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Abstract. Biological systems are dynamic and possess properties that depend on two key 

elements: initial conditions and the response of the system over time. Conceptualizing 

this on tumor models will influence conclusions drawn with regard to disease initiation 

and progression. Alterations in initial conditions dynamically reshape the properties of 

proliferating tumor cells. The present work aims to test the hypothesis of Wolfrom et al., 

that proliferation shows evidence for deterministic chaos in a manner such that subtle 

differences in the initial conditions give rise to non-linear response behavior of the 

system. Their hypothesis, tested on adherent Fao rat hepatoma cells, provides evidence 

that these cells manifest aperiodic oscillations in their proliferation rate. We have tested 

this hypothesis with some modifications to the proposed experimental setup. We have 

used the acute lymphoblastic leukemia cell line CCRF-CEM, as it provides an excellent 

substrate for modeling proliferation dynamics. Measurements were taken at time points 

varying from 24h to 48h, extending the assayed populations beyond that of previous 

published reports that dealt with the complex dynamic behavior of animal cell 

populations. We conducted flow cytometry studies to examine the apoptotic and necrotic 

rate of the system, as well as DNA content changes of the cells over time. The cells 

exhibited a proliferation rate of nonlinear nature, as this rate presented oscillatory 

behavior. The obtained data have been fit in known models of growth, such as logistic 

and Gompertzian growth. 
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CCRF-CEM. 

1. Introduction 

The scope of the present work is to test the hypothesis posed by Wolfrom et al. 

that proliferation shows evidence for deterministic chaos. Biological systems are 

dynamic systems. The knowledge on how to determine a present state from the 

previous ones is critical within many areas, or applications, varying from cancer 

to insect population control. However, it has been proven a very tedious work to 

discover  laws underlying biological systems, since on one hand it is not easy to 

model such systems due to their complexity, and on the other hand, biological 

dynamical systems posses significant adaptation capabilities. Their hypothesis 

was tested on adherent Fao rat hepatoma cells and it was found that these cells 
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manifest aperiodic oscillations in their proliferation rate, giving evidence for 

deterministic chaos. We tested this hypothesis, adding specific modifications to 

the previously published experimental setup. We used the acute lymphoblastic 

leukaemia cell line CCRF-CEM since it provided an excellent substrate for 

modelling proliferation dynamics. Several studies have been occupied with the 

complex dynamic behaviour of animal populations [1-4]. However, very little is 

known about the dynamics of tumour cell proliferation [5] and even less is 

known about the state of proliferation dynamics during oncogenesis; that is until 

cells reach an adequate population to be diagnosed. The data that can be 

collected from tumours, regarding their dynamic nature, can only happen after a 

tumour has been diagnosed, which usually is too late for the patient, as all the 

progress-determining steps have taken place. Therefore, in vitro systems provide 

an excellent opportunity to study effects that are impossible to measure in vivo. 

Most importantly, they enable the study of long-term behaviour, which is 

required when it comes to reaching conclusions with regards to non-linearity 

and chaotic system behaviour. This, in particular, is impossible to happen, even 

with primary cultures of cells, since they are short-lived (15-20 days) when 

untransformed, and the only way is the use of established cell lines obtained 

from different organisms. For that reason we developed a modelling approach 

so as to simulate the in vivo conditions as best as possible. Cells were seeded at 

a low initial concentration of 20 cells/µl. Since they grew in suspension we 

assumed that they reached an even/equal distribution in the media solution. 

Measurements were taken at least at two-day intervals, thus obtaining more than 

80 measurements in total, exceeding the Wolfrom et al. protocol, which took 

around 40 measurements. Also, taking a sample from a liquid culture has 

minimum effects on the total cell population, since it is not essential to 

trypsinize in order to take the sample; trypsinization, a requirement for 

obtaining samples from adherent cell cultures, stresses the cells and changes 

their proliferation dynamics. Cells were passaged at regular intervals. This 

practically removed the dead cells from the system and the remaining cells were 

allowed to grow again in a fresh medium. This allowed modelling of the growth 

of a tumour, such as leukaemia, in a space with finite capacity. Removal of cells 

modelled the circulation that removes dead cells from a particular position in the 

organism. Cells were grown for approximately 150 days (5 month period) while 

as previously reported, Fao cells were kept in culture for 200-240 days in total. 

The nature of proliferation dynamics may give insight into the way that cells not 

only proliferate but also differentiate. 

2. Materials and Methods 

2.1. The CCRF-CEM cell line:  

The CCRF-CEM (T-ALL) cell line was used as the model, obtained from the 

European Collection of Cell Cultures (ECACC, United Kingdom). The CCRF-

CEM cell line, a CD4
+ 

[6] and CD34
+
 presenting cell line [7], was initially 

obtained from the peripheral blood of a 2 year old Caucasian female. She was 

diagnosed with lymphosarcoma which progressed to acute lymphoblastic 

leukaemia later on [8]. The child underwent irradiation therapy and 
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chemotherapy prior to obtaining the cell line. Although remission was achieved 

at various stages, the disease progressed rapidly.[8] The cell line has been 

observed to undergo minor changes after long-term culture, except for the 

presence of dense granules in the nucleoli.[9] Finally, the CCRF-CEM cell line 

has been reported to manifest autocrine catalase activity, which participates to 

its mechanisms of growth and progression.[10]. 
 

2.2. Cell culture conditions:  Cells were grown in RPMI-1640 medium, 10% 

FBS and 0.1× Streptomycin/Penicillin at 37 
o
C, 5% CO2 and ~100% humidity. 

Cells were cultured in 75cm
2
 in total medium volume of 25ml. Cells were 

seeded at an initial concentration of 20 cells/µl and ~200 cells/µl and were fed at 

regular intervals thereafter. Medium changes took place by centrifugation at 

1000 rpm for 10min, the supernatant was discarded and the remaining cells were 

rediluted in 25ml media and were allowed to grow. 
 

2.3. Measurements, experimental setup and model: The CCRF-CEM cells 

grow in suspension and therefore give an excellent model of avascular growth. 

In addition, the following assumptions have been made for its proliferation: a) 

extracellular signal transduction takes place autocrinaly, b) the cell distribution 

at seeding and thereafter is considered to be uniform and c) nutrient supply was 

considered to be stable since cells were fed at regular time intervals. All 

measurements have been performed in triplicates. 

Wolfrom and collaborators (2000), had counted the cell population at the end of 

a time period varying from 5 to 7 days. At the end of this period, cells were 

trypsinized, measured and then seeded at an initial concentration of 10
5
 cells per 

flask. 

In the present study, before every measurement, flasks were gently shaken in 

order to assure that the sample taken consisted of a representative, equally 

distributed population size. For the growth dynamics study of the cell culture 

system, an experimental setup was developed, where cells were assayed at least 

every 48h and the media renewed every 3-5 days. For the measurements, 200µl 

from each flask was taken and measured with a NIHON KOHDEN CellTaq-α 

hematology analyzer. 

In that way more than 80 measurements were obtained in a period of 150 days 

(5 months). 
 

2.4. Mathematical model and analysis: We used a one-dimensional 

representation based on the assumption that the present state of our system is 

dependent upon the previous one. So, our system is better described by the 

logistic equation, as )1()( 1 nnn xkxxf −=+  (1) and with respect to time 

(1 )n n nx kx x= −& (2) (the logistic differential equation). Both equations belong 

to the family of logistic equations of the form )1()( xkxxf −= (3), where k is 

the proliferation constant. For the analysis of the data collected we have utilized 

phase-space and return maps and used the geometrical representation proposed 

by Wolfrom et al (2000). In addition, we have tested the dependence on initial 

conditions by using two different starting population sizes. For testing the 
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chaotic behavior of the system, we have calculated the Lyapunov exponent and 

searched for strange attractors or sources. Many methods have been proposed 

for the calculation of Lyapunov exponents and it is considered to be a difficult 

task [11, 12]. In our case, given the function which we have based our model on, 

we used for the approximate estimation of Lyapunov parameters the following 

definition: Let f be a smooth map onℜ . The Lyapunov number L(x1) for the 

orbit {x1,x2,…,xn} is defined as ( )nn
n

xfxfxL
1

11 )('...)('lim)(
∞→

=  (4) if the 

limit exists. In conjunction, the Lyapunov exponent h(x1) is defined as  

( ))('ln...)('ln
1

lim)( 11 n
n

xfxf
n

xh ++=
∞→

 (5).  

3. Results 

We have studied the proliferation dynamics of an acute lymphoblastic 

leukaemia cell line by developing a modelling approach, where cells from two 

different initial populations were allowed to grow with a periodic nutrient 

supply in order to sustain cell growth. 

The time series produced from the experimental data showed a characteristic 

logistic pattern as described in (1), whereas proliferation rate with respect to 

time manifested an aperiodic oscillatory behavior (Fig. 1A and 1B). In fact, 

proliferation rate appears to manifest a saltatory pattern where cells after a 

period of “adjustment” to the environment start dividing rapidly. This was the 

first evidence that the dynamics of cell population can manifest complex 

behavior. Interestingly, when calculating the Lyapunov exponent of the two 

curves starting from different initial conditions, these gave different results (Fig. 

2A).  For the curve describing cell proliferation from 20cells/ul, the Lyapunov 

FIGURE 1.  Growth curve of the CCRF-CEM cells as a function of time shows 

the characteristic pattern of the iterated logistic equation (A). Proliferation rate 

of cells exhibits an almost unpredicted oscillatory behaviour (B). N is the actual 

measured cell population at time t. It is apparent that this oscillatory behavior has 

a declining tendency, something expected, since cells compete for space during 

their growth. Nutrients are considered to be abundant and equally distributed 

among the cells’ environment. 
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exponent h was calculated to be >0, whereas for the curve describing cells 

starting from 200cells/ul it was <0. Furthermore, for the orbit Lyapunov 

exponent was 0.13 for x0=20 and -0.09 for x0=200. The next criterion we 

investigated was whether the state-space manifested an asymptotically periodic 

pattern or not. Space-space representation has been proposed by Lorenz [13] 

and has been used by others in biological time-series [14]. State-space maps 

showed that irrespectively of the initial population (either 20 cells/ul or 200 

cells/ul) both curves converged after a long period of cell culture (Fig. 2). 

Probably our system reaches a steady-state in the long term (Fig. 2) or at least 

converges. Again, at first quite interesting was the fact that when we drew the 

return map of our initial data i.e. the population time-series, it appeared that it 

gave an almost perfect linear pattern. This was noteworthy because such a fact 

would mean that oscillatory behavior observed in the experimental 

measurements of the time-series was probably due to noise. To test this we 

FIGURE 2. State-space of the growth curves of CCRF-CEM cells. Cells were 

grown from two different initial populations: 20 cells/ul (+) and 200 cells/ul (o). 

Solid lines represent fitting curves for cells started from 200 cells/ul, while dashed 

lines represent fitting curves for cells started from 20 cells/ul. 

When calculated for the two growth curves, Lyapunov exponents, gave opposite 

results (A.). Both orbits are asymptotically periodic. However, positive Lyapunov 

exponents were obtained only for x0=20 cells/ul, hence it can be assumed that 

proliferation starting from 20cells/ul has chaotic orbits. Plotting the population xn 

vs. xn+1 shows that both populations converge to a fixed plane (B) which, however, 

does not manifest asymptotical periodicity. Treating equation (2) as a two-

dimensional function shows that the proliferation rate converges to a fixed plane 

as a function of xn (C) and xn+1 (D).  
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performed a Fast Fourier Transformation (FFT) analysis (data not shown) 

which did not show the prevalence of noise. On the other hand, how does 

nonlinearity emerge? The logistic equation, on which we based our model, 

assumes that a population grows and then decays due to a limited amount of 

nutrients. In our model this was not the case since we kept a constant supply of 

nutrients in order to keep cells growing. This led us to the conclusion that the 

nonlinear factor was not the population per se but rather the proliferation 

constant k. In our initial assumptions we assumed that nutrients were abundant 

and constant, whereas the changing environmental factor was space for growth. 

Space becomes limited, as time progresses, activating inhibitory mechanisms for 

growth. Therefore, when drawing the populations at time tn and tn+1 as a function 

of the proliferation rate (which is equal to f’(x) for discrete time points) we 

observed that although the system converges towards its possible steady-state it 

manifests nonlinear behavior (Fig. 2B, 2C). Therefore, we analyzed the 

proliferation rates calculated for each discrete point in the same way. In other 

words, we used the return map of the proliferation rates, the first derivative of 

the proliferation curve at each discrete point. So, let kn={f’(x0), f’(x1),…,f’(xn)} 

and kn+1={f’(x1), f’(x2),…,f’(xn+1)} where k is the proliferation rate from 

equations (1) and (2).  K can also be written as 
n

n

dX

dt
 and 

1

1

n

n

dX

dt

+

+

 for t at n and 

n+1 respectively with n∈Ν  as presented in Figure 3B. Interestingly, drawing 

kn as a function of kn+1 gives us a curve with at least two fixed points for both 

initial cell populations indicating a period-3 orbit (Fig. 3A). This period-3 orbit 

implies chaos as it has been previously reported [15]. 

4. Conclusion 

It has been reported previously that biological systems exhibit very complicated 

dynamics [3, 5]. The present work addressed the question as to whether chaotic 

dynamics could be detected in the proliferation of acute lymphoblastic 

leukaemia cells in long-term culture. This had been proposed previously for 

adherent cell lines [5]. To the best of our knowledge no reports have been 

published on the proliferation dynamics of suspension cell cultures and in 

general studies on proliferation dynamics in vitro are scarce.  The question that 

arises at this point is whether such studies are meaningful, since in vitro systems 

represent in vivo systems only in part. 

In vitro systems offer the capacity of performing long-term studies, and 

isolating the system under study to reduce noise, both of which are not possible 

in in vivo systems. 

Cell cultures in vitro are considered to manifest a linear pattern of growth. 

Given the fact that the logistic equation takes into account limited nutrients and 

space, it predicts that a cell population would reach a steady-state within a 

certain time and eventually die out. 

We have introduced a new constant to our model by making nutrient readily 

available but keeping space, in terms of total volume, constant. Under these 

conditions we draw the proliferation curve, which shows aperiodic oscillations, 
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whereas the proliferation rate manifests these aperiodic oscillations most 

clearly. As it was shown in Fig. 2A, the return map of Fig.1A gave an almost 

perfectly linear function, where a “bell-shaped” geometry was expected. 
 

 
 

However, when we expanded our analysis to the return map of proliferation rate 

(Fig. 3B) we observed a nonlinear behaviour and we found geometrically that 

the fixed points on this curve manifest a period-3 orbit (Fig. 3A) which implies 

chaos dynamics. Our work shows evidence for deterministic chaos in the 

proliferative behaviour of leukaemia cells in vitro. Since this is a very 

complicated phenomenon it requires a lot more effort to understand the 

mechanisms underlying those dynamics. The implications from the 

understanding of these systems are tremendous. It will give us insight to the 

mechanisms of disease progression, such as in cancer, and enable building 

advanced models for the disease, which combine important features of both in 

vitro and in vivo systems. It is known that cancer starts and progresses slowly, at 

least before clinical presentation. Knowledge on the mechanisms of growth 

before the clinical symptoms become obvious may contribute to the early 

treatment of this and other diseases. 
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