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Abstract. Natural convection flows arising from a horizontal cylinder centred in
a square-sectioned enclosure are studied numerically. The sequence of bifurcations
marking the transition of base fixed-point solutions to unsteady, chaotic flows is fol-
lowed for increasing values of the Rayleigh number, and for two values of the enclosure
aspect ratio, A. It is observed that, for the lower A-value, the route to chaos is trig-
gered by a supercritical Hopf bifurcation, followed by a sequence of period-doublings,
while, for the higher A-value, the symmetry of the system is broken by a pitchfork
bifurcation, with periodic orbits originating from both branches, and eventually ap-
proaching chaos, exhibiting features typical of blue-sky catastrophes.
Keywords: Thermal convection, transition to chaos, bifurcations, period-doubling.

1 Introduction

Buoyancy-induced flows in enclosures are very complex in nature, and highly
unpredictable, due to the bi-directional interaction between the flow and tem-
perature fields, and the sensitivity of the thermal-flow regimes to the geometric
and thermal configuration of the system.

The importance of bifurcations and chaos in buoyancy-induced flows as
a research topic goes far beyond the field of thermal sciences. In fact, it is
deeply entwined with the history of chaos theory, since the discovery of the
renown Lorenz attractor, originating from a simplified Rayleigh-Bénard con-
vection model [1]. From that seminal study, many works have been carried
out on the non-linear dynamics of thermal convection in basic enclosure con-
figurations, such as the rectangular enclosures heated from below and from
the side [2,3], and, more recently, the horizontal annulus between two coaxial
cylinders [4]. Fewer works dealt with more complex geometrical and thermal
configurations [5,6]. Nevertheless, from a theoretical and practical standpoint,
the interest in this topic is growing continuously.
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The physical system considered in the present study is the cavity formed
by an infinite square parallelepiped with a centrally placed cylindrical heat-
ing source. The system is approximated to its 2D transversal square section
containing a circular heat source, as sketched in Fig. 1. The temperature of
both enclosure and cylinder is assumed as uniform, the cylindrical surface be-
ing hotter than the cavity walls. The resulting flow is investigated with respect
to the leading parameter of the non-dimensionalized problem, the Rayleigh
number Ra, based on the gap width H, and for two values of the aspect ra-
tio A = L/H, between the cavity side length and the minimum enclosure to
cylinder gap width, namely A = 2.5 and A = 5. The third parameter of the
system, the Prandtl number, is fixed at a value Pr = 0.7, representative of air
at environmental conditions.

Fig. 1. Left: schematic of the system under consideration; (×) symbols indicate
locations of the sampling points. Right: quadrant of the computational grid for
A = 2.5.

Numerical predictions are carried out by means of a specifically developed
finite-volume code. Successive bifurcations of the low-Ra fixed point solu-
tion are followed for increasing Ra. To this aim, time series of the dependent
variables (velocity components and temperature), are extracted in 5 locations
represented in Fig. 1 by points P1 to P5. Nonlinear dynamical features are
described by means of phase-space representations, power spectra of the com-
puted time series, and of Poincaré maps.

2 Numerical method

The problem is stated in terms of the incompressible Navier-Stokes formulation,
under the Boussinesq approximation. The governing equations (continuity,
momentum and energy) are tackled in their non-dimensional form:
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∇ · u = 0 (1)

∂u

∂t
+ u · ∇u = −∇p +

Pr1/2

Ra1/2
∇2u + T ĝ (2)

∂T

∂t
+ u · ∇T =

1

(RaPr)1/2
∇2T (3)

where t, u, p and T represent the dimensionless time, velocity vector, pressure
and temperature, respectively, and ĝ is the gravity unit vector. A value Pr =
0.7 is assumed for air. Boundary conditions for T and u are reported in Figure
1.

The numerical technique adopted is based on a second-order, Finite Volume
implementation of equations (1)-(3) on non-uniform Cartesian grids: a more
detailed description of the spatial and temporal discretization schemes is found
in [7]. The 2D modelling of arbitrarily irregular boundaries on Cartesian grids
is achieved thanks to the original scheme developed by Barozzi et al. [8], which
preserves second-order accuracy for the method, as well as the computational
efficiency of the Cartesian approach.

In view of the work objectives, special care was put on the grid sizing of
both near-wall areas and internal domain regions, as shown in Fig. 1. The
average cell spacing in each region was chosen according to scaling considera-
tions, as illustrated in [6]. The time step size has been chosen small enough
so as to ensure a suitably accurate reproduction of the continuous-time system
dynamics.

For either A-value, the initial conditions were chosen so as to follow the
evolution of low-Ra base-flow, fixed-point solutions [7]. In order to detect
the occurrence of successive bifurcations, Ra was increased monotonically with
suitable steps, each simulation starting from the final frame of the preceeding
one. All the simulations were protracted to steady-state or, when unsteady
flows were detected, until a fixed dimensionless time span was covered.

A = 2.5 (190× 190 grid) A = 5 (288× 288 grid)

Ra Bifurcation Ra Bifurcation

4× 104 S (base flow) 1.8× 104 S (base flow)

6.6 ∼ 6.8× 104 S → P1 (supercritical Hopf) 3.2 ∼ 3.4× 104 S → NS (pitchfork)

1.7 ∼ 1.8× 105 P1 → P2 (period-doubling) 6.0 ∼ 7.0× 104 NS → P (Hopf)

1.8 ∼ 1.9× 105 P2 → P4 (period-doubling) 6.0 ∼ 7.0× 105 P → N (Blue-sky

1.9 ∼ 2.0× 105 P4 → . . .→ N catastrophe)

Table 1. Bifurcations of the low-Ra base flow solution for each A.
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3 Results and discussion

Table 2 summarizes the sequences of bifurcations leading to chaos for both
values of the aspect ratio A. The nomenclature used in defining the different
types of asymptotic behaviours follows the systematic introduced by Angeli et
al. [4]. In the following, details of both routes are briefly illustrated by means
of established nonlinear analysis tools.

For A = 2.5, starting from the base solution at Ra = 4 · 104, the system
asymptotically reaches a fixed-point for Ra ≤ 6.6 × 104. As Ra is increased
from Ra = 6.6 × 104 to Ra = 6.8 × 104, oscillatory behaviour sets in, until a
periodic limit cycle is reached. In Fig. 2, 2D projections of the corresponding
T -ux-uy attractors are plotted as a function of Ra. The passage from the
lower-Ra fixed-point solution to the periodic orbit is clearly portrayed, thus
suggesting the occurrence of a Supercritical Hopf bifurcation.

Fig. 2. Sequence of 2D attractors uy-T at point P2, for A = 2.5 and for increasing
Ra.

Fig. 3 reports the power spectral density distribution of the temperature
time series at point P1 for the case A = 2.5 and for increasing values of the
Rayleigh number. The values of Ra have been chosen with the aim of showing
the occurrence of a period doubling route to chaos which characterises the
evolution of the system dynamics for the mentioned aspect ratio. In fact, it is
possible to observe that the two original fundamental harmonics observed in
the power spectrum of temperature at Ra = 1.7 × 105 become four for Ra =
1.8×105 and double again for Ra = 1.9×105; the last case, at Ra = 2.0×105,
is instead characterised by a broadband power spectrum, which represents a
first hint of chaotic dynamics, with the broadened bands arising around the
original harmonics of the previous cases.
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Ra = 1.7× 105 Ra = 1.8× 105

Ra = 1.9× 105 Ra = 2.0× 105

Fig. 3. Power spectral density of T at point P1, for A = 2.5 and for increasing Ra

This observation is confirmed by the analysis of the system attractors re-
ported in the T -ux-uy state space, as reported in Fig. 4. Considering that each
of the fundamental harmonics observed in the power spectrum corresponds to
a loop of the attractor in the phase space representation, it is possible to ob-
serve that the original two-loop limit cycle at Ra = 1.7 × 105 gives rise to a
four-loop limit cycle at Ra = 1.8 × 105, which, in turn, is doubled again in a
eight-loop limit cycle at Ra = 1.9 × 105. Finally, for the last of the reported
values of Ra, Ra = 2.0× 105, in accordance with previous observations on the
power spectrum, the attractor shows a chaotic morphology, with fractal bands
distributed around the loops of the original limit cycles.

Fig. 4 reports also the intersections of the 3-dimensional attractors with
Poincaré surfaces of section that have been obtained considering the plane
ux-T passing by the mean values of the calculated time series of the state
variable uy. Such intersections have been reported in the maps in Fig. 5. It is
observed that a couple of intersections arises for each loop of the limit cycle.
Again, the successive period doublings can be observed by spanning the maps at
Ra = 1.7×105 to Ra = 1.8×105 and, then, to Ra = 1.9×105, whereas ordered
series of intersections, typical of deterministic chaotic dynamics, characterise
the Poincaré map at Ra = 2.0 × 105. For brevity, it is just mentioned here
that an accurate observation of the local structure of such series of intersections
reveals the stretching and folding typical of fractal sets.
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Ra = 1.7× 105 Ra = 1.8× 105

Ra = 1.9× 105 Ra = 2.0× 105

Fig. 4. 3D attractor in state space T -ux-uy at point P1, for A = 2.5 and for increasing
Ra

For the higher value of the aspect ratio A considered, A = 5, the system
undergoes a different sequence of bifurcations leading to chaos. Fig. 6(a) repre-
sents the evolution of the T -uy attractors at point P2 as a function of Ra. As Ra
is increased beyond Ra = 3.2× 104, the base flow becomes unstable, and gives
rise to two different solution branches, suggesting the occurrence of a pitchfork
bifurcation (whose sub- or supercritical nature is still to be ascertained). The
two solution branches correspond to stable mirrored dual solutions [6].

By further increasing Ra, each of the two solution branches undergo a Hopf
bifurcation to a periodic limit cycle, as clearly visible in Fig. 6(a). Such
transition occurs between Ra = 6 × 104 and Ra = 7 × 104. The periodic
orbits remain stable for a wide range of Ra-values, up to Ra = 6× 105. From
Fig. 6(b), a progressive increase of the period of the limit cycle, i.e. of the
loop extension can be appreciated. This trend eventually leads to the chaotic
attractor reported in Fig. 6(c), for Ra = 7× 105, in a general evolution which
seems to belong to the class of blue-sky catastrophes [9]. Such an observation
deserves further analyses which, however, are beyond the scope of the present
study.
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Ra = 1.7× 105 Ra = 1.8× 105 Ra = 1.9× 105 Ra = 2.0× 105

Fig. 5. Poincaré surfaces of section of the 3D attractors at point P1, for A = 2.5 and
for increasing Ra

4 Concluding remarks

Natural convection flows arising from a horizontal cylindrical source centred
in a square enclosure were investigated numerically. Two values of the aspect
ratio A were considered; for which the entire scenario leading to deterministic
chaos was outlined, for increasing values of the Rayleigh number.

For the lower A-value, A = 2.5, the flow undergoes a Hopf bifurcation,
followed by a sequence of period-doublings. For the higher A-value, A = 5, a
pitchfork bifurcation gives rise to stable periodic orbits, persisting for a large
range of Ra-values. Chaotic behaviour is finally observed, on top of an evolution
which resembles a blue-sky catastrophe.

Fig. 6. (a) Sequence of 2D attractors T -uy at point P2, for A = 5 and for increasing
Ra; (b) 3D periodic orbits in state space T -ux-uy at point P1, for A = 5 and for
increasing Ra; (c) chaotic attractor at point P1, for A = 5 and Ra = 7× 105.
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Abstract: Three-dimensional phase-space representation and 3-dimensional surface 

imaging using single scalar time series data obtained from two very different atmospheric 

pressure plasma systems is presented. The process of delay embedding, Savitzky-Golay 

digital filtering and deconvolution of frequency-domain data is described. 

Keywords: Plasma, Electrical measurement, Electro-acoustic, Overtones, LabVIEW. 

 

1  Introduction 

Low-temperature, non-thermal atmospheric pressure plasma jets (APPJ) are 

being developed for surface treatment of biomedical devices, sterilisation, and 

therapeutic techniques, such as wound sterilisation and cancer treatment [1]. In 

addition to these medical applications, APPJ are now routinely employed in the 

automotive (car head lamps) and aerospace (fuselage and wing components) 

industry for surface activation of polymer prior to bonding [2]. This paper 

describes some of the emerging plasma electrical and electro-acoustic metrology 

that is being developed for the diagnostics and control of APPJ systems. In 

particular the requirement for extraction of information that describes the 

tempo-spatial heterogeneous processes. The methodology to obtain this 

information is currently in its infancy when compared to low pressure plasma 

metrology [3]. In this paper the multivariate analysis tools for the 3-dimensional 

phase-space representation from a single scalar time series, either of a single 

observable in the time-domain, or temporal-spatial deconvolutions of a single 

observable in the frequency-domain are given. The use of these tools to obtain 

measurements on two APP jet systems is presented: a hand-held plasma jet [4]; 

and an industrial scale computer numerical controlled PlasmaTreat OpenAir™ 

APPJ system [5 and 6]. By comparing the diagnostic information obtained using 

these two APPJ systems the robustness of the diagnostic techniques for both 
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laboratory and industrial scale APPJ are demonstrated. 

 

2   3-D representation of a signal observation: Current 

Cold APPJ pens (some times called pencils or needles) are increasingly used in 

many processing applications due to a distinct combination of their inherent 

plasma stability with excellent reaction chemistry that is often enhanced 

downstream. The term cold used here refers to temperatures of less than 50
o
C at 

the point of contact and so enables the treatment of temperature sensitive living 

tissue and organic polymers. An example of the helium APPJ pen examined in 

this study, which is driven at a drive frequency of 18 kHz, is shown in figure 3.1 

and discussed in detail in references [1 and 4]. 
 
 

 
 

Figure 2.1: Image of a cold AAPJ pen and interaction with human figure. 

 

This section of the paper describes one of the emerging metrology techniques 

that can characterise the APPJ pen’s three modes of operation (chaotic, bullet 

and continuous). However, when there is access to only one single observable, 

namely, the current at the driving electrode I (t), defining these modes becomes 

a challenge. Figure 2.2 details the current waveform for each of the three modes 

of operation. A common feature of all three modes is that their current 

waveform has one distinct peak every positive half cycle of the applied voltage 

and one current peak every negative half cycles, but later this is not always the 

case. The chaotic mode is observed immediately after breakdown, and an 

increase in the input power eventually leads to the bullet mode and then to the 

continuous mode. As the mode changes to bullet and then on to continuous, the 

current peaks become stronger and regular and finally adding an additional 

current peak per voltage cycle in the continuous 
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Figure 2.2: APPJ pen current waveforms in the chaotic, bullet and continuous modes. 

 

In order to introduce a phase-space representation of the APPJ current 

waveform the technique of embedding is used [7]. In particular, we use the 

delay embedding within which the state vector at time t in the 3-dimensional 

phase space is reconstructed as a vector whose coordinates are the values of the 

single observable taken at time moments separated by a certain delay τ , namely, 

(I (t ), I (t + τ), I (t + 2τ), . . . , I (t + (m − 1)τ )). The number m is the embedding 

dimension and depends on the dimension of the attractor in the original 

dynamical system. For visualization purposes, here we choose m = 3. The time 

delay τ can be chosen by a variety of methods, but one of the most popular 

approaches is to calculate the mutual information from the variables I (t) and I (t 

+ τ) as a function of τ , and to choose its first minimum [8]. The value of τ 

obtained by this method was close to 4µs for all datasets and was chosen for the 

phase-space reconstruction in this study. 

Figures 2.3(chaotic), (bullet) and (continuous) shows 3-dimensional phase space 

reconstructions for the APPJ pen operating in the chaotic, bullet and continuous 

modes, respectively. For each mode, the phase trajectory is shown during 

several hundred excitation cycles. Whereas figures 2.3(bullet) and (continuous) 

show limit cycles (i.e. periodic attractors), figure 2.3(chaotic) shows a set that 

does not look similar to a limit cycle, nor to a low-dimensional torus 

representing a quasi periodic (i.e. non-chaotic) behaviour. We therefore suggest 

that this is a projection of a chaotic Attractor into a three-dimensional space. 

An alternative to the 3-diamensional phase-space reconstruction of the current 

waveform is to cut the block of sequentially sampled data points in to n-frames, 

with each frame length equal to one complete drive frequency period, T, (where 

T =1/f, followed by alignment of each frame, to a common zero-crossing-point, 

within the block of data. The data displayed in figure 2.2 is used for this time-

domain reconstruction and has been performed in a LabVIEW program [9] 

where the recorded length was found to be 555 points per period of the 18 kHz 
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drive frequency. The computed results are shown in figure 2.4 for each of the 

modes (chaotic, bullet and continuous). 

Initial comparison between the two methods visually demonstrates that both 

reconstructions delineate the chaotic mode. Indeed the positive current peak 

deterministic Jitter, as measured in the time-domain, is of the order of 5µs, 

which is close to the τ value used in the phase space reconstructions. However, 

the 3-dimesional phase space reconstructions provide poor visual discrimination 

between the bullet and continuous modes. This is because the current frequency 

doubling information contained in the continuous time-domain display is not 

clearly resolved in the phase space reconstruction. The outcome of this limited 

comparison suggest that a suitable attractor for representing the three APPJ pen 

modes can be found within the supposition of n-frames within a current 

waveform data block. In addition time-domain n-frame suppositions reveal the 

modes and therefore can be used to characterize and map the time resolved 

visual properties of each mode, see reference [4]. 

 
 

Figure 2.3: APPJ pen phase space 

reconstruction for each mode.      

Figure 2.4: APPJ time-domain n-frame 

representation for each mode.

 

3   Deconvolution of a single observation: Electro-acoustic 

The PlasmaTreat OpenAir™ APPJ is used worldwide and represents a typical 

Bullet       

Chaotic 

Continuous 

RL = 555 

∆t = 5 µs 
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APPJ in the manufacturing sector. Full technical details of the APPJ are given in 

references [5, 6]. In this study the APPJ is electrically driven at 19 kHz and the 

working (ionisation) gas is Air. The first impression of this APPJ that it is much 

larger than the plasma pencil design, and the sound emitted by this APPJ is 

generally 30 dB above the environment sound level. This section is concerned 

with the decoding of the APPJ electro-acoustic emission [10] and the use of 

parts of the conditioned signal for process control. 

As with reference [10] the electro-acoustic signal is captured by a microphone 

and sampled using a computer soundcard followed by a Fast Fourier Transform. 

LabVIEW 8.2 software is used to present the raw data in frequency-domain (0-

60 kHz span). Within the software a Savitzky-Golay digital filter [11] is chosen 

to piece-by-piece smooth the raw data by least square minimisation with a 

polynomial function (m = 1) within a moving window. The windowing is 

express in the following form, where k is the ± sampled data points. 

 

2k +1 

 

Figure 3.1a and b shows the raw un-filtered dataset (gray trace) and the filtered 

dataset (black trace) under plasma plume free expansion conditions. 

Experimentally it is found that a k = 10 preserves the high Q-factor (f/∆f -3 dB 

bandwidth ~200) frequency registration of the 19 kHz drive signal and its 

harmonics plus reduces the measurement noise floor to -100 dB that results in a 

signal-to-noise ratio (SRN) of 50 dB ±3 dB: a 20 dB improvement when 

compared to the unfiltered dataset SRN. The second feature of note is the 3 

broad peaks at 10-11, 25-30 and 45 kHz. The frequency spacing between these 

peaks may be represented mathematically using a quarter standing-wave closed 

air-column (clarinet model) [7] and so describes the longitudinal mode within 

the APPJ nozzle. 
 

( )rL

nc
fn

6.04 +
=  

 

In the above equation, n is modulo frequency number, L is the physical length of 

the nozzle (L = 8 mm), 0.6r is the end correction, where r is the internal radius 

of the nozzle) and csound is the sound velocity in air. For this model the exit 

aperture of the nozzle defines the maximum pressure vibration, and the internal 

nozzle aperture, (where the compressed air is at 1.5 atmospheres) is the 

antinode. Using this quarter standing-wave model only the fundamental and odd 

number overtones are supported. For example, fo and n = 3, 5, etc….This model, 

at room temperature 25
o
C (where the speed of sound in air equates to 346.26 

m.s
-1

) yields frequency values of fn = 9.11 kHz, f3 = 27.33 kHz, and f5 = 45.55 

kHz. The values of fn and f3 = 3 approximates to the broad peaks observed in 

figure 3.1a. 
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Figure 3.1a: APPJ raw signal and SG filtered signal. Figure 3.1b: APPJ SG filtered signal 

as a function nozzle-surface distance. 
 

Having established the typical spectrum of the APPJ electro-acoustic emission, 

the focus of this section now moves to examining the electro-acoustic signal as a 

function APPJ nozzle to surface distance, or gap. Figure 3.1.b provides four 

measurements at gaps: 10, 20, 30 and 40 mm at k =10. Under these conditions 

the electrical drive at fo = 19 kHz and its harmonics (f2 = 38 kHz and f3 = 57 

kHz) are constant in their frequency registration. In addition the three broad 

peaks are still present. However a new broad peak at 4-8 kHz emerges and 

grows in amplitude as the gap distance is reduced. In addition, sound pressure 

level measurements indicate an increase of 1 dB from 101 to 102 dB. 

The information obtained from this study allows the single observable electro-

acoustic signal to be tested for specific conditions at discrete frequency bands. 

This procedure is readily implemented in LabVIEW software using lower and 

upper limits at the discrete frequency bands. When the signal amplitude 

breaches these limits, an out of bound condition fail is registered and a simple 

audio-visual alarm is triggered to warn the operator, or a binary code (0 or 1) 

from the comparator [30] may also be hard wired for data logging. 
 

 
 

Figure 3.2: A LabVIEW screen data demonstrating how the system can be used for 

process control. In this case ‘Fail’ is associated with variation in signal in the 4 to 8 kHz 

frequency range. 

The ability to locate a surface has many technological uses including 3-
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dimensional imaging of plasma treated topographical surfaces. This section 

presents a LabVIEW program [10] that records the electro-acoustic emission, as 

the APPJ traverse back and forth across a metal work piece, and transfers the 

sequentially sampled data points into n-frames within a block to produce a 3-D 

image of the topographical surface. Figure 3.3 provides a simplified block 

diagram of the software where some of the control subroutines (vi(s)) have been 

removed for clarity. 
 

 
 

Figure 3.3: Simplified block diagram of the 3-D surface imaging software. 
 

Figure 3.4 provides a 3-dimensional image of a 10 mm wide by 2 mm thick 

plate with a 2 mm diameter hole drilled in the middle of the surface. Each of the 

9 scans is off-set by 2 mm, with the first scan recording the CNC positioning the 

APPJ to the start of the plasma process. Only the forward scans are recorded 

with the return blanked off. Note the acoustic discontinuity where the 2 mm 

hole is located. 

CNC moving PlasmaTreat nozzle into position

2 mm drilled hole

 
 

Figure 3.4: Nine scan 3-D surface image of metal surface with a 2 mm hole. Blanking 

turned on. 

4   Conclusions 

Atmospheric pressure plasma jets offer enhanced quality of care at reduced cost 
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and will be of immense societal and commercial value. This invited paper has 

reviewed both time-domain current waveforms and deconvolution of electro-

acoustic emission (in the frequency-domain) of two (hand-held and industrial 

scale APPJ systems. In the first case, 3-dimesional delay embedding was 

compared to periodic analysis using n-frames within a data block was 

compared. Both techniques provide information on the chaotic mode, with the 

latter yielding information on all three modes. 

For the industrial scale system, single scalar time series, in the form of electro-

acoustic emission is ready available. Here temporal-spatial deconvolution of the 

data provides information on the jet nozzle surface location and surface 

topology. 
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Abstract. The iterative procedure of removing “almost everything” from a triangle
ultimately leading to the Sierpinski’s gasket S is well-known. But what is in fact left
when almost everything has been taken out? Using the Sir Pinski’s game described
by Schroeder [4], we identify two dual sets of invariant points in this exquisite game,
and from these we identify points left over in Sierpinski gasket. Our discussion also
shows that the chaos game does not generate the Sierpinski gasket. It generates an
approximation or, at most, a subset of S.

Keywords: Sierpinski gasket, Sierpinski points, fractals, Sir Pinski game, chaos
game, self-similarity, periodicity.

1 Introduction

Let T be a triangle with vertices A,B,C, and denote a, b, c the corresponding
opposite sides.

The first step of the classical iterative construction of the Sierpinski gasket
is to remove the middle trianle M1 with vertices A′, B′, C ′, the middle points
of a, b, c, respectively. In this first step we obtain

S1 = T −M1 = T1 ∪R1 ∪ L1,

where T1 is the ‘top triangle’, R1 is the ‘right triangle’, and L1 is the ‘left
triangle’. Observe that T1, R1 and L1 are similar to T .

In the second step we repeat the above procedure, removing M2,T1 in T1,
removing M2,R1 in R1, and removing M2,L1 in L1. With the notation M2 =
M2,T1

∪M2,R1
∪M2,L1

, in this second step we obtain

S2 = S1 −M2 = T − (M1 ∪M2).

S2 is the union of 32 triangles similar to T . Each of them is easily identified

using self-explanatory notations such as
−−−→
T1R2.
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A similar procedure is indefinitely repeated: in step k we obtain Sk by
removing the middle triangles from each of the 3k−1 triangles whose union is
Sk−1; we denote Mk the union of the middle triangles removed from Sk−1 to
obtain Sk.

Notations such as
−−−−−−−−→
R1T2T3L4T5 indicate in S5 that we are considering the

triangle obtained when in the 1st, 2nd, 3rd, 4th and 5th steps we go respectively
to the right, to the top, to the top, to the left and to the top triangles of the
one obtained in the previous step.

The Sierpinski gasket is

S = lim
k→∞

Sk =

∞⋂
k=1

Sk.

From Banach’s contractive mapping fixed point theorem it follows that the
Sierpinski gasket

S = T −
∞⋃
k=1

Mk = ψA(S) ∪ ψB(S) ∪ ψC(S),

where ψA(·) is the dilation of ratio 1/2 towards the top vertex A, ψB(·) is the
dilation of ratio r = 1/2 towards the left vertex B, and ψC(·) is the dilation
of ratio 1/2 towards the right vertex C. In other words, S is the unique
non-empty fixed point of the corresponding Hutchinson [2] operator ψ, where
ψ(A) = ψA(A) ∪ ψB(A) ∪ ψC(A), i.e. ψ(A) = A if and only if A = S.

Thus, the use of the contracting ratio r = 1/2 or of the doubling scale factor
s = 1/r = 2 can provide some structural information on the Sierpinski gasket.

1.1 The Sir Pinski Game

Let T be a triangle. A player chooses a point P0 inside the triangle. Sir Pinski
game consists of iteratively jumping to the points {P1, P2, . . . }, where Pk+1

doubles the distance of Pk to its nearest vertex. The player looses at step n if
P0, P1, P2, . . . , Pn−1 ∈ T and Pn /∈ T .

It is obvious thatM1 is the set of loosing points at step 1,M2 is the set of
loosing points at step 2, and in generalMk is the set of loosing points at step k.
Loosing points are illustrated in Figure 1, that also clarifies the connection of
loosing points at step k with middle triangles removed at step k in the classical
iterative construction of the Sierpinski gasket.

Schroeder [4] characterizes Sierpinski’s gasket as the set of winning points
S = T −

⋃∞
k=1Mk of Sir Pinski game.

In other words, the Sierpinski points S ∈ S can be characterized as the set
of points S ∈ T such that S+A

2 , S+B2 , S+C2 ,∈ S. So, starting from whatever
point P ∈ T , iteratively jumping for a point halving the distance to any of the
vertices of the triangle T creates an infinite sequence of points in a straight
line that ultimately converges to the vertex considered. Observe however that

• if P ∈ S, all the iterates are Sierpinski points; but, on the other hand,
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A

B C

P0

P1

P2

A

B C

P0

P1

P2

P3

P4

P0

P1

P2

P3

A

B C

Fig. 1. Loosing points at steps 2 (left), 3 (center) and 4 (right).

• if P /∈ S, none of the iterates is a Sierpinski point.

In fact, the halving contractions ψi generate points that are nearer and
nearer to Sierpinski points, but as the Sir Pinski game clearly shows, doubling
the distance towards the nearest vertex ultimately leaves T unless the starting
point is itself a Sierpinski point.

Observe that iteratively halving (or, alternatively, doubling) the distance to
a fixed vertex of the triangle T creates an infinite sequence of colinear points.
Hence we need some rule to use in turn, either deterministically or randomly,
the different vertices in order to approximate the Sierpinski gasket S. Sir
Pinski game uses the deterministic rule: take the nearest vertex to the starting
point/iterate, and double the distance. If the starting point is a Sierpinski
point, this deterministic rule implies that we are not using a fixed vertex, and
hence colinearity is broken up.

1.2 The Chaos Game

Barnsley [1] devised a chaos game, using randomness to generate subsets of the
three sets ψA(T ), ψB(T ), ψC(T ): pick a starting point P0, and generate iterates
{P1, P2, . . . }, such that Pk is the midpoint of the segment whose endpoints are
Pk−1 and one of the vertices vL = B, vR = C, vT = A of T , randomly chosen
using the discrete uniform law

X =

{
vL vR vT
1/3 1/3 1/3 .

This chaos game is generally presented as a device to generate the Sierpin-
ski gasket S, but in view of the above observations it produces in general an
approximation of the Sierpinski gasket, since in general P0 /∈ S. Observe also
that even starting from a Sierpinski point, what we obtain is a subset of the
Sierpinski gasket — for example, choosing P0 as the top vertex of the equilat-
eral triangle, as in [3], page 306, will generate as iterates only vertex points
of the triangles left out when middle triangles are removed, in the classical
deterministic iterative construction of S. This issue will be discussed later in
further detail.
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2 Invariant Sets of Points in the Sir Pinski Game and
the Sierpinski Gasket

As seen in the introduction, the points S ∈ S are easily described using the
concept of self-similarity and its far-reaching consequences.

Using translation and rotation, if needed, we assume that the vertices of
T are v

L
= (0, 0), v

R
= (a, 0), a > 0, and v

T
= (c, d), d > 0. Different

characterizations of the Sierpinski set arise with different choices of a, c, d.

If T is the triangle with vertices v
L

= (0, 0), v
R

= (1, 0), and v
T

= (0, 1)
its Sierpinski points are, in dyadic notation, s = (x, 1 − x), i.e. if the abcissa
is x = 0.ν1ν2ν3 · · · , the k-th digit of the ordinate is 1 − νk — for instance,
s = (0.11001011101 . . . , 0.00110100010 . . . ), cf. Peitgen et al. [3], p. 173.

Let T be the equilateral triangle with unit height, vertices v
L

= (0, 0), v
R

=
(2
√

3 /3, 0), and v
T

= (
√

3 /3, 1). Schroeder [4], pp. 22–24, used a sophisti-
cated redundant three-coordinates points affixation to show that the Sierpinski
points are those with coordinates (in dyadic expansion) x = 0.a1a2a3 · · · , y =
0.b1b2b3 · · · , z = 0.c1c2c3 · · · , such that (ak, bk, ck) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ,
k = 1, 2, . . .

For our purposes it is more convenient to consider that T is the equilateral
triangle with unit sides, with top vertex A = (1/2,

√
3 /2), left vertex B =

(0, 0), and right vertex C = (1, 0). Project A in the point A′ = (1/3, 0), B in
B′ = (5/6,

√
3 /6), and C in C ′ = (1/3,

√
3 /3).

We claim that the points

• V1 = (3/7, 2
√

3 /7), intersection of AA′ with CC ′,

• V2 = (5/14,
√

3 /14), intersection of AA′ with BB′, and

• V3 = (5/7,
√

3 /7), intersection of BB′ with CC ′,

are Sierpinski points, cf. Figure 2.

A '

B '

C '

V1

V2

V3

A

CB

Fig. 2. Period-3 invariant Sir Pinski {V1, V2, V3} attractor.
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In fact, V1 is the midpoint of AV2, V2 is the midpoint of BV3, V3 is the
midpoint of CV1, and therefore those points are winning points in the Sir Pinski
game, i.e. {V1, V2, V3} is an invariant cycle-3 attractor of Sierpinski points.

Project A in the point A′′ = (2/3, 0), B in B′′ = (2/3,
√

3 /3), and C in
C ′′ = (1/6,

√
3 /6). Obviously, intersecting AA′′ with BB′′ we obtain W1 =

(4/7, 2
√

3 /7), intersecting AA′′ with CC ′′ we obtainW2 = (9/14,
√

3 /14
)
, and

intersecting BB′′ with CC ′′ we obtain W3 = (2/7,
√

3 /7). As it happens with
{V1, V2, V3}, for similar reasons, {W1,W2,W3} is an invariant cycle-3 attractor
of Sierpinski points, cf. Figure 3.

A''

A ' A ''

B '

B ''C '

C ''

V1

V2

V3

W1

W2

W3

A

CB

Fig. 3. Period-3 {V1, V2, V3} and {W1,W2,W3} invariant Sir Pinski points attractors.
{A}, {B} and {C} are invariant in Sir Pinski game; {A′, A′′}, {B′, B′′} and {C′, C′′}
are period-2 invariant sets in Sir Pinski game.

Remark 1. If we re-scale multiplying by 2/
√

3 in order to have unit heights
(i.e., each vertex is at distance 1 from the opposite side), the ordinates of the
transformed V ∗1 and W ∗1 become 4/7, the ordinates of the transformed V ∗2 and
W ∗2 become 1/7, and the ordinates of the transformed V ∗3 and W ∗3 become 2/7.

Hence, if we adhere to Schroeder [4] three-coordinates system (x, y, z),
where x is the distance from the bottom side, y the distance from the left
side, and z the distance from the right side, we see that the period-3 invariant
points must have x-coordinate 4/7, 1/7 or 2/7.

From the (2π/3)-rotational symmetry of T , it follows that in Schroeder’s
three coordinates system

V ∗1 = (4/7, 1/7, 2/7), V ∗2 = (1/7, 2/7, 4/7), V ∗3 = (2/7, 4/7, 1/7), W ∗1 =
(4/7, 2/7, 1/7), W ∗2 = (1/7, 4/7, 2/7), and W ∗3 = (2/7, 1/7, 4/7). ut

Remark 2. The points V1, V2, V3,W1,W2,W3 lie on a circumference of radius√
21 /21 centered at the barycenter (1/2,

√
3 /6) of T . ut
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Remark 3. Each vertex of T is invariant in Sir Pinski game. Hence A,B,C ∈ S.
On the other hand, in Sir Pinski game, the image of A′ is A′′ and vice-versa,
i.e. {A′, A′′} is a period-2 invariant set, and the same holds for {B′, B′′} and
{C ′, C ′′}. V = {V1, V2, V3} and W = {W1,W2,W3} are period-3 invariant sets
(attractors) in Sir Pinski game.

Higher order periodic invariant sets do exist. For instance, using conditions

(a−1/2)2+(b−
√

3/2
)2

= 4[(2a−1/2)2+(2b−
√

3/2)2] and (2b−
√

3 /2)/(2a− 1/2) =

(
√

3 /2− b)/(a− 1/2) on the set of points {(a, b), (2a, 2b), (1− a, b), (1− 2a, 2b)},
so that (a, b) = (0.3, 0.288675), we obtain the period-4 invariant set {(0.3, 0.288675),
(0.6, 0.636194), (0.7, 0.288675), (0.4, 0.636194)}, cf. Figure 4.

A

B C

(0.4, 0.636194) (0.6, 0.636194)

(0.3, 0.288675) (0.7, 0.288675)

Fig. 4. A period-4 invariant Sir Pinski set.

Using the (2π/3)-rotational symmetry of T , two other period-4 invariant
sets are readily obtained.

More complex conditions may be used to generate other periodicity invari-
ant sets. ut

Now we perform the same construction in the T1 (Top), L1 (Left) and R1

(Right) triangles remaining once the middle triangle of T is removed in step 1
of the classical construction of the Sierpinski gasket, obtaining 2×32 points —
32 V s and 32 W s — , as shown in Figure 5. With the self-explaining address-
ing and notations V

i,
−→
L1
,W

i,
−→
L1
, i = 1, 2, 3, it is obvious that V

i,
−→
L1

= 1
2 Vi and

W
i,
−→
L1

= 1
2 Wi — for instance, V

2,
−→
L1

= (5/28,
√

3 /28), V
1,
−→
L1

= (4/14, 2
√

3 /14).

Analogously, the corresponding points in the Right triangle R1 are V
i,
−→
R1

=

(1/2, 0)+ 1
2 Vi and W

i,
−→
R1

= (1/2, 0)+ 1
2 Wi, and the corresponding points in the

Top triangle T1 are V
i,
−→
T1

= (1/4,
√

3 /4)+ 1
2 Vi and W

i,
−→
T1

= (1/4,
√

3 /4)+ 1
2 Wi.

For instance, V
1,
−→
T1

= (13/28, 11
√

3 /28).

The 32 V points in this second stage of the construction are, following the
above algorithm, (3/14,

√
3 /7), (5/7,

√
3 /7), (13/28, 11

√
3 /28), (5/28,

√
3 /28),

(19/28,
√

3 /28), (3/7, 2
√

3 /7), (5/14,
√

3 /14), (6/7,
√

3 /14), (1/28, 9
√

3 /28)
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A

B C

Fig. 5. More Sierpinski points, in T1, in L1 and in R1.

— exactly the 9 points we obtain when we compute the middle point of the seg-
ments joining each of the (3/7, 2

√
3 /7), (5/14,

√
3 /14), (5/7,

√
3 /7) V points

from stage one of the construction with each of the three vertices of T . Similar
results hold in what concerns W points.

Continuing the procedure, in step 3 of the iterative construction of Sier-
pinski’s gasket we obtain 2× 33 points as shown in Fig. 6. (We have included
some extra segments connecting points to make clear that in Sir Pinski game
whatever the initial V point [respectively, W point], in a few steps we shall
land in the attractor V = {V1, V2, V3} [respectively, in W = {W1,W2,W3}].)

A

B C

Fig. 6. More Sierpinski points, in T1, in L1 and in R1.
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Once again the coordinates of any V or W point are easy to compute. For
instance W

1,
−−−→
L1T2

= (1/8,
√

3 /8)+(1/2)2× (4/7, 2
√

3 /7) = (9/56, 11
√

3 /56),

since the left vertex of the triangle whose address is
−−−→
L1T2 is (1/8,

√
3 /8).

Using the same line of reasoning, the V
i,
−−−−−→
R1T2R3

points of
−−−−−→
R1T2R3 have co-

ordinates (3/4,
√

3 /8) + (1/2)3 Vi, the W
i,
−−−−−−−→
R1L2T3T4

points of
−−−−−−−→
R1L2T3T4 have

coordinates (13/16, (13/16)(
√

3 /2)) + (1/2)4Wi. More generally,
• in step n, the coordinates of the original V s and W s are scaled by a factor

(1/2)n;
• the address determines the left vertex of the triangle: a

−→
Lk does not affect

neither the abcissa nor the ordinate, a
−→
Rk shifts the left corner (1/2)k

and does not affect the ordinate, and a
−→
Tk adds (1/4)k to the abcissa and

(1/2)k
√

3 /2 to the ordinate.

For instance, the left corner of
−−−−−−−−−−−→
T1L2L3R4R5T6 is (1/4 + (1/2)4 + (1/2)5 +

(1/4)6, (1/2 + (1/2)6) (
√

3 /2)) = (1409/4096, 33
√

3 /128). Hence, the Sierpin-
ski point W

3,
−−−−−−−−−−−→
T1L2L3R4R5T6

is (1409/4096, 33
√

3 /128) + (1/2)6(2/7,
√

3 /7) =

(10119/28672, 233
√

3 /896).

Remark 4. Suppose that in the k-th step of the iterative deterministic con-
struction of the Sierpinski gasket we focus our attention in one of the remaining

triangles, for instance
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk.

• The midpoints of the segments whose endpoints are the vertex A and the

points of
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk are the points of

−−−−−−−−−−−−−−−→
T1T2R3R4T5 · · ·Lk+1.

• The midpoints of the segments whose endpoints are the vertex B and the

points of
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk are the points of

−−−−−−−−−−−−−−−→
L1T2R3R4T5 · · ·Lk+1.

• The midpoints of the segments whose endpoints are the vertex C and the

points of
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk are the points of

−−−−−−−−−−−−−−−−→
R1T2R3R4T5 · · ·Lk+1.

Hence, the chaos game transforms the V points [respectively, the W points] of
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk in V points [respectively, W points] of either

−−−−−−−−−−−−−−−→
T1T2R3R4T5 · · ·Lk+1,

or
−−−−−−−−−−−−−−−→
L1T2R3R4T5 · · ·Lk+1 or

−−−−−−−−−−−−−−−−→
R1T2R3R4T5 · · ·Lk+1. ut

It seems useless to elaborate more on this matter to conclude that:

• In the k-th step of the classical construction of the Sierpinski gasket we
may explicitly compute the coordinates of 3 V points and of 3 W points in
each remaining triangle.

• The midpoint of any V point [respectively, W point] and any vertex of T
is a V point [respectively, a W point]. In other words, in the chaos game
the set of V points and the set of W points do not communicate.

• In Sir Pinski game, a V starting point generates iterates that ultimately
will land in V, and a W starting point generates iterates that ultimately
will land in W. Hence all V and W points are winning points of the Sir
Pinski game, i.e. they lie in S. We say that V points [respectively, W
points] are in the attraction domain of V [respectively, of W], or that V
and W are invariant periodicity-3 attractors in Sir Pinski game.

Remark 5. We also observe that subsets of 3 V points and 3 W points lie in
circumferences centered at the barycenter of T , cf. Fig. 7. ut
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A

CB

Fig. 7. A consequence of the 2π
3

-rotational symmetry of S

3 Concluding Remarks

3.1 The Chaos Game Does Not Generate the Sierpinski Gasket

Under the heading “Randomness Creates Deterministic Shapes”, Peitgen et al.
[3], p. 299, raise some interesting questions. The discussion in the previous
section patently shows that the chaos game does not generate the Sierpinski
gasket.

More precisely, if the starting point P0 is not a Sierpinski point, its de-
scendants are not Sierpinski points, and eventually some of them computed in
the initial steps are clearly spurious specks observed upon close scrutiny of the
images. The set looks like the Sierpinski gasket, because the composition of
contractions creates something that is very close to the Sierpinski gasket, but
its intersection with the Sierpinski gasket S is void.

On the other hand, our discussion shows that sets generated by the chaos
game starting with a Sierpinski V point and with a Sierpinski W point are
disjoint. Moreover, any of them leaves out points in the domain of attraction
of invariant attractors with periodicities other than 3.

So, even with a carefully selected Sierpinski point in any of those invariant
sets, the best we can get applying the chaos game is a rarefied pale image of
the rich complexity of the Sierpinski gasket. The gross imperfection of the
representation of points and our eyes trick us in believing we are generating
the Sierpinski gasket. In fact, the representation we get is as innacurate as
the representation we get after a finite number of steps of removal of middle
triangles, in the classical deterministic construction.
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3.2 The Chaos Game and Sierpinski Polygons

The Sierpinski gasket is the sole fixed point resulting from 1
2 contractions to-

wards the vertices A, B and C of a triangle; for aesthetic reasons, in most
situations it is worked out using an equilateral triangle.

We now consider contractions on regular polygons with n > 3 vertices. Pick
a point at random inside the polygon, and then draw the next point a fraction
of the distance between it and a polygon vertex picked at random. Continue
the process (after eventually throwing out the first few points). The result of
this “chaos game” is sometimes, but not always, a fractal. In Fig. 8 we show
the result of the contractions r1 = 1

3 and r1 = 3
8 towards the vertices of a

regular pentagon.

Fig. 8. Contractions r1 = 1
3

and r1 = 3
8

towards the vertices of a regular pentagon.

It is obvious that greater scaling factors s = 1
r will originate “islands”, and

smaller scaling factors can create overcrowded sets, with overlapping. Conse-
quently we must refine our original definition, so that the union of contractions
creates the richest fixed point without overlapping. Looking at what happens
in what regards hexagons and decagons, see Fig. 9, it is easy to conclude that
the ideal scaling factor for a n vertices regular polygon is

Fig. 9. Geometric rationale for computing the appropriate scaling factor.

s = 2

[n
4 ]∑

k=0

cos
2π k

n
.
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(where
[
n
4

]
denotes the integer part of n

4 ) — in particular, for the regular
pentagon, s = 2 (1 + cos 4π

5 ) ≈ 2.618033989, and hence the ideal contraction
is r = 1

s ≈ 0.381966011.

Once again the chaos game — generating the next point as the weighted
mean of the current point and a vertex selected at random (i.e., using a discrete
uniform law), with weights 1

r and 1− 1
r — gives a hint of aspect of the resulting

fractal.

For instance, Fig. 10 exhibits the result of 25,000 runs of the chaos game
associated with the Sierpinski octogon, generated using in R the source file

Fig. 10. Chaos game associated with Sierpinski octogon.

with the instructions

# Sierpinski Octogon

# 2011/01/14

######################

#######################

cat("Number of runs?")

nruns<-scan(n=1)

cat("Initial point abcissa?")

x<-scan(n=1)

cat("initial point ordinate?")

y<-scan(n=1)

u<-runif(1)

if (u <= 1/8)

{

x<-0.29289322*x
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y<-0.29289322*y

}

if (u>1/8 & u<=1/4)

{

x<-(0.29289322*x+0.707106781)

y<-(0.29289322*y)

}

if (u>1/4 & u<=3/8)

{

x<-(0.29289322*x+0.707106781*1.70710678 )

y<-(0.29289322*y+0.707106781*0.70710678)

}

if (u>3/8 & u<=1/2)

{

x<-(0.29289322*x+0.707106781*1.70710678 )

y<-(0.29289322*y+0.707106781*1.70710678)

}

if (u>1/2 & u<=5/8)

{

x<-(0.29289322*x+ 0.707106781 )

y<-(0.29289322*y+0.707106781*2.41421356)

}

if (u>5/8 & u<=3/4)

{

x<-(0.29289322*x )

y<-(0.29289322*y+0.707106781*2.41421356)

}

if (u>3/4 & u<=7/8)

{

x<-(0.29289322*x-0.707106781*0.70710678 )

y<-(0.29289322*y+0.707106781*1.70710678)

}

if (u>7/8)

{

x<-(0.29289322*x-0.707106781*0.70710678 )

y<-(0.29289322*y+0.707106781*0.70710678)

}

plot(x,y,xlim=c(-1,2),ylim=c(0,3),pch=20, cex=0.2,

xaxt="n",yaxt="n",xlab="",ylab="",bty="n")

for(i in 1:nruns)

{

u<-runif(1)

if (u <= 1/8)

{
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x<-0.29289322*x

y<-0.29289322*y

}

if (u>1/8 & u<=1/4)

{

x<-(0.29289322*x+0.707106781)

y<-(0.29289322*y)

}

if (u>1/4 & u<=3/8)

{

x<-(0.29289322*x+0.707106781*1.70710678 )

y<-(0.29289322*y+0.707106781*0.70710678)

}

if (u>3/8 & u<=1/2)

{

x<-(0.29289322*x+0.707106781*1.70710678 )

y<-(0.29289322*y+0.707106781*1.70710678)

}

if (u>1/2 & u<=5/8)

{

x<-(0.29289322*x+ 0.707106781 )

y<-(0.29289322*y+0.707106781*2.41421356)

}

if (u>5/8 & u<=3/4)

{

x<-(0.29289322*x )

y<-(0.29289322*y+0.707106781*2.41421356)

}

if (u>3/4 & u<=7/8)

{

x<-(0.29289322*x-0.707106781*0.70710678 )

y<-(0.29289322*y+0.707106781*1.70710678)

}

if (u>7/8)

{

x<-(0.29289322*x-0.707106781*0.70710678 )

y<-(0.29289322*y+0.707106781*0.70710678)

}

points(x,y,pch=20,cex=0.25)

for (j in 1:25000) a=1

}

4e (we used the approximation r = 2 +
√

2 ≈ 3.414213562 for the scaling
factor, and the weights 0.292893219 for the current point and 0.707106781 for
the randomly chosen vertex in order to compute weighted means at each step).
This code is easily modified for any n, using the appropriate scaling factor.
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Once again, for any n this generates a subset or an approximation of the
fixed point of an Hutchinson operator which is the union of contractions towards
each of the vertices of the polygon, with appropriate scaling factor, but is not,
in fact, the (extended) Sierpinski fixed point.
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Abstract. In this paper some problems regarding to the Markov property are dis-
cussed. Among other things, it is presented the extended Markov property, as it has
been synthetized by Kiyosi Itô. Also, it will be emphasized the possibility to approx-
imate a Markov chain by a solution of a stochastic differential equation in a problem
of financial risk.
Keywords: Brownian motion, stochastic differential equations, Markov process,
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1 Introduction

As it can be observed, in the last time, a great interest has been shown to some
topics relating to stochastic approximation procedures and their applications.

Generally speaking, it can be considered a problem where computation is
split among several processors, operating and transmitting data to one another
asynchronously. Such algorithms are only being to come into prominence, due
to both the developments of decentralized processing and applications where
each of several locations migth control or adjusted local variable but the crite-
rion of concern is global. For example a current decentralized application is in
Q-learning where the component update at any time depends on the state of a
Markov process.

After Robbins & Monro laid the foundations of the stochastic approxima-
tions procedures, several problems have been developed especially by Z. Schuss,
H.J. Kushner, K. Itô, H.P. McKean Jr., M.T. Wasan, B. Øksendal, N. Ikeda,
S. Watanabe. Results on almost sure convergence of stochastic approxima-
tion processes are often proved by a separation of deterministic (pathwise) and
stochastic considerations. The basic idea is to show that a ”distance” between
estimate and solution itself has the tendency to become smaller.

In the last decades a great interest has been shown to the investigations of
applications in many diverse areas, and this has accelerated in the last time,
with new applications. Shortly speaking, the basic stochastic approximation
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algorithm is nothing but a stochastic difference equation with a small step size,
and the basic questions for analysis concern its qualitative behaviour over a
long time interval, such as convergence and rate of convergence.

When a stochatic differential equation is considered if it is allowed for some
randomness in some of its coefficients, it will be often obtained a so-called
stochastic differential equation which is a more realistic mathematical model of
the considered situation. Many practical problems conduct us to the following
notion: the equation obtained by allowing randomness in the coefficients of a
differential equation is called a ”stochastic differential equation”. Thus, it is
clear that any solution of a stochastic differential equation must involve some
randomness. In other words one can hope to be able to say something about
the probability distribution of the solutions.

On the other hand, as it is known, a precise definition of the Brownian
motion involves a measure on the path space, such that it is possible to put
the Brownian motion on a firm mathematical foundation. Numerous scientific
works has been done on its applications in diverse areas including among other
things stability of structures, solid-state theory, population genetics, commu-
nications, and many other branches of the natural sciences, social sciences and
engineering. We emphasize here many contributions due to P. Lévy, K. Itô,
H.P. McKean, Jr., S. Kakutani, H.J. Kushner, A.T. Bharucha-Reid and other.

If we refer, for example, to some aspects in genetics, as the approximation
of Markov chains by solutions of some stochastic differential equations to de-
termine the probability of extinction of a genotype, then the Markovian nature
of the problem will be pointed out, and we think that this is a very important
aspect.

In this paper we shall discuss firstly some aspects relating to the approxi-
mation in the study of Markov processes and Brownian motion. Such problems
were developed particularly by Z. Schuss, H.J. Kushner, K. Itô, H.P. McKean
Jr., B. Øksendal, M.T. Wasan.

Then we refer to some aspects regarding to the Markov property in a vision
of K. Itô. And finally, as an application, a problem of stochastic approximation
in the risk analysis, based on a study of of Hu Yaozhong, in connection with a
stochastic differential equation, is considered.

2 In short about stochastic differential equations

We know that to describe the motion of a particle driven by a white noise
type of force (due to the collision with the smaller molecules of the fluid) the
following equation is used

dv(t)

dt
= −βv(t) + f(t) (1)

where f(t) is the white noise term.
The equation (1) is referred to as the Langevin’s equation . Its solution is

the following

y(t) = y0e
−βt + e−βt

∫ t

0

e−βtf(s)ds. (2)



Chaotic Modeling and Simulation (2011) 1: 91–104, 2011 93

If we denote by w(t) the Brownian motion (see the next section), then it is
given by

w(t) =
1

q

∫ t

0

f(s)ds, (3)

so that f(s) =
qdw(s)

ds
. But w(t) is nowhere differentiable, such that f(s) is

not a function. Therefore, the solution (2), of Langevin’s equation, is not a
well-defined function. This difficulty can be overcome, in the simple case, as
follows. Integrating (2) by parts, and using (3), it results

y(t) = y0e
−βt + qw(t)− βq

∫ t

0

e−β(t−s)w(s)ds. (4)

But all functions in (4) are well defined and continuous, such that the
solution (3) can be interpreted by giving it the meaning of (4). Now, such a
procedure can be generalized in the following way. Let us given two functions
f(t) and g(t) that are considered to be defined for a ≤ t ≤ b. For any partition
P : a ≤ t0 < t1 < · · · < tn, we denote

SP =

n∑
i=1

f(ξi)[g(ti)− g(ti−1)],

where ti−1 ≤ ξi ≤ ti. If a limit exists

lim
|P |→0

SP = I

where |P | = max1≤i≤n(ti − ti−1), then it is said that I is the Stieltjes integral
of f(t) with respect to g(t). It is denoted

I =

∫ b

a

f(t)dg(t).

Now the stochastic differential equation

dx(t = a(x(t), t)dt+ b(x(t), t)dw(t)

x(0) = x0 (5)

is defined by the Itô integral equation

x(t) = x0 +

∫ t

0

a(x(s), s)ds+

∫ t

0

b(x(s), s)dw(s). (6)

The simplest example of a stochastic differential equation is the following
equation

dx(t) = a(t)dt+ b(t)dw(t)

x(0) = x0 (7)
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which has the solution

x(t) = x0 +

∫ t

0

a(s)ds+

∫ t

0

b(s)dw(s).

The transition probability density of x(t) is a function p(x, s; y, t) satisfying
the condition

P (x(t) ∈ A |x(s) = x) =

∫
A

p(x, s; y, t)dy

for t > s where A is any set in R. It is supposed that a(t) and b(t) are
deterministic functions.

The stochastic integral

χ(t) =

∫ t

0

b(s)dw(s)

is a limit of linear combinations of independent normal variables∑
i

b(ti)[w(ti+1)− w(ti)].

Thus, the integral is also a normal variable.
But, then

χ(t) = x(t)− x0 −
∫ t

0

a(s)ds

is a normal variable, and therefore

p(x, s; y, t) =
1√
2πσ

e−
(y−m)2

2σ

where
m = E(x(t) |x(s) = x).

Now

E(x(t) |x(s) = x) = x+

∫ t

s

a(u)du

is the expectation of the stochastic integral vanishes.
And the variance is given by the relation

σ = V ar x(t) = E

[∫ t

s

b(u)dw(u)

]2
=

∫ t

s

b2(u)du.

In conclusion, p(x, s; y, t) is given by the following equation

p(x, s; y, t) =

[
2π

∫ t

s

b2(u)du

]− 1
2

· e
−

(
y − x−

∫ t
s
a(u)du

)2

2
∫ t
s
b2(u)du .

[For more details and proofs see, for example: G. Da Prato and J. Zabczyk[3],
G. Da Prato[4], N. Ikeda and S. Watanabe[6], K. Itô and H. P. McKean Jr.[8],
B. Øksendal[13], Z. Schuss[26]].
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3 Brownian motion

Brownian motion, used especially in Physics, is of ever increasing importance
not only in Probability theory but also in classical Analysis. Its fascinating
properties and its far-reaching extension of the simplest normal limit theorems
to functional limit distributions acted, and continue to act, as a catalyst in
random Analysis. It is probable the most important stochastic process. As
some authors remarks too, the Brownian motion reflects a perfection that seems
closer to a law of nature than to a human invention.

In 1828 the English botanist Robert Brown observed that pollen grains
suspended in water perform a continual swarming motion. The chaotic motion
of such a particle is called Brownian motion and a particle performing such a
motion is called a Brownian particle.

The first important applications of Brownian motion were made by L.
Bachélier and A. Einstein. L. Bachélier derived (1900) the law governing the
position of a single grain performing a 1-dimensional Brownian motion starting
at a ∈ R1 at time t = 0

Pa[x(t) ∈ db] = g(t, a, b)db (8)

where (t, a, b) ∈ (0,+∞)×R2 and g is the Green (or the source) function

g(t, a, b) =
1

t
√

2π
e−

(b−a)2

2t2

of the problem of heat flow

∂u

∂t
=

1

2

∂2u

∂2a
, (t > 0).

Bachélier also pointed out the Markovian nature of the Brownian path
but he was unable to obtain a clear picture of the Brownian motion and his
ideas were unappreciated at that time. This because a precise definition of the
Brownian motion involves a measure on the path space, and it was not until
1908-1909 when the works of É. Borel and H. Lebesgue have been appeared.
Beginning with this moment was possible to put the Brownian motion on a
firm mathematical foundation and this was achived by N. Wiener in 1923.

It is very interesting that A. Einstein also derived (8) in 1905 from statistical
mechanical considerations and applied it to the determination of molecular
diameters. He wanted also to model the movement of a particle suspended
in a liquid. Einstein’s aim was to provide a means of measuring Avogadro’s
number, the number of molecules in a mole of gas, and experiments suggested
by Einstein proved to be consistent with his predictions.

We remind, for example, the following aspect. Let us consider that x(t) is
the notation for the displacement of the Brownian particle. Then, the proba-
bility density of this displacement, for sufficiently large values of t, is as follows

p(x, t,x0,v0) ≈ 1

(4πDt)
3
2

e−
|x−x0|

2

4Dt (9)
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where D is

D =
kT

mβ
=

kT

6πaη
(10)

and is referred to as the diffusion coefficient.
Furthermore it results that p(x, t,x0,v0) satisfies the diffusion equation

given below
∂p(x, t,x0,v0)

∂t
= D∆p(x, t,x0,v0). (11)

The expression of D in (10) was obtained by A. Einstein.

Remark 1. From physics it is known the following result due to Maxwell: Let
us suppose that the energy is proportional to the number of particles in a gas
and let us denoted E = γn, where γ is a constant independent of n. Then,

P{a < v1i < b} =

b∫
a

(
1− x2m

2γn

) 3n−3
2

dx

+( 2γn
m )

1
2∫

−( 2γn
m )

1
2

(
1− x2m

2γn

) 3n−3
2

dx

→

→
(

3m

4πγ

) 1
2

b∫
a

e
−

3mx2

4γ dx.

Now, for γ =
3kT

2
the following Maxwell’s result is found

lim
n→∞

P{a < v1i < b} =
( m

2πkT

) 1
2

b∫
a

e
−
mx2

2kT dx.

T is called the ”absolute temperature”, while k is the ”Boltzmann’s constant”.

[For details and proofs see K. Itô and H. P. McKean Jr.[8], Z. Schuss[26], D.
W. Stroock[27], G. V. Orman[20]].

4 On Markov property

In some previous papers we have dicussed on Markov processes in a vision of
Kiyosi Itô. In this section we shall continue this discussion by considering the
extended Markov property.

More details and other aspects can be found in K. Itô[7],[9], K. Itô and H.
P. McKean Jr.[8], D. W. Stroock[27], A. T. Bharucha-Reid[2].

Let S be a state space and consider a particle which moves in S. Also,
suppose that the particle starting at x at the present moment will move into
the set A ⊂ S with probability pt(x,A) after t units of time, “irrespectively of
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its past motion”, that is to say, this motion is considered to have a Markovian
character.

The transition probabilities of this motion are {pt(x,A)}t,x,A and is consid-
ered that the time parameter t ∈ T = [0,+∞).

The state space S is assumed to be a compact Hausdorff space with a count-
able open base, so that it is homeomorphic with a compact separable metric
space by the Urysohn’s metrization theorem. The σ-field generated by the open
space (the topological σ-field on S) is denoted by K(S). Therefore, a Borel set
is a set in K(S).

The mean value

m = M(µ) =

∫
R

xµ(dx)

is used for the center and the scattering degree of an one-dimensional proba-
bility measure µ having the second order moment finite, and the variance of µ
is defined by

σ2 = σ2(µ) =

∫
R

(x−m)2µ(dx).

On the other hand, from the Tchebychev’s inequality, for any t > 0, we
have

µ(m− tσ,m+ tσ) ≤ 1

t2
,

so that several properties of 1-dimensional probability measures can be derived.
Note that in the case when the considered probability measure has no finite

second order moment, σ becomes useless. In such a case one can introduce
the central value and the dispersion that will play similar roles as m and σ for
general 1-dimensional probability measures.

Remark 2. We recall that J. L. Doob defined the central value γ = γ(µ) as
being the real number γ which verifies the following relation∫

R

arctg(x− γ)µ(dx)) = 0.

Here, the existence and the uniqueness of γ follows from the fact that

arctg(x− γ) is continuous and decreases strictly from
π

2
to −π

2
, for x fixed, as

γ moves from −∞ to +∞.

The dispersion δ is defined as follows

δ = δ(µ) = − log

∫ ∫
R2

e−|x−y|µ(dx)µ(dy).

We will assume that the transition probabilities {pt(x,A)}t∈T,x∈S,A∈K(S)

satisfy the following conditions:

(1) for t and A fixed,
a) the transition probabilities are Borel measurable in x;
b) pt(x,A) is a probability measure in A;

(2) p0(x,A) = δx(A) (i.e. the δ-measure concentrated at x);
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(3) pt(x, ·)
weak−→ pt(x0, ·) as x→ x0 for any t fixed, that is

lim
x→x0

∫
f(y)pt(x, dy) =

∫
f(y)pt(x0, dy)

for all continuous functions f on S;
(4) pt(x, U(x)) −→ 1 as t↘ 0, for any neighborhood U(x) of x;
(5) the Chapman-Kolmogorov equation holds:

ps+t(x,A) =

∫
S

pt(x, dy)ps(y,A).

The transition operators can be defined in a similar manner. Consider
C = C(S) to be the space of all continuous functions (it is a separable Banach
space with the supremum norm).

The operators pt, defined by

(ptf)(x) =

∫
S

pt(x, dy)f(y), f ∈ C

are called transition operators.
The conditions for the transition probabilities can be adapted to the tran-

sition operators, but we do not insist here.

Remark 3. Let us observe that the conditions (1) – (5) above are satisfied for
”Brownian transition probabilities”. One can define

pt(x, dy) =
1

t
√

2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

Now the Markov process can be defined.

Definition 1 A Markov process is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K,Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the probability
space (Ω,K,Pa).

The transition probabilities of a Markov process will be denoted by {p(t, a,B)}.
Now let us denote by {Ht} the transition semigroup and let Rα be the resolvent
operator of {Ht}.

The next results shows that p(t, a,B), Ht and Rα can be expressed in terms
of the process as follows:

Theorem 1 Let f be a function in C(S). Then

i) p(t, a,B) = Pa(Xt ∈ B).
ii) For Ea(·) =

∫
Ω
·Pa(dω) one has Htf(a) = Ea(f(Xt)).

iii) Rαf(a) = Ea
(∫∞

0
e−αtf(Xt)dt

)
.
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Proof. One can observe that i) and ii) follow immediately.
To prove iii), we will use the following equality:

Rαf(a) =

∫ ∞
0

e−αtHtf(a)dt =

∫ ∞
0

e−αtEa(f(Ht))dt.

Since f(Xt(ω)) is right continuous in t for ω fixed, and measurable in ω for
t fixed, it is therefore measurable in the pair (t, ω). Thus, we can use Fubini’s
theorem and therefore we obtain

Rαf(a) = Ea

(∫ ∞
0

e−αtf(Xt)dt

)
,

which proves iii).

Definition 2 The operator θt : Ω → Ω defined by

(θtω)(s) = ω(s+ t)

for every s ∈ T is called the “shift operator”.

Obviously, the operator θt satisfies the property

θt+s = θtθs,

called the semigroup property.
For C a σ-field on Ω, the space of all bounded C-measurable functions will

be denoted by B(Ω, C), or simple B(C).

4.1 The classical and the extended Markov property

Now the Markov property is expressed in the theorem below.

Theorem 2 Let be given Γ ∈ K. The following is true

Pa(θtω ∈ Γ |Kt) = PXt(ω)(Γ ) a.s.(Pa);

that is to say
Pa(θ−1t Γ |Kt) = PXt(ω)(Γ ).

Remark 4. The following notation can be used

PXt(ω)(Γ ) = Pb(Γ )|b=Xt(ω).

Now, to prove the theorem, it will be suffice to show that

Pa(θ−1t Γ ∩D) = Ea(PXt(Γ ), D) (12)

for Γ ∈ K and D ∈ Kt.

Three cases can be distinguished.

1). Let us consider Γ and D as follows:

Γ = {Xs1 ∈ B1}
⋂
{Xs2 ∈ B2}

⋂
· · ·
⋂
{Xsn ∈ Bn},
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and
D = {Xt1 ∈ A1}

⋂
{Xt2 ∈ A2}

⋂
· · ·
⋂
{Xtm∈Am}

with

0 ≤ s1 < s2 < · · · < sn

0 ≤ t1 < t2 < · · · < tm ≤ t

and Bi, Aj ∈ K(S).
Now it will be observed that the both sides in (12) are expressed as integrals

on Sm+n in terms of transition probabilities. Thus, one can see that they are
equal.

2). Let now be Γ as in the case 1) and let us denote by D a general member
of Kt. For Γ fixed the family D of all D’s satisfying (12) is a Dynkin class. If
M is the family of all M ’s in the case 1) then, this family is multiplicative and
M⊂ D. In this way it follows

D(M) ⊂ D = K(M) = Kt

and one can conclude that, for Γ in the case 1) and for D general in Kt, the
equality (12) holds.

3). (General case.) This case can be obtained in a same manner from 2)
by fixing an arbitrary D ∈ Kt.

It will be obtained that Pa(Γ ) is Borel measurable in a for any Γ ∈ K.

Corollaire 1

Ea(G ◦ θt, D) = Ea(EXt(G), D) for G ∈ B(K), D ∈ Kt,

Ea(F · (G ◦ θt)) = Ea(F · EXt(G)) for G ∈ B(K), F ∈ B(Kt),

Ea(G ◦ θt|Kt) = EXt(G) (a.s.)(Pa) for G ∈ B(K).

But it is interesting to see that the Markov property can be extended, as it
is given in the following theorem, according to K. Itô:

Theorem 3 (The extended Markov property).

Pa(θtω ∈ Γ |Kt+) = PXt(Γ ) a.s. (Pa)

for Γ ∈ K.

Proof. Let us come back to the equality (12) before. Now it will be proved for
D ∈ Kt+. To this end the following equality will be shown:

Ea(f1(Xs1(θtω)) · · · fn(Xsn(θtω)), D) =

= Ea(EXt(f1(Xs1) · · · fn(Xsn)), D) (13)

for fi ∈ C(S), D ∈ Kt+ and 0 ≤ s1 < s2 < · · · < sn.
But D ∈ Kt+h for h > 0, so that by Corollary 1 it results

Ea(f1(Xs1(θt+hω)) · · · fn(Xsn(θt+hω)), D) =

= Ea(EXt+h(f1(Xs1) · · · fn(Xsn)), D). (14)
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Now one can observe that

Ea(f1(Xs1) · · · fn(Xsn))

is continuous in a, if it is considered that

Ea(f1(Xs1) · · · fn(Xsn)) =

= Hs1(f1 · · · (Hsn−1−sn−2
(fn−1 ·Hsn−sn−1

fn)) · · ·)

and Hs : C −→ C.
But Xt(ω) being right continuous in t, one gets

fi(Xsi(θt+hω)) = fi(Xsi+t+h(ω)) −→ fi(Xsi+t(ω)) = fi(Xsi(θtω))

as h ↓ 0.
Now, the equality (13) will result by taking the limit in (14) as h ↓ 0.
In this way, for Gi open in S, the following equality will result from (13)

Ea(Xsi(θtω) ∈ G1, · · · , Xsn(θtω) ∈ Gn, D) =

= Ea(PXt(Xs1 ∈ G1, · · · , Xsn ∈ Gn), D), (15)

and now the Dynkin’s theorem can be used.

Remark 5. Theorem (Dynkin’s formula). Let us suppose that σ is a stopping time
with Ea(σ) <∞. Then, for u ∈ D(A) it follows:

Ea

(∫ ∞

0

Au(Xt)dt

)
= Ea(u(Xσ))− u(a).

5 A problem of financial risk

This section is referred, shortly, to a study of Hu Yaozhong[30] involving the
so-called Onsager-Machlup functional. This operator is computed for the gen-
eralized geometric Brownian motion and also the general equation which the
most probable path must satisfy is found. We shall consider only some aspects
according to our review G. V. Orman[17].

The most probable path is obtained in a form which permit to conclude
about the risk when someone want to invest money into several stocks.

Definition 3 The solution of the following stochastic differential equation

dxt = xt{a(t)dwt + b(t)dt}, 0 < t <∞, (16)

is called the geometric Brownian motion, where a(t), b(t) are deterministic
functions of t; wt is a Brownian motion, and dwt is the Itô integral.

Now let us given the following stochastic differential equation

dxt = A(t)xt dw(t) +B(t)xt dt

x0 = ξ (17)



102 G. V. Orman and I. Radomir

where

A(t) = diag (a1(t), · · · , ad(t)) =


a1(t) 0 · · · 0

0 a2(t) · · · 0
· · · · · · · · · · · ·
0 0 · · · ad(t)

 ,

B(t) = (bij(t)) satisfying bij(t) ≥ 0 for all 1 ≤ i, j ≤ d, i 6= j and w(t) =
(w1(t), · · · , wd(t)) are standard Brownian motions which are not necessarily
independent.

If a1(t), · · · , ad(t) are continuous functions with bounded derivative one con-
siders

B(t) = (bij(t))1≤i,j≤d

where bij(t) ≥ 0, ∀ i 6= j.
Denote A(t) = diag (a1(t), · · · , ad(t))T and consider the stochastic differen-

tial equation

dxi(t) = ai(t)xi(t) dwi(t) +

d∑
j=1

bij(t)xj(t) dt

xi(0) = ξi i = 1, · · · , d . (18)

Or its integral form

xi(t) = ξi +

t∫
0

ai(s)xi(s) dwi(s) +

d∑
j=1

t∫
0

bij(s)xj(s) ds, i = 1, 2, · · · , d . (19)

The problem is to perform asymptotic evaluation of the probability

P{ sup
0≤t≤T

|x(t)− Φ(t) | < ε} as ε→∞ ,

where | · | denotes the Euclidian norm in d-dimensional space, and Φ : [0, T ]→
R is a function with continuous and bounded first and second derivatives.
[To develop such aspects see, for example, L. Onsager and S. Machlup[15], Y.
Takahashi and S. Watanabe[28], O. Zeitouni[31]].

Now we comeback to the geometric Brownian motion. The equation (16)
has been successfully applied to the financial problems such as modeling the
prices of stocks. For i = 1, 2, · · · , d we have the stochastic differential equation

dxi(t) = xi(t) [ai(t) dwi(t) + bi(t) dt]

xi(0) = ξi . (20)

On the other hand, the most probable path Ψi associated to the equation
(20) is proved that satisfies the following conditions

Ψ
′

i (t) = bi(t)Ψi(t)−
1

2
a2i (t)Ψi(t),

Ψi(0) = ξi, i = 1, 2, · · · , d (21)
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or, equivalently

Ψ
′

i (t) = Ψi(t) [bi(t)−
1

2
a2i (t)],

Ψi(0) = ξi, i = 1, 2, · · · , d . (22)

From this equation we come to the conclusion that if an investment is made
in a stock with the mean return b(t) and the volatility a(t), then the real return
rate is most likely be given by the equality

c(t) = b(t)− 1

2
a2(t) (23)

instead of b(t). That is to say the interest rate is most likely to be b(t)− a2(t)
2

instead of b(t). The quantity c(t) in (23) is referred to as the most probable
interest rate.

In conclusion, when an investment is made into several stocks with the
mean return bi(t) and the volatility ai(t) it is recommended to compare the
most probable interest rate

ci(t) = bi(t)−
1

2
a2i (t)

instead of the mean interest rate bi(t).
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7.K. Itô. Selected Papers. Springer, 1987.
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Princeton, 2003.

28.Takahashi, Y., Watanabe, S., The probability functionals (Onsager-Machlup
functions) of diffusion processes, In: Stochastic Integral (Proc. Sympos. Univ.
Durham, Durham, 1980). Lect. Notes in Math. 851, 1981, pp. 433-463.

29.M. T. Wasan. Stochastic Approximation. Cambridge University Press, 1969.
30.Hu Yaozhong. Multi-dimensional geometric Brownian motions, Onsager-Machlup

functions, and applications to mathematical finance. Acta Mathematica Scientia
20B:341-358, 2000.

31.Zeitouni, O., On the Onsager-Machlup functional of diffusion processes around
non-C2 curves, Ann. Prob., 1989, pp.1037-1054.


