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Abstract: Circuit breakers are important elements of the electric power supply system. 

Due to the contact separation during the switch-off process an electric arc is ignited 

within the circuit breaker. A forced flow of the insulating quenching gas medium is used 

to cool the arc influencing its conductivity. Only if the power dissipation due to cooling 

exceeds the electrical power input by ohmic heating, the arc is extinguished and the 

current is successfully interrupted in its natural zero crossing (CZ). As the impact of the 

cooling by the quenching gas on the resistance of the arc is considered crucial for the 

success of the switch-off process, the spatial distribution of the resistance is of high 

importance for the assessment of a circuit breakers performance. 

Research and development projects related to circuit breakers more and more often use 

computational fluid dynamics (CFD) simulations. The implemented simulation models 

have to be be verified by adequate experiments. This paper deals with the influence of 

the simulation model on the simulated spatial arc resistance distribution near current 

zero. Different approaches for modelling the chaotic and turbulent phenomena of the arc 

are introduced and their results are compared with values measured in experiments. Here 

the turbulence model is of main interest. On the one hand the investigations show a good 

agreement between simulative and experimental results for the total arcing voltage when 

using adequate models. On the other hand these turbulence models lead to differences in 

the calculated spatial arc resistance distributions – which cannot be verified by 

experiments so far. 
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1    Introduction 

Circuit breakers are important elements of the electric power supply system. 

They are necessary for the safe switching of rated currents and the interruption 

of short-circuit currents. Today’s high voltage power supply system’s 

predominantly make use of self blast circuit breakers using sulphur hexafluoride 

(SF6) as insulating and quenching gas. The contact separation during the switch-

off process creates an electric arc within the circuit breaker. By cooling with a 

forced flow of the insulation medium the energy is dissipated until the arc is 

extinguished. Simultaneously the resistance of the arc rises. The value of the 



Hoffacker_et_al. 140

resistance and its distribution along the arc is the crucial factor for the switch-off 

process to be successful [1].  

Research and development projects related to circuit breakers increasingly use 

computational fluid dynamics (CFD) simulations as these simulations can 

reduce the number of cost-intensive reference experiments and allow the 

visualization of physical values which are not – or only very difficult – 

accessible in experimental investigations. Thus, they can also improve the 

understanding of the physical processes in the plasma of the electric arc during 

the switching operation of circuit breakers. 

However, this paper deals with the influence of the simulation model on the 

calculated spatial arc resistance distribution near current zero. The arc resistance 

is mainly influenced by the convective and turbulent cooling of the quenching 

gas flow [2]. This leads to a non-linear arc resistance distribution near current 

zero. Hence, the simulation models need to consider both cooling mechanisms. 

Different approaches for modelling the turbulent phenomena of the arc are 

introduced and their results are compared with values measured in experiments. 

Firstly experiments using a circuit breaker prototype are carried out. Here the 

arcing voltage close to the natural current zero (CZ) in the 50 Hz sinusoidal 

oscillation of the electric network is of main interest. Secondly CFD-simulations 

of the switching operation are performed using different turbulence models for 

the calculation. The results of these simulations are compared with the 

experimental ones. 

 

2    Experimental investigations  

 
For the experimental investigations the behaviour of a circuit breaker prototype 

is investigated in a synthetic test circuit. 

 

 

 
 

Fig. 1. Cross-sectional view of the circuit breaker model used in the experiments 
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A cross-section of the test breaker is given in figure 1. The arc is ignited 

between the electrodes by a thin copper wire which evaporates due to the high 

current flow of more than 10 kA. The formed electric arc is burning inside the 

nozzle which is made of polytetraflourethylene (PTFE) and evaporates material 

from the nozzle surface. This ablation and the heating by the arc lead to a 

pressure rise inside the nozzle which is relieved through the heating channel into 

the heating volume of the breaker.  

As a consequence, the pressure in the heating volume rises accordingly. When 

the sinusoidal current and thus the power input by the arc decrease, the gas flow 

reverses and the quenching gas flow from the heating volume cools the arc 

inside the nozzle. If the cooling power of the quenching gas flow exceeds the 

power input of the arc the current can be interrupted during its natural current 

zero crossing. 

For the experimental investigations in this paper a synthetic Weil-Dobke test 

circuit is used. The equivalent circuit diagram is shown in figure 2. The pre-

charged capacitor CT and the inductor LT form a 50 Hz-resonance circuit 

together with the test breaker (TB). Closing the making switch (MS) and 

subsequently opening the auxiliary breaker (AB) one half period of a high 

current sinusoidal oscillation is precisely applied on the test breaker. The 

elements CS and LS form another resonance circuit, called injection circuit, with 

a frequency of approximately 950 Hz. This oscillation is triggered by the 

ignition spark gap (ISG) 500 µs before the end of the high current phase and 

causes a dielectric stress for the breaker after current interruption. The shape of 

this so-called transient recovery voltage is determined by the elements Rp and 

Cp. For the measurement of the currents a Rogowski-coil and a coaxial shunt are 

used. Details on the Weil-Dobke test circuit can be found in [3]. 

 

 
Fig. 2. Equivalent circuit diagram of a synthetic test circuit after Weil and 

Dobke used for the experimental testing 
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3    Simulations 

Computational-Fluid-Dynamic (CFD) simulations are a state-of-the-art tool in 

the development of high voltage circuit breakers, reducing the amount of time 

consuming and cost intensive experimental investigations. Nevertheless the 

applied simulation models need to be verified as the results of the simulation of 

a switching operation are sensitive to small changes in the geometry or the used 

models. The considered circuit breaker prototype used in the experiments is 

simplified for the simulations. This simplified geometry is given in figure 3. The 

3-dimensional breaker prototype is replaced by a 2-dimensional, axis-symmetric 

model which is reduced to the region of interest – the arcing zone. The heating 

volume of the breaker is substituted by an inlet with the corresponding gas 

temperature, pressure and composition. Due to the fact that solely a time period 

of some µs before current zero is simulated these values are quasi constant. 

They are derived from simulations of the full high current period of 10ms. The 

applied mesh has its highest resolution in the area of the highest gradients of the 

physical values, i.e. along the axis of symmetry. 

 

 
 

Fig. 3. Geometry for the CFD-simulations 

 

During the switching operation of a circuit breaker different physical 

phenomena occur. These are for example supersonic gas flows, turbulence, 

dissociation of the gas, radiation and ablation of the PTFE nozzle surface. They 

have to be considered in the CFD-simulation by using different models. Here 

the influence of the model for the calculation of the turbulence effects is 

investigated. The dissociation of the gas is considered by using appropriate gas 

data from look-up-tables providing transport and thermodynamic properties of 

the gas for pressures up to 100 bar and temperatures up to 40000 K. The 

radiation is calculated according to the discrete ordinate method (DOM) [4] and 

the model published in [5] is used to describe the ablation of the nozzle surface. 

 

For predicting the effect of turbulence two different methods can be employed. 

Both calculate the mean gas flow parameters by using the Navier-Stokes 

equations. The first turbulence calculation method is based on the Reynolds 

Averaged Navier-Stokes equations and uses time averaging to predict the 
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turbulence effects. The turbulent fluctuations are calculated by means of 

modelling the kinetic energy (k) and the kinetic energy dissipation rate (ε). 

Therefore different approaches exist [4]. 

The second turbulence calculation method is based on a large eddy simulation 

and uses a spatial averaging of the Navier-Stokes equations and thus extends 

them by sub grid scale stresses. For modelling these sub grid scale stresses 

different approaches exist [4]. 

 

The energy balance of an electric arc differentiates between different physical 

effects and can help to understand the cooling processes during the switching 

operation. The current driven through the plasma in the circuit breaker by the 

electrical network causes the ohmic heating. The heating power per volume 

(pohm) can be calculated by knowing the electric conductivity (σ) and the electric 

field (E): 
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For the cooling of the arc by the gas flow from the heating volume different 

cooling mechanism are responsible. The three main effects are the cooling by 

radiation, by microscopic turbulence effects and the convective cooling. They 

can be calculated according to [6]: 
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It is known that the effectiveness of these cooling effects depends on position 

and time [6]. Thus it might occur that the radiative cooling dominates in one 

part of the arc while the turbulent cooling dominates in another part. These 

differences can be visualized in CFD-simulations. However it is not possible to 

separate between the different cooling mechanisms in experimental 

investigations. To be able to verify the results of the CFD-simulations by 

experiments anyhow, the spatial arc resistance distribution has to be determined. 

The arc resistance is depending on the temperature of the plasma and thus on the 

local power balance. 
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Hence the arc resistance distribution is an indication for the local cooling power. 

As the conductivity and the electric field are coupled by the electric current 

density (J) by 

E

J
=σ , 

 

the electric field can be used to visualize the spatial cooling power. 

 

 

4    Results 

 

Up to now experiments can only provide information on the total arcing voltage 

– not on their spatial distribution. Typical shapes of measured current and 

voltage are given in figure 4. The high current phase lasting until 11 ms is then 

superpositioned with the injection current. The region of interest ranges from 

the last increase of the arcing voltage at approximately 11.5 ms to the final 

extinction of the current flow. The typical arcing voltages at t = -1µs (CZ at 

t = 0) are in the range of U = 750...1300 V. 
 

 
 

Fig. 4. Exemplary current (black) and voltage (red) shape for an experiment 

 

 

To analyze the local cooling power of the quenching gas flow in the CFD-

simulations the electric field along the axis of the arc – which is proportional to 

the local arc resistance – is plotted. The black curve in figure 5 shows the 

behaviour without any turbulence model. One can see that the cooling power is 

highest in the centre of the nozzle where a stagnation point occurs due to the 

radial symmetric gas flow. The red curves in the same figure show the electric 

field for simulations using the k-ε-turbulence model with three different 

parameters (P1-P3). This model predicts high turbulence in the outer parts of the 
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nozzle. Thus an increased arc resistance and an increased electric field are 

observed. By using different parameters for the model the general shape remains 

constant while its height can be influenced. The total arcing voltage is derived 

by integration of the electric field along the axis of the arc and is given in the 

legend of figure 5. 

 

 

 
Fig. 5. Electric field along the axis of symmetry for simulations without 

turbulence model and simulations using the k-ε-turbulence model with different 

parameters at t=-1µs 

 

 

 
Fig. 6. Electric field along the axis of symmetry for simulations using different 

turbulence models at t=-1µs 
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In addition CFD-simulations are carried out using the following different 

turbulence models: RNG-k-ε, Kato-Launder k-ε, k-ω, Low Reynolds (Chien) 

and Large Eddy. Their results are plotted in figure 6. While the simulations 

using the RNG-k-ε and the k-ω turbulence models lead to results comparable to 

the simulation without turbulence model the result of the Kato-Launder k-ε 

model is comparable to the simulation using the standard k-ε model. The large 

eddy model predicts the highest cooling power in the region left and right of the 

stagnation point. Here the electric field strength is higher than in all other 

simulations. 

 

5    Conclusions 

In the experiments of this contribution the arcing voltage of a self blast circuit 

breaker prototype shortly before current zero has been investigated and 

compared to CFD-simulations using different turbulence models. The simulated 

total arcing voltage is within the variation of the experimental measured 

voltages at t = -1µs before current zero. But depending on the applied turbulence 

model and its parameters the predicted arc resistance distributions – visualized 

by plotting the electric field – significantly differ.  

Using state-of-the-art measurement technology the simulated resistance 

distribution cannot be verified in a real circuit breaker experimentally. Hence, 

future research aims for the development of a new measurement technology to 

determine the spatial arc resistance distribution from experiments providing a 

deeper insight into the physical cooling processes of blown switching arcs. 
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