that Re(A(t)u, u) ≤ γ(t)‖u‖2, where γ(t) > 0. This corresponds
to the case when the linear operator A(t) may have spectrum in the right half-
plane Rez > 0. Our goal is to derive under this assumption sufficient conditions
on γ(t), α(t, g), and β(t), under which the solution to problem (1) is bounded
as t → ∞, and stable. We want to demonstrate new methodology, based on
Theorem 1. By this reason we restrict ourselves to a derivation of the simplest
results under simplifying assumptions. However, our derivation illustrates the
method applicable in many other problems.

Our assumptions in this Section are:

β(t) = 0, γ(t) = c1(1 + t)−m1 , α(t, g) = c2(1 + t)−m2gp, p > 1.

Let us choose
µ(t) = d+ λ(1 + t)−n.

The constants cj ,mj , λ, d, n, are assumed positive.
We want to show that a suitable choice of these parameters allows one

to check that basic inequality (9) for µ is satisfied, and, therefore, to obtain
inequality (11) for g(t). This inequality allows one to derive global boundedness
of the solution to (1), and the Lyapunov stability of the zero solution to (1)
(with u0 = 0). Note that under our assumptions µ̇ < 0, limt→∞ µ(t) = d. We
choose λ = d. Then (2d)−1 ≤ µ−1(t) ≤ d−1 for all t ≥ 0. The basic inequality
(9) takes the form

c1(1+t)−m1 +c2(1+t)−m2 [d+λ(1+t)−n]−p+1 ≤ nλ(1+t)−n−1[d+λ(1+t)−n]−1,
(49)

and
g0(d+ λ) ≤ 1. (50)

Since we have chosen λ = d, condition (50) is satisfied if

d = (2g0)−1. (51)

Choose n so that
n+ 1 ≤ min{m1,m2}. (52)

Then (49) holds if
c1 + c2d

−p+1 ≤ nλd−1. (53)

Inequality (53) is satisfied if c1 and c2 are sufficiently small. Let us formulate
our result, which folows from Theorem 1.
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Theorem 6. If inequalities (53) and (52) hold, then

0 ≤ g(t) ≤ [d+ λ(1 + t)−n]−1 ≤ d−1, ∀t ≥ 0. (54)

Estimate (54) proves global boundedness of the solution u(t), and implies
Lyapunov stability of the zero solution to problem (1) with b(t) = 0 and u0 = 0.

Indeed, by the definition of Lyapunov stability of the zero solution, one
should check that for an arbitrary small fixed ε > 0 estimate supt≥0 ‖u(t)‖ ≤ ε
holds provided that ‖u(0)‖ is sufficiently small. Let ‖u(0)‖ = g0 = δ. Then
estimate (54) yields supt≥0 ‖u(t)‖ ≤ d−1, and (51) implies supt≥0 ‖u(t)‖ ≤ 2δ.
So, ε = 2δ, and the Lyapunov stability is proved. 2
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Abstract. We investigate critical points of the free energy of the Cahn-Hilliard model
of a binary alloy under the constraint of a constant mass. The domain is the unit
square. Minimizers of the energy without interfacial energy term are given by a
decomposition of the two components of the alloy, but the interfaces between the
components are arbitrary. Specific patterns are only formed if an interfacial energy
term is present. We select such patterns of minimizers by an approximation of se-
quences of conditionally critical points of the free energy when the interfacial energy
term tends to zero. This is what we call Pattern Formation of the Stationary Cahn-
Hilliard Model. Mathematically it is a singular limit process.

We obtain the conditionally critical points by a global bifurcation analysis of the
Euler-Lagrange equation for the free energy where the mass is the bifurcation pa-
rameter and where the constant homogeneous mixtures give the trivial solutions. By
using characteristic symmetries and monotonicities of the bifurcating solutions we
show that singular limits exist for all masses in the so-called spinodal region and that
they are minimizers of the free energy without interfacial energy term.

Keywords: Cahn-Hilliard model, Spinodal decomposition, Global bifurcation, Ge-
ometry of global branches, Singular limit process, Pattern formation, Weierstraß-Erd-
mann corner condition.

A binary alloy in a vessel Ω can be described by a function u:Ω → IR
as follows: u(x) ∈ [0, 1] means that the mixture contains u(x) · 100 % of one
component at x ∈ Ω. The energy density of the alloy is modelled by W (u),
where W is a two-well potential (Figure 1).

a b0 1
u

W (u)

Figure 1

Received: 20 September 2011 / Accepted: 21 October 2011
c© 2011 CMSIM ISSN 2241-0503



30 H. Kielhöfer

W (u(x)) is minimal, if only one component is present at x ∈ Ω. Any
mixture of the two components costs energy. The interval (a, b), where W loses
its convexity, is called “spinodal region”.

The total energy is given by

E0(u) =

∫
Ω

W (u) dx (1)

and the mass conservation is formulated as

1

|Ω|

∫
Ω

udx = m ∈ (0, 1). (2)

The energy (1) under the constraint (2) is minimal for the following con-
centrations:

u0(x) =

{
0 for x ∈ Ω0,

1 for x ∈ Ω1,
(3)

with
|Ω0| = (1−m)|Ω|,
|Ω1| = m|Ω|. (4)

The following Figure 2 sketches a possible distribution of the two com-
ponents in a square Ω. The decomposition of the two components is called
“spinodal decomposition”.

1

01

1

1

0

0

Figure 2

Only the measures of Ω0 and Ω1 are determined, their patterns are arbitrary.
In experiments, however, certain patterns are preferred, for instance patterns
with circular “interfaces”.

The model is not yet complete: Taking care of the energy of the interfaces
between the two components the total energy is described as

Eε(u) =

∫
Ω

ε

2
‖∇u‖2 +W (u) dx, ε > 0, small, (5)

which is called the “Cahn-Hilliard Energy”.
Let uε be a minimizer of Eε(u) under the constraint of mass conservation.

One expects for small ε > 0:

uε(x) ≈
{

0 for x ∈ Ω0,ε,

1 for x ∈ Ω1,ε,

with a profile at the interface of the form (Figure 3)
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0

1

uε

Figure 3

such that for ε↘ 0

uε(x) −→ u0(x) =

{
0 for x ∈ Ω0,0,

1 for x ∈ Ω1,0,

and u0 is a minimizer of E0(u) under the same constraint.
This “singular limit process” defines the sets Ω0,0 and Ω1,0, in particular

their patterns. We call it “Pattern Formation of the Stationary Cahn-Hilliard
Model”. Due to the “Criterion of Minimal Interface” of Modica from the
year 1987, see [5], patterns with circular interfaces are created (Figure 4): If
minimizers of (5) under the constraint (2) tend to u0 in L1(Ω) as ε↘ 0, then
the interface between Ω0,0 and Ω1,0 is minimal.

1 0 oror
0

1
1

0

m > 1− 1
π

m < 1
π

Figure 4. Criterion of Minimal Interface (Modica 1987)

For one-dimensional domains Ω this was already shown by Carr, Gurtin,
and Slemrod in 1984, see [1]: The singular limit of conditional minimizers is
piecewise constant with one single jump in the interval Ω.

In 1995 Grinfeld and Novick-Cohen [2] classified all conditionally critical
points of (5) over an interval. They did not study their singular limits, i. e.,
their pattern formation.

In the sequel we study the pattern formation of conditionally critical points
of (5) over the unit square Ω in IR2. Observe that |Ω| = 1. (Proofs can be
found in [3], [4].)

We substitute m = λ, u = λ+ v and obtain

Eε(v, λ) =

∫
Ω

ε

2
‖∇v‖2 +W (λ+ v) dx (6)

under the constraint ∫
Ω

v dx = 0. (7)

Conditionally critical points of Eε(v, λ) satisfy
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a) the Euler-Lagrange equation:

−ε∆v +W ′(λ+ v) = const. in Ω,

b) the natural boundary conditions:

∂v

∂n
= 0 on ∂Ω (Neumann boundary conditions),

c) the constraint of mean value zero:∫
Ω

v dx = 0.

Conditions b) and c) are incorporated into a function space X and a) is
expressed as

Gε(v, λ) := −ε∆v +W ′(λ+ v)−
∫
Ω
W ′(λ+ v) dx = 0

for (v, λ) ∈ X × IR.
(8)

We have the trivial solution

Gε(0, λ) = 0 for all ε > 0, λ ∈ IR, (9)

which describes by u ≡ λ = m a homogeneous mixture.

We look for nontrivial solutions (v, λ) of (8) that bifurcate from the trivial
solution line {(0, λ) |λ ∈ IR}.

I. In the first part we fix ε > 0 and we consider λ ∈ IR as a variable
bifurcation parameter.

I.1 Possible bifurcation points (0, λ) have to satisfy

DvGε(0, λ)v = −ε∆v +W ′′(λ)v = 0 in Ω,

∂v

∂n
= 0 on ∂Ω,∫

Ω
v dx = 0,

(10)

for some nontrivial v ∈ X. This linear eigenvalue problem (10) has the
solutions v(x1, x2) = cosnπx1 and v(x1, x2) = cosnπx2 for n ∈ IN pro-
vided W ′′(λ) = −εn2π2.

We do not consider these one-dimensional solutions here but we are rather
interested in

vn(x) = cosnπx1 + cosnπx2 for W ′′(λ) = −εn2π2,
vnn(x) = cosnπx1 cosnπx2 for W ′′(λ) = −2εn2π2.

(11)

The bifurcation points, which are solutions of the “characteristic equation”,
appear in pairs as depicted in Figure 5:



Chaotic Modeling and Simulation (CMSIM) 1: 29–38, 2011 33

−2εn2π2

−εn2π2

a λ1nnλ1n λ2nn λ2n b
W ′′

Figure 5

The number of modes n = 1, . . . , N(ε), generating bifurcation points in the
spinodal region (a, b) as shown in Figure 5, tends to infinity as ε tends to zero.

The symmetries of the eigenfunctions (11) play a crucial role in the subse-
quent analysis. For vn they are shown in the following Figure 6:

maxima

minima

saddles

1
n

x2

x1

symmetry axes

Qn = [0, 1
n
]× [0, 1

n
]

Qn

0

Figure 6

We define a subspace Xn ⊂ X by the symmetries (and periodicities) of vn
and we define Xnn ⊂ Xn ⊂ X by the symmetries (and periodicities) of vnn.

I.2 We solve Gε(v, λ) = 0 for (v, λ) ∈ Xn×IR as well as for (v, λ) ∈ Xnn×IR.
The bifurcation points are

(0, λ1kn), (0, λ1kn,kn), and (0, λ2kn), (0, λ2kn,kn), k ∈ IN, (12)

provided

W ′′(λikn) = −ε(kn)2π2 and W ′′(λikn,kn) = −2ε(kn)2π2 (13)

for i = 1, 2. A local and global bifurcation analysis then gives the bifurcation
diagram sketched in Figure 7:
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Xn

C−n

C+
n

C+
nn

C−nn

C+
nn

C−nn
C−n

C+
n

ba

λ2nλ2nnλ1n λ1nn IR

Figure 7

The branches C−n and C−nn are obtained from C+
n , C+

nn by “reversion”, i. e., by
a reflection and a phase shift of half the period in both directions and in one
direction, respectively.

By a famous result of Rabinowitz from the year 1971 all bifurcation continua
are unbounded or meet the trivial solution line a second time.

I.3 In order to decide which Rabinowitz alternative holds in our case, we
determine the geometry of solutions on the global continua C+

n . (A similar
analysis determines the geometry of solutions in C+

nn.) We define an order
in IR2 by the positive cone K = {x = (x1, x2) |x1 ≥ 0, x2 ≥ 0} in IR2 (Figure 8):

������
������
������
������
������

������
������
������
������
������x2

x1

K

Figure 8

x ≤ y ⇔ y − x ∈ K. (14)

The eigenfunction vn is monotonic in the square Qn = [0, 1
n ]× [0, 1

n ]:

x, y ∈ Qn, x ≤ y ⇒ vn(x) ≥ vn(y). (15)

By the symmetries (and periodicities) of vn there is a monotonicity of vn in all
squares of the symmetry lattice.

By using the elliptic maximum principle and the connectivity of C+
n it can be

shown that the monotonicity (15) is preserved for all solutions of Gε(v, λ) = 0
on C+

n :
x, y ∈ Qn, x ≤ y ⇒ v(x) ≥ v(y) (16)

The consequences of (16) are that the location of the maxima, minima,
and saddles is fixed for all solutions on C+

n . This, in turn, implies that all
bifurcating continua C+

n and C+
nn are separated.
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I.4 The geometry of solutions on C+
n described before helps to derive the

following a priori estimates:

(v, λ) ∈ C+
n ⇒ ‖v‖L∞(Ω) + |λ| ≤M1,

‖v‖C2+α(Ω) ≤M2/ε
2,

(17)

where M1 and M2 do not depend on ε > 0. The results of I.3 and (17) then
yield the global bifurcation diagram sketched in Figure 9:

λ1n λ2n

Xn

(v, λ)

C−n

C+
n

IRba

Gε(v, λ) = 0

Figure 9

The turning points are explained later.

II. In the second part we fix λ in the spinodal region (a, b) and let ε tend
to 0. Since the solution continua C+

n depend on ε we change the notation:

C+
n = C+

n,ε

(v, λ) ∈ C+
n,ε ⇒ v = vλ,ε, where Gε(vλ,ε, λ) = 0.

(18)

II.1 Let εn ↘ 0 and consider the sequence (vλ,εn)n∈IN in Lp(Ω). The
estimates ‖vλ,εn‖L∞(Ω) ≤M1 and ‖vλ,εn‖C2+α(Ω)‖ ≤M2/ε

2
n do not imply that

this sequence is relatively compact in Lp(Ω) for 1 ≤ p < ∞. However, by
the monotonicity (16) it is relatively compact in Lp(Qn), and therefore, by the
symmetries (and periodicities), it is relatively compact in Lp(Ω). This follows
by an extension of Helly’s theorem on one-dimensional monotonic sequences to
two dimensions. Thus we can state (w. l. o. g.):

vλ,εn −→ vλ,0 in Lp(Ω) for 1 ≤ p <∞
as εn ↘ 0.

(19)

II.2 The properties of the singular limit vλ,0 ∈ Lp(Ω) are:
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a)

∫
Ω

vλ,0 dx = 0,

b) vλ,0 ∈ Xn, vλ,0 is monotonic in Qn,

c) λ+vλ,0 = uλ,0 is a conditionally critical point of E0(u) =
∫
Ω
W (u) dx, i. e.,

W ′(uλ,0) = const.,

d) vλ,0 6= 0, i. e., vλ,0 is nontrivial,

e) uλ,0 has precisely two values.

Property d) is not obvious. It follows from W ′′(uλ,0) ≥ 0, which, in turn,
is a consequence of the variational characterization of the positive principal
eigenvalue of an eigenvalue problem with weight function. Property e) then
follows from c) and W ′′(uλ,0) ≥ 0. Finally,

f) uλ,0 is a global minimizer of E0(u) under the constraint
∫
Ω
udx = λ = m ∈

(a, b).

Property f) is not obvious as well. It follows from the second Weierstraß-
Erdmann corner condition developed for discontinuous global minimizers of
one-dimensional variational problems:

W (uλ,0)− uλ,0W ′(uλ,0) is continuous,

which means constant by e).
(20)

Property (20) admits only the following two values for uλ,0 which proves f):

uλ,0(x) =

{
0 for x ∈ Ω0,0,

1 for x ∈ Ω1,0,
(21)

where the sets Ω0,0 and Ω1,0 depend on λ = m. This accomplishes the pattern
formation of the stationary Cahn-Hilliard model.

For n = 4 we obtain the following pattern in Xn (Figure 10):

0 1

0

Qn

1

Figure 10
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In the symmetry class Xnn a pattern for n = 4 is the following Figure 11:

Figure 11

The interfaces are circular, if uλ,ε are conditional mimimizers of Eε(u).
However, not all uλ,ε = λ+vλ,ε, where (vλ,ε, λ) ∈ C+

n,ε, are minimizers with
mean value λ = m ∈ (a, b).

Qn

5

2

1

7

9

8

4

6

3

a λ1n,ε λ2n,ε b λ1
2

Figure 12

Figure 12 sketches the global continuum C+
n,ε for small ε > 0. A contin-

uous transition from pattern 1 to pattern 9 in keeping the monotonicity and
symmetry of uλ,ε in Qn is only possible through patterns 4, 5, 6, which are not
created by minimizers, since the interface is not minimal. Therefore the con-
tinuum has to have two additional turning points, where the stability changes.
In particular, the continuum with patterns 4, 5, 6 is unstable, i. e., the criti-
cal points uλ,ε are not minimizers. These heuristic arguments for the turning
points are verified by a numerical pathfollowing.
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Abstract. The Verhults differential equation d
dt
N(t) = r N(t) (1−N(t)) and its lo-

gistic parabola difference equation counterpart xt+1 = αxt (1−xt) I(0,1)(xt), α ∈ [0, 4],
are tied to sustainable growth. We investigate the implications of considering 1−N(t),
the linear truncation of the MacLaurin expansion of − lnN(t), or N(t), the lin-
ear truncation of − ln(1 − N(t)), i.e. of curbing down either the retroaction factor
1 − N(t) or the growing factor N(t), which leads to Gumbel extreme value pop-
ulation for maxima or minima, respectively. More generally, we consider d

dt
N(t) =

r N(t) (− lnN(t))1+γ
∗

— or, alternatively, d
dt
N(t) = r (− ln(1−N(t)))1+γ

∗
(1−N(t))

—- and its difference equation counterpart. Simple extensions of the beta densities
arise naturally in this context, and we discuss a BetaBoop(p, q, P,Q), p, q, P,Q > 0
family of probability density functions, that for P = Q = 1 reduces to the usual
Beta(p, q) family.
Keywords: Population dynamics and chaos, extremal models, beta family.

1 Introduction

The rationale of the Verhulst population dynamics model

d

dt
N(t) = r N(t) (1−N(t)) (1)

is well-known: due to the malthusian reproduction rate r > 0, r N(t) im-
plies growth, but on the other hand the retroaction term −r N2(t) slows down
the growth impetus, and ultimately dominates, an action that is often inter-
preted in terms of sustainability. Hence the logistic solution of (1), N(t) =
1/(1 + e−rt) (normalized so that N(t) is a probability distribution function),
is often tied to the idea of sustainable population dynamics growth.

Using Euler’s algorithm, with an appropriate factor s, the equation (1) can
be rewritten as

N(t+ 1) = N(t) + sr N(t) (1−N(t)) ⇐⇒ xt+1 = αxt (1− xt) (2)
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where xt = sr N(t)/(sr + 1), α = 1 + sr; if α ∈ (0, 4), xt ∈ (0, 1) =⇒ xt+1 ∈
(0, 1).

Due to its connection to the logistic curve, αx (1 − x)I(0,1)(x) is some-
times referred to as logistic parabola. Observe that, with the notation Xp,q _
Beta(p, q), αx (1−x) I(0,1)(x) = α

6 fX2,2(x), where fX2,2(x) = 6x (1−x) I(0,1)(x)
is the probability density function of X2,2 _ Beta(2, 2).

The fact that Euler’s algorithm transforms the logistic differential equation
in the difference equation model xn+1 = αxn (1−xn) had an important impact
in the recognition that bifurcations, fractality, and ultimate chaos were indeed
important tools in modeling population dynamics, when the reproduction rate
r is explosive and sustainability fails.

As the Verhulst model is closely tied to the Beta(2, 2) probability den-
sity function, Aleixo et al. [1], [2], investigated the population dynamics of
its natural extensions tied to general Beta(p, q) models. Explicit solutions
of the differential equation d

dtN(t) = r Np−1(t) (1 − N(t))q−1 exist only for
some (p, q) other than (2, 2) — for instance, 4 ert/ (1 + ert)2 is the solution of
d
dtN(t) = r N(t)

√
1−N(t) — but using appropriate software (we used Math-

ematica 7) numerical approximations of the solutions of practical problems are
easily worked out.

As lnN(t) = −
∑∞
k=1 (1−N(t))k/k, the factor 1 − N(t) in (1) may be

looked at as the linear truncation of − lnN(t). In the differential equation

d

dt
N(t) = r N(t) (− lnN(t)), (3)

the retroaction factor − lnN(t) is much lighter than 1−N(t), and hence it is

not surprising that the solution of (3), N(t) = e−e
−rt

(once again normalized
to be a probability distribution function) is one of the extreme value laws for
maxima, namely the Gumbel law.

On the other hand ln(1 − N(t)) = −
∑∞
k=1N

k(t)/k, and considering that
the growing factor N(t) in (1) is the linear approximation of − ln(1 − N(t)),
we may regard (1) as an approximation of

d

dt
N(t) = r (− ln(1−N(t))) (1−N(t)) (4)

whose solution, once again normalized, is the Gumbel extreme value distribu-
tion for minima, N(t) = 1 − e−e

rt

, which makes sense since in this case we
curbed down the growing factor.

Pestana et al. [9] investigated d
dtN(t) = r N(t) (− lnN(t)) and its discretiza-

tion counterpart xt+1 = s r xt(− lnxt) in modeling extremal growth rate, as
observed in the dynamics of cancer cells populations.

The generalization

fp,Q(x) =
pQ

Γ(Q)
xp−1(− lnx)Q−1I(0,1)(x)

of the beta densities, has been introduced by Brilhante et al. [3]. In Section
2 we discuss the behavior of xt+1 = r xt(− lnxt) I(0,1)(x), the more general
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differential equation d
dtN(t) = r N(t) (− lnN(t))1+γ and its connection to ex-

treme value laws, as well as the behavior of xt+1 = s r xt(− lnxt)
1+ 1

γ I(0,1)(x).
In Section 3 we introduce a new extension of the beta densities, namely

fp,q,P,Q(x) = c xp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1I(0,1)(x), (5)

p, q, P,Q > 0, and a general discussion on modeling population dynamics via
differential equations/difference equations, questioning whether chaos is in fact
an appropriate framework in the description of evolution of populations.

2 Extreme value laws and population dynamics

As observed in Section 1, the Gumbel distribution function for maxima, N(t) =

e−e
−rt

, is a solution of the differential equation d
dtN(t) = r N(t) (− lnN(t)),

and the Gumbel distribution function for minima, N∗(t) = 1 − e−e
rt

, is a
solution of the differential equation d

dtN
∗(t) = r (− ln(1−N∗(t))) (1−N∗(t)).

We now consider difference equations closely tied to those differential equations,
i.e., we assume that there exists an appropriate c such that

N(t+ 1) = N(t) + cN(t) (− lnN(t))⇐⇒ N(t+ 1) = −cN(t) ln

(
N(t)

e
1
c

)
,

and we obtain the difference equation,

xt+1 = c xt (− lnxt), (6)

closely associated to (3). As long as xt ∈ (0, 1), if c ∈ (0, e) we also have
xt+1 ∈ (0, 1). The stationary solutions of (6) are xt+1 = xt = x0 with x0 = 0

or x0 = e−
1
c . In view of the stability criterion for the stationary solutions,∣∣c (− lnx − 1)
∣∣ < 1, and hence the stationary solution x0 = e−

1
c is stable for

0 < c < 2., cf. Fig. 1
Using in Mathematica 7 the output of the instructions

Clear[f, x]

f[c_][x_] := c x *(-Log[x]) // N

x[c_][n_] := x[c][n] = f[c][x[c][n - 1]] // N

x[c_][0] := 0 // N;

tb = Table[{c, x[c][n]}, {c, .1, Exp[1], .01}, {n, 1000, 1300}];

Short[tb]

as input for the instructions

tb2 = Flatten[tb, 1];

ListPlot[tb]

we obtain the graph in Fig. 2, exhibiting bifurcations for c ≥ 2, and ultimately
chaos, as expected from the observations above.
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Fig. 1. Left: 1.5xt (− lnxt); right: 2.5xt (− lnxt).

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Fig. 2. Bifurcation diagram, solving x = f(c, x) = c x (− lnx), c ∈ (0, e), using the
fixed point method.

As we have discussed previously, the Gumbel distribution for minimaN(t) =

1 − e−e
rt

is a solution for the differential equation d
dtN

∗(t) = r (− ln(1 −
N∗(t))) (1−N∗(t)), which is tied to the difference equation xt+1 = c(− ln(1−
N(t))) (1−N(t)). Fig. 3 is the simile of Fig. 2 for this case.

A more general situation involves the study of the differential equations

• d
dtN(t) = r N(t) (− lnN(t))1+

1
γ , whose solution for γ > 0 is (again in

standardized form) the Fréchet distribution function for maxima N(t) =

e−(
r
γ x)

−γ
I[0,∞)(t), and whose solution for γ < 0 is the Weibull distribution

function for maxima N(t) = e−(−
r
γ t)

γ

I(−∞,0)(t) + 1 I[0,∞)(t).
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Fig. 3. Bifurcation diagram, solving x = f(c, x) = c (− ln (1 − x)) (1 − x), c ∈ (0, e),
using the fixed point method.

• d
dtN(t) = r N(t) (− lnN(t))1+

1
γ , whose solution for γ > 0 is the Fréchet

distribution for minima, and for γ < 0 is the Weibull distribution function
for minima.

Fig. 4 and Fig. 5 illustrate the dynamical behavior when solving by the
fixed point method the difference equations closely associated to the above

differential equations, namely xt+1 = c xt (− lnxt)
1+ 1

γ for γ = 1 (Fréchet-1)
and γ = −2 (Weibull-0.5).

Remark 1. Considering the General Extreme V alue (GEV ) distribution for

maxima, Gγ∗(t) = e−(1+γ
∗t)−1/γ∗

, 1 + γ∗t > 0, it is obvious, from

(1 + γ∗t)−1/γ
∗−1 = ((1 + γ∗t)−1/γ

∗
)

1/γ∗+1
1/γ∗ = (− lnGγ∗(t))1+γ

∗
, that Gγ∗

satisfies the differential equation

d

dt
Gγ(t) = Gγ(t) (− lnGγ(t))1+

1
γ , γ =

1

γ∗
.

In the GEV representation, a shape parameter γ∗ > 0 corresponds to the
Fréchet- 1

γ∗ , γ∗ < 0 corresponds to the Weibull- 1
|γ∗| , and γ∗ → 0 corresponds

to the Gumbel.
The similarity of

d

dt
N(t) = r N(t) (− lnN(t))1+

1
γ

and
d

dt
N(t) = r (− ln(1−N(t)))1+

1
γ (1−N(t))

comes from the fact that stable distributions G for maxima (either Gumbel, or
Fréchet or Weibull) and the corresponding stable distributions G∗ for minima
are tied through the relationship G∗(x) = 1−G(−x).



44 Brilhante et al.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

Fig. 4. Bifurcation diagram, solving x = f(c, x) = c x (− lnx)2 using the fixed point
method.
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Fig. 5. Bifurcation diagram, solving x = f(c, x) = c x (− lnx)0.5 using the fixed point
method.

3 The BetaBoop family

Brilhante et al. [3] extensively studied the family of probability density func-
tions

fp,Q(x) =
pQ

Γ (Q)
xp−1(− ln x)Q−1 I(0,1)(x),

p,Q > 0, and their relevance in population studies.
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Denote Xp,Q _ Betinha(p,Q), p,Q > 0, the random variable whose prob-
ability density function is fp,Q, given above.

In fact, 4x (− lnx) I(0,1)(x), tied to the Gumbel model, is the case p = Q = 2
in this family, just as 6x (1− x) I(0,1)(x), tied to the logistic parabola and the
Verhulst population model, is the case p = q = 2 of the Beta(p, q) family of
probability density functions, whose dynamical behavior has been studied in
depth in Aleixo et al. [1], [2], and references therein. This new family provides
difference models whose associated differential models have as solution, among
others, the stable distributions for maxima.

In the previous section we have seen that the probability density function
of random variables YP,q = 1 − Xq,P , with q = 2, are connected to difference
equations associated to differentail equations having as solutions the stable
distributions for minima.

In fact, in view of Hölder’s inequality, the function

xp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1 I(0,1)(x)

is integrable for every p, q, P,Q > 0, and hence there exists c ∈ (0,∞) such
that fp,q,P,Q, in (5), is a probability density function. We denote the cor-
responding random variable Xp,q,P,Q _ BetaBoop(p, q, P,Q). Observe that
BetaBoop(p, q, 1, 1) is the same as Beta(p, q), and BetaBoop(p, 1, P, 1) is the
same as Betinha(p, P ).

Betty Boop brought in chaos to the American Board of Censorship — sorry,
we were dreaming of Betty Boop and Jessica Rabbit, and what we really meant
to say is BetaBoop(p, q, P,Q) brings in chaos, in the sense that the fixed point
solution of equations of the type

x = c xp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1

exhibit all the problems first encountered in the numerical solution of the case
p = q = 2, P = Q = 1. In Fig. 6 we illustrate this for p = q = P = Q = 1.5,
and in Fig. 7 for p = q = 1, P = Q = 3.

In fact, many other generalizations of the logistic parabola
fc(x) = cx(1 − x) I(0,1)(x) are potentially interesting in modeling popu-

lation dynamics, as far as they reflect recognizable characteristics. For in-
stance, the linear truncation of e−x ≈ (1 − x) shows that c x e−x I(0,1)(x) ≈
c∗ x (1 − x) I(0,1)(x). In Fig. 8 we represent the bifurcation diagram corre-
sponding to the difference equation xt+1 = c x e−x, modeling extremely slow
growth.

Tsoularis, [10], in his overview of extensions of the logistic growth model,
describes a hyper-Gompertz class, introduced by Turner et al., [11], which is a
subclass of the BetaBoop family. Our approach, using retroaction factor func-
tions whose linearization is (1−x) (such as − ln x or e−x) and/or growing factor
functions for which x is the linear truncation (such as − ln(1− x)), leads to a
wider class of growth models. Knowledge of the biological population dynam-
ics may serve as an educated guess guideline to choose appropriate growth and
retroaction factors, and as a basis to choose among competing growth models.
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Fig. 6. Bifurcation diagram, solving x = f(c, x) = c(x(1− x)(− ln(1− x))(− lnx))0.5

using the fixed point method.
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Fig. 7. Bifurcation diagram, solving x = f(c, x) = c((− lnx (− ln(1− x)))2 using the
fixed point method.
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Fig. 8. Bifurcation diagram, solving x = f(c, x) = c x e−x using the fixed point
method.

4 Avoiding Chaos and a Class of New Non-Stable
Extreme Value Laws

Finally, let us remark that there are grounds to argue that the chaos map
(
for

instance xt+1 = c xt (− lnxt)
)

is not an appropriate discrete equivalent of the

original differential equation — for that example, d
dtN(t) = r N(t) (− lnN(t))

—, inasmuch as the chaos map implies bifurcations and ultimately chaos, in-
existent in the original differential equation.

An interesting point is that if we consider that the retroaction acts at time
t+1, we obtain a difference equation xt+1 = c xt (− lnxt+1), that has the same
stationary solutions as the chaos map xt+1 = c xt (− lnxt), but does not exhibit
bifurcation and chaos. In fact, from xt+1 = c xt (− lnxt+1) we get a solution
fc(x) = cxW

(
1
cx

)
, where W () is the Logarithmic Product function, a function

taking on real values for x > −0.5.
Fig. 9 below shows that cxW

(
1
cx

)
I(0,∞)(x) is a distribution function, that

may serve as a non-stable extreme value law, but that definitively is not a good
approximation to the Gumbel distribution. (We used c = 2, and computed the
Gumbel scale parameter 0.52688, so that the the lines cross at the 0.9 quantile.)

This is patently a rather poor approximation, even for quite large values.
In fact, investigating this approximation has been motivated solely from the
fact that this is a non-chaotic solution of a modified difference equation ap-
proximation to the differential equation whose solution is the Gompertz curve,
i.e. the Gumbel distribution, when properly normalized.

In fact

lim
x→∞

1− ctxW (1/(ctx))

1− cxW (1/(cx))
= t−1,

showing that this new law is in the domain of attraction of the Fréchet with
shape parameter 1, whatever the value c > 0.

Fig. 10, comparing the distribution function 2xW
(

1
2x

)
I(0,∞)(x) and the

Fréchet distribution e−
0.44995

x I(0,∞)(x), shows that this approximation is quite
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Fig. 9. 2xW
(

1
2x

)
I(−0,∞)(x) (solid line) approximation of e−e−0.52688 x

(dashed line).

good. Once again, the scale parameter of the Fréchet distribution has been
chosen so that the lines cross at the common 0.9 quantile.
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Fig. 10. 2xW
(

1
2x

)
I(−0,∞)(x) (solid line) approximation of e−

0.44995
x I(0,∞)(x)

(dashed line).

Below, in Fig. 11, we plot the second derivative of 2xW
(

1
2x

)
I(−0,∞)(x).

Observe that Mejzler [4], [5], [6], [7], [8] developed an interesting M-class of
“self-decomposable” extreme value laws that arise as limit of suitably consis-
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tent sequences of independent — but not necessarily identically distributed —
random variables, that is in the extreme values scheme a simile of Khinchine’s
L-class in the asymptotic additive theory. Mejzler’s characterization is done in
terms of log concavity.

5 10 15 20

-0.20

-0.15

-0.10

-0.05

Fig. 11. Log-concavity of 2xW
(

1
2x

)
I(−0,∞)(x).
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and Chaos of Destruction
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Abstract. Dissipative soliton, that is a localized and self-preserving structure, de-
velops as a result of two types of balances: self-phase modulation vs. dispersion and
dissipation vs. gain. The contribution of dissipative, i.e. environmental, effects causes
the complex “far from equilibrium” dynamics of a soliton: it can develop in a local-
ized structure, which behaves chaotically. In this work, the chaotic laser solitons are
considered in the framework of the generalized complex nonlinear Ginzburg-Landau
model. For the first time to our knowledge, the model of a femtosecond pulse laser
taking into account the dynamic gain saturation covering a whole resonator period is
analyzed. Two main scenarios of chaotization are revealed: i) multipusing with both
short- and long-range forces between the solitons, and ii) noiselike pulse generation
resulting from a parametrical interaction of the dissipative soliton with the linear
dispersive waves. Both scenarios of chaotization are associated with the resonant and
nonresonant interactions with the continuum (i.e. vacuum) excitations.
Keywords: Dissipative soliton, Complex nonlinear Ginzburg-Landau equation,
Chaotic soliton dynamics.

1 Introduction

The nonlinear complex Ginzburg-Landau equation (NCGLE) has a lot of appli-
cations in quantum optics, modeling of Bose-Einstein condensation, condensate-
matter physics, study of non-equilibrium phenomena, and nonlinear dynamics,
quantum mechanics of self-organizing dissipative systems, and quantum field
theory [1]. In particular, this equation being a generalized form of the so-
called master equation provides an adequate description of pulses generated
by a mode-locked laser [2]. Such pulses can be treated as the dissipative soli-
tons (DSs), that are the localized solutions of the NCGLE [3]. It was found,
that the DS can demonstrate a highly non-trivial dynamics including forma-
tion of multi-soliton complexes [4], soliton explosions [5], noise-like solitons [6],
etc. The resulting structures can be very complicated and consist of strongly
or weakly interacting solitons (so-called soliton molecules and gas) [7] as well
as the short-range noise-like oscillations inside a larger wave-packet [8]. The
nonlinear dynamics of these structures can cause both regular and chaotic-like
behavior.
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c© 2011 CMSIM ISSN 2241-0503
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In this article, the different scenarios of the DS structural chaos will be
considered. The first scenario is an appearance of the chaotic fine graining
of DS. For such a structure, the mechanism of formation is identified with
the parametric instability caused by the resonant interaction of DS with the
continuum. The second scenario is formation of the multi-soliton complexes
governed by both short-range forces (due to solitons overlapping) and long-
range forces (due to gain dynamics). The underlying mechanism of formation
is the continuum amplification, which results in the soliton production or/and
the dynamical coexistence of DSs with the continuum.

2 Dissipative solitons of the NCGLE

Formally, the NCGLE consists of the nondissipative (hamiltonian) and dissi-
pative parts. The nondissipative part can be obtained from variation of the
Lagrangian [9]:

L =
i

2

[
A∗ (x, t)

∂A (x, t)

∂t
−A (x, t)

∂A∗ (x, t)

∂t

]
+

+
β

2

∂A (x, t)

∂t

∂A∗ (x, t)

∂t
− γ

2
|A (x, t)|2 , (1)

where A(x, t) is the field envelope depending on the propagation distance x
and the “transverse” coordinate t (that is the local time in our case), β is
the group-delay dispersion (GDD) coefficient (negative/positive for the nor-
mal/anomalous dispersion), and γ is the self-phase modulation (SPM) coeffi-
cient [10]. The dissipative part is described by the driving force:

Q = −iΓA (x, t) + i
ρ0

1 + σ
∫∞
−∞ |A|

2
dt′

[
A (x, t) + τ

∂2

∂t2
A (x, t)

]
+

+iκ
[
|A (x, t)|2 − ζ |A (x, t)|4

]
A (x, t) , (2)

where Γ is the net-dissipation (loss) coefficient, ρ0 is the saturable gain (σ is the

inverse gain saturation energy if the energy E is defined as E ≡
∫∞
−∞ |A|

2
dt′ ),

τ is the parameter of spectral dissipation (so-called squared inverse gainband
width), and κ is the parameter of self-amplitude modulation (SAM). The SAM
is assumed to be saturable with the corresponding parameter ζ.

Then, the desired CNGLE can be written as

i
∂A (x, t)

∂x
− β

2

∂2

∂t2
A (x, t)− γ |A (x, t)|2A (x, t) =

= −iΓA (x, t) + i
ρ0

1 + σ
∫∞
−∞ |A|

2
dt′

[
A (x, t) + τ

∂2

∂t2
A (x, t)

]
+

+iκ
[
|A (x, t)|2 − ζ |A (x, t)|4

]
A (x, t) . (3)
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Eq. (3) is not integrable and only sole exact soliton-like solution is known
for it [10,11]. Nevertheless, the so-called variational method [9] allows exploring
the solitonic sector of (3). The force-driven Lagrange-Euler equations

∂
∫∞
−∞L dt

∂f
− ∂

∂x

∂
∫∞
−∞L dt

∂f
= 2<

∫ ∞
−∞

Q
∂A∗

∂f
dt (4)

allow obtaining a set of the ordinary first-order differential equations for a set f
of the soliton parameters if one assumes the soliton shape in the form of some
trial function A(x, t) ≈ F (t, f). One may chose [14]

F = a (x) sech

(
t

T (x)

)
exp

[
i

(
φ(x) + ψ(x) ln

(
sech(

t

T (x)
)

))]
, (5)

with f = {a(x), T (x), φ(x), ψ(x)} describing amplitude, width, phase, and chirp
(“squeezing parameter” in other words) of DS, respectively.

Substitution of (5) into (4) results in four equations for the soliton param-
eters. These equations are completely solvable for a steady-state propagation
(i.e. when ∂xa = ∂xT = ∂xψ = 0, ∂xφ 6= 0 ). The analysis demonstrates that
the solitonic sector can be completely characterized by two-dimensional master
diagram, that is the DS is two-parametrical and the corresponding dimension-
less parameters are: c ≡ τγ/|β|κ, the dimensionless energy is of E ≡ E

√
κζ/τ

for the anomalous GDD and is of E ≡ Eb−1
√
κζ/τ for the normal GDD (here

b ≡ γ/κ).
The master diagrams are shown in Fig. 1. The solid curves correspond to

the stability thresholds defined as Γ − ρ0
/(

1 + σ
∫∞
−∞ |A|

2
dt
)

= 0. Positivity

of this value provides the vacuum stability. As will be shown, the vacuum
destabilization is main source of the soliton instability causing, in particular,
the chaotic dynamics.

The master diagram in Fig. 1, a (dashed curve) reveals a very simple
asymptotic for the maximum energy of the chirped DS:

E ≈ 17 |β|
/√

κζτ . (6)

The continuum rises above this energy. The corresponding expression for the
chirp-free DS developing in the anomalous GDD regime (see dashed curve in
Fig. 1, b) is

E ≈
√

5β/ζγ. (7)

Asymptotical (i.e. corresponding to c�1) expressions for the widths of the
chirped and chirp-free DSs are:

T ≈ 8

|c|
γ

κ

√
τζ

κ
,

T ≈ 2√
5c

√
τζ

κ
, (8)
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Fig. 1. Master diagrams of DS for the normal (a) and anomalous (b) GDDs. The
solid curves correspond to the DS stability thresholds obtained from the variational
approximation. The dashed curves correspond to the asymptotic c ≡ τγ/|β|κ �1.
The dotted curve in (a) corresponds to the stability threshold of the second DS branch
with θ >1 in (9).

respectively. If the DS in the anomalous GDD is chirp-free by definition, the
DS in the normal GDD has an asymptotical chirp |ψ| ≈ 4κ/γ |c|. One has note,
that the asymptotical DS spectral widths are ∝

√
cκ/τζ for the chirp-free DS

and ∝
√
κ/τζ for the chirped DS.

3 Nonresonant excitation of continuum

The DS of unperturbed Eq. (3) does not interact directly with the continuum.
An existence of the stability thresholds shown in Fig. 1 has a simple physical
explanation: an approach to the stability threshold causes the DS spectral
broadening that increases the spectral loss for the DS [12]. As a result, the DS

energy decreases and the energy-dependent net-loss Γ−ρ0
/(

1 + σ
∫∞
−∞ |A|

2
dt
)

crosses zero-level. Hence, the continuum rises and, in the anomalous GDD
regime, the multiple-pulsing develops (Fig. 2, left). Strong interactions inside
a multi-pulse complex lead to the structural chaotization. The field remains
localized on a picosecond scale, but chaotically structured on a femtosecond
one (Fig. 2, right). On the other hand, the solitonic “soup” (Fig. 2, right) can
create spontaneously the stable soliton complexes (Fig. 3).

However in the normal GDD, the chirped DS is so adaptable that the spec-
tral loss growth with an approaching to the stability threshold leads to an
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Fig. 2. Multiple-pulse complexes (contour plot with brighter regions corresponding
to higher powers) in the anomalous GDD regime. Regular multi-pulsing (left) and
structural chaotization (right) with approaching the GDD to zero are shown. The
axes are t (vertical) and z (horizontal).

Fig. 3. Spontaneous self-ordering from a solitonic “soup”.

appearance of a new DS branch. The stability border corresponding to this
branch can be found from the approximated theory of [15] and is shown by the
dotted curve in Fig. 1, a. Such a branch corresponds to the DS with a so-
called “finger-like” spectrum [13,15]. This spectrum has a main part of power
in the vicinity of the spectrum center. As a result, a spectral loss decreases
that leads to an energy growth close to the boundary of the DS stability. Such
a chirped DS provides a perfect energy scalability (dotted curve in Fig. 1, a)

with E
c→const−−−−−→∞ and can be described by
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F =
a (x)√

θ (x) + cosh
(

t
T (x)

) exp

[
i

(
φ (x) + ψ (x) ln

(
θ (x) + cosh

(
t

T (x)

)))]
(9)

with θ(x) >1.
An additional source of the DS destabilization is a long range “force” caused

by the dynamic gain saturation:

∂ρ

∂t
= P (ρ0 − ρ)− σρ |a|2 − ρ

Tr
. (10)

Here ρ is the time-dependent gain, P is the pump-rate, and Tr is the gain
relaxation time.

The gain dynamics can result in the nonresonant vacuum excitation far
from the DS. As a result, a large-scale solitonic (multi-soliton) structure appears
(Fig. 4) and, the satellites appear both nearby (few picosecond) the main pulse
and far (nanoseconds) from it. Strong interaction between the pulses with the
contribution from a gain dynamics results in a chaotic behavior. For the chirped
DS, the dynamic gain saturation can result in a parametric resonance and the
DS becomes finely structured [18].

Fig. 4. Multiple DS evolution in the presence of the dynamic gain saturation.

4 Resonant excitation of continuum

The stability threshold shown in Fig. 1 corresponds to an unperturbed DS
of (3). The physically meaningful perturbation results from a higher-order

dispersion correction to the Lagrangian: L = L0 + iδ
2
∂2A
∂t2

∂A∗

∂t , where L0 is
the unperturbed Lagrangian (1) and δ is the third-order dispersion (TOD)
parameter. As a result of such perturbation, the resonant interaction of DS
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with the continuum at some frequency ωr can appear [16]. The resonance
appears if the wave-number of a linear wave (i.e. a vacuum excitation) equals
to the DS wave-number q: βω2 + δω3 = q.

Hence, the stability threshold becomes lower (i.e. shifts in the direction
of lower E and c) than that shown in Fig. 1. As the resonance occurs in
the spectral domain, an exploration of the DS spectrum is most informative
in this case. The numerical results corresponding to a mode-locked Cr:ZnSe
oscillator [17] are shown in Fig. 5. Non-zero δ can be treated as a frequency-
dependence of net-GDD. As a result of such dependence, the zero GDD shifts
towards the DS spectrum with the growing |δ|. Increasing TOD transforms
the initially rectangular spectrum (curve 1 in Fig. 5) to trapezoid (curve 2)
and then to triangular (curve 3) ones. Simultaneously, an dispersive spectral
component appears within the anomalous GDD region. The DS spectrum
acquires a strong modulation (curve 4), when the resonant frequency shift

inside the DS spectrum: |ωr| <
√
ζa20
/
|β| ≈ |β/δ| . Finally, the spectrum

becomes completely fragmented with a further TOD growth.

4
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Fig. 5. Spectra of the chirped DSs corresponding to the different net-GDD. The GDD
slope depends on the TOD value. Here, the positive GDDs correspond to the normal
dispersions.

Resonant interaction with the dispersive wave perturbs strongly the DS
spectrum, causes the spectrum structurization and the central frequency jitter.
As a result, the soliton behaves chaotically (Fig. 6) although its energy remains
almost constant.
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Fig. 6. Jitter of the DS central frequency and its peak power due to resonant inter-
action with the continuum.

5 Conclusion

Unlike a classical soliton, a DS posses nontrivial dynamics, which can be very
complicated. In particular, a chaotic interaction with the excited vacuum (con-
tinuum) develops. Such an interaction can be both nonresonant and resonant.
A nonresonant excitation of the vacuum forms the multi-soliton complexes.
Strong interactions inside such complexes cause the structural chaos. Long-
range interactions in a system can be additional source of the nonresonant
vacuum excitation that leads to the macro-structural solitonic chaos. A reso-
nant excitation of the vacuum causes the DS spectral jitter with a subsequent
chaotic dynamics and even a soliton destruction. One has to note, that a strong
localization of the chirped DS does not prevent the soliton traceability in an
even chaotic regime. Such a traceability promises a lot of applications in the
spectroscopy, for instance.
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