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Abstract. Landslides are a recurrent phenomenon in many regions of Italy: in par-
ticular, the rain-induced shallow landslides represent a large percentage of this type
of phenomenon, responsible of human life loss, destruction of assets and infrastruc-
ture and other major economical losses. In this paper a theoretical computational
mesoscopic model based on interacting particles has been developed to describe the
features of a granular material along a slope. We use a Lagrangian method similar to
molecular dynamic (MD) for the computation of the movement of particles after and
during a rainfall. In order to model frictional forces, the MD method is complemented
by additional conditions: the forces acting on a particle can cause its displacement
if they exceed the static friction between them and the slope surface, based on the
failure criterion of Mohr-Coulomb, and if the resulting speed is larger that a given
threshold. Preliminary results are very satisfactory; in our simulations emerging phe-
nomena such as fractures and detachments can be observed. In particular, the model
reproduces well the energy and time distribution of avalanches, analogous to the
observed Gutenberg-Richter and Omori distributions for earthquakes. These power
laws are in general considered the signature of self-organizing phenomena. As in other
models, this self organization is related to a large separation of time scales between
rain events and landslide movements. The main advantage of these particle methods
is given by the capability of following the trajectory of a single particle, possibly
identifying its dynamical properties.
Keywords: Landslide, molecular dynamics, lagrangian modelling, particle based
method, power law.

1 Introduction

Predicting natural hazards such as landslides, floods or earthquake is one of
the challenging problems in earth science. With the rapid development of
computers and advanced numerical methods, detailed mathematical models
are increasingly being applied to the study of complex dynamical processes
such as flow-like landslides and debris flows.
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The term landslide has been defined in the literature as a movement of a
mass of rock, debris or earth down a slope under the force of gravity [1,2].
Landslides occur in nature in very different ways. It is possible to classify them
on the bases material involved and type of movement [3].

Landslides can be triggered by different factors but in most cases the trig-
ger is an intense or long rain. Rainfall-induced landslides deserved a large
interest in the international literature in the last decades with contributions
from different fields, such as engineering geology, soil mechanics, hydrology
and geomorphology [4]. In the literature, two approaches have been proposed
to evaluate the dependence of landslides on rainfall measurements. The first
approach relies on dynamical models while the second is based on the defini-
tion of empirical rainfall thresholds over which the triggering of one or more
landslides can be possible [5]. At present, several methods has been developed
to simulate the propagation of a landslide; most of the numerical methods are
based on a continuum approach using an Eulerian point of view [6,7].

An alternative to these continuous approaches is given by discrete methods
for which the material is represented as an ensemble of interacting but inde-
pendent elements (also called units, particles or grains). The model explicitly
reproduces the discrete nature of the discontinuities, which correspond to the
boundaries of each element. The commonly adopted term for the numerical
methods for discrete systems made of non deformable elements, is the discrete
element method (DEM) and it is particularly suitable to model granular mate-
rials, debris flows and flow-like landslide [8]. The DEM is very closely related to
molecular dynamics (MD), the former method is generally distinguished by its
inclusion of rotational degrees-of-freedom as well as stateful contact and often
complicated geometries. As usual, the more complex the individual element,
the heavier is the computational load and the “smaller” is the resulting simu-
lation, for a given computational power. On the other hand, the inclusion of
a more detailed description of the units allows for more realistic simulations.
However, the accuracy of the simulation has to be compared with the experi-
mental data available. While for laboratory experiments it is possible to collect
very accurate data, this is not possible for real-field landslides. And, finally, the
proposed model is just an approximation of a much more complex dynamics.
These arguments motivated us in exploring the consequences of reducing the
complexity of the model as much as possible.

In this paper we present a simplified model, based on the MD approach,
applied to the study of the starting and progression of shallow landslides, whose
displacement is induced by rainfall. The main hypothesis of the model is that
the static friction decreases as a result of the rain, which acts as a lubricant and
increases the mass of the units. Although the model is still schematic, missing
known constitutive relations, its emerging behavior is quite promising.

2 The model and simulation methodology

We limit the study to two-dimensional simulations (seen from above) along a
slope, modeling shallow landslides. We consider N particles, initially arranged
in a regular grid (Fig. 1), all of radius r and mass m.
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Fig. 1. Initial configuration of simulations. The 2500 particles are arranged on a
regular grid of 50x50 cells of size 1× 1.

The idea is to simulate the dynamics of these particles during and after a
rainfall. In the model the rain has two effects: the first causes an increase in
the mass of particles, while the second involves a reduction in static friction
between the particle and the surface below.

The equation of Mohr-Coulomb,

τf = c′ + σ′ tan(φ′), (1)

says that the shear stress τf on the sliding surface is given by an adhesive part
c′ plus a frictional part tan(φ′). In the our model we want to find a trigger
condition of the particle that is based on the law of Mohr-Coulomb (Eq. (1)).
The coefficient of cohesion, c′ in the Eq. (1), has been modeled by a random
coefficient that depends on the position of the surface. On the other hand, the
term σ′ tan(φ′) in the Eq.(1), has been modeled by a theoretical force of static

friction F
(s)
i which is described later.

The static-dynamic transition is based on the following trigger conditions:

|F (a)
i | < F

(s)
i + c′,

|vi| < v
(threshold)
i → 0,

(2)

then the motion of the single block will not be triggered until the active forces

F
(a)
i (gravity forces + contact forces) do not exceed the static friction F

(s)
i plus

the cohesion term c′ and until the velocity |vi| not overcomes the threshold

velocity v
(threshold)
i (Eq. (2)). The irregularities of the surface are modeled by

means of the friction coefficients, which depends stochastically on the position
(quenched disorder).

In Eq. (2), the force F
(a)
i is given by the sum of two components: the gravity

F
(g)
i and the interaction between the particles F

(i)
i .

F
(a)
i = F

(g)
i + F

(i)
i . (3)

The gravity F
(g)
i is given by

F
(g)
i = g sin(α)(mi + wi(t)), (4)
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Fig. 2. (a) Particles in the computational domain: the maximum radius of iteration
defined in the algorithm is equal to the side L of the cell. Considering the black
particle in the center of the circumference, it can interact only with the neighboring
blue particles. (b) Cells considered when calculating the forces: if a particle is in cell
(x, y), the interaction forces will be calculated considering only the particles located
in cells (x + 1, y), (x + 1, y + 1), (x + 1, y) and (x − 1, y). This method halves the
number of interactions because it calculates 4 cells instead of 8.

where g is the acceleration of gravity, α the slope (supposed constant) of the
surface, mi the dry mass of block i and wi the absorbed water cumulated in
time. The quantity wi(t) is a stochastic variable (corresponding to rainfall
events σ(w)(t)),

wi(t) =

∫
σ
(w)
i (t) dt. (5)

The interaction force between two particles is defined trough a potential
that, in the absence of experimental data, we modeled after the Lennard-Jones

one. The corresponding interaction force F
(i)
ij that acts on block i due to block

j is given by

F
(i)
ij = −F (i)

ji = −∇V (Rij) = −∇

(
4ε ·

[(
r

Rij

)−12
−
(

r

Rij

)−6])
, (6)

where Rij is the distance between the particles,

Rij =
√

(xj − xi)2 + (yj − yi)2, (7)

r is the radius of the particles and ε is a constant.

The computational strategy for calculating the interaction forces between
the particles is similar to the Verlet neighbor list algorithm (art:verlet). In the
code the computational domain is divided in square cells of side L (see Fig. 2
(a)), corresponding to the length at which the interaction force is truncated.
The truncation has a very little effect on the dynamics, so we did not correct
the potential by setting V (L) = 0, as usual in MD.
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Fig. 3. (a) Static friction coefficient µs vs. time, with µ
(0)
s = 1.2 and µ

(∞)
s = 0.4.

(b) Triggering time vs. slope, Eq. 18 with m = 0.01, c′ = 0.1, µ
(0)
s = 1.15 and

µ(∞) = 0.45.

Thanks to the Newton’s third law it is possible reduce the number interac-
tion and consider the only particle that has not been considered in the previous
step (see Fig. 2(b)).

The condition of motion for a given particle is governed by Eq. 2. The static

friction F
(s)
i is given by

F
(s)
i = µs(mi + wi(t)) cos(α). (8)

The Equation 8 is expressed by the friction’s coefficient µs. We assumed
that the rain has a lubricating effect between the particles and underlying
surface; the friction coefficient has therefore been defined as,

µs = µ(∞)
s + (µ(0)

s − µ(∞)
s ) exp(−w0t), (9)

where µ
(0)
s0 and µ

(∞)
s are, respectively, the initial (dry) friction coefficient at

t = 0 (starting of rainfall) and the final (wet) for t→∞. The effect of rainfall
is to lubricate the sliding surface of the landslide, at a constant speed w0 in
this example.

When the active forces exceed the static friction plus the quenched stochas-
tic coefficient of cohesion c′, the particle start to move. In this case the force
acting on the particle i is given by

F i = F
(a)
i − F

(d)
i , (10)

where F
(a)
i are the active forces, and F

(d)
i is the force of dynamic friction,

F
(d)
i = µd(mi + wi(t)) cos(α). (11)

Eq .(11) is of the same type as Eq. (8); the coefficient of dynamic friction
µd is defined similarly to the static one (Eq. (9)). The friction coefficients
(static and dynamic) varies from point to point of the computational domain
this choice serves to model the sliding surface like a rough surface.
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When a particle exceed the threshold condition (Eq. 2), it moves on the
slope with an acceleration a equal to

a =
F i

(mi + wi(t))
. (12)

In MD the most widely used algorithm for time integration is the Verlet
algorithm. This algorithm allows a good numerical approximation and is very
stable. It also does not require a large computational power because the forces
are calculated once for each time step. The model was implemented using the
second-order Verlet algorithm. We first compute the displacement of particles,
and half of the velocity updates,

r′i = ri + vi∆t+
F i

2mi
∆t2,

v′i = vi +
F i

2mi
∆t,

(13)

then compute the forces F ′i as function of the new positions r′i, and finally
compute the second half of velocities,

v′′i = v′i +
F ′i
2mi

∆t. (14)

We have to define a landslide-triggering time, for instance the time of the
first moving block. In case of constant mass, it is very simple to obtain the
trigger time theoretically. We can write, in equilibrium conditions, for a given
mass

|F i| = F
(s)
i + c′

F i = F
(g)
i + F

(i)
i

(15)

We assume that the first movement of the particle is only due to the effect
of gravity, so that we can set the interaction forces equal to zero, and therefore
the equilibrium condition is given by

|F i| = F
(g)
i + c′, (16)

i.e.,

m̂g sin(α) = m̂ · g cos(α){µ(0)
s exp(w0 · t) + µ(∞)

s [1− exp(−w0t)]}+ c′, (17)

where m̂ = m+w(t), but Eq 17 is solvable analytically for m̂ = m+ δω (δω is
constant rain).

Therefore, using Eq 17 we can define the trigger time T in case of constant
mass m̂ as:

T = − 1

w0
· log

 tan(α)− c′

m̂g cos(α) − µ
(∞)
s

µ
(0)
s − µ(∞)

s

 . (18)
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Table 1. Parameter values used in simulations

Sim m r cell µ
(0)
s µ

(∞)
s µ

(0)
d µ

(∞)
d c’

1 0.0001 0.5 1x1 1.15 0.7 0.65 0.34 0.01+ε
1b 0.0001 0.5 1x1 1.15 0.7 0.65 0.34 0.01+ε
2 0.0001 0.5 1x1 1.15 0.7 0.65 0.34 1+ε
3 0.0001 0.5 1x1 0.85 0.4 0.35 0.14 0.01+ε

3 Results

In order to simulate a landslide along an inclined plane, we use the theoretical
model as described above with different parameters.

In the Table 1 we illustrate the parameters used in different simulations,
where Sim is the number of simulation, m and r are respectively the mass and

the radius of the particles, µ
(0)
s , µ

(∞)
s , µ

(0)
d , µ

(∞)
d are the coefficients of static

and dynamic friction and c’ is the coefficient of cohesion. In the our simulations
the time dt of simulation is set to 0.01: then the effective time t is different
from the simulation time T.

3.1 Simulation 1

The position of the particles at t = 3000 is reported in Fig. 4. The rain
starts with the particles at rest. We suppose that the speed of the landslide is
much bigger than the rain flux, so that the computation of sliding is performed
without the contribution of rain (i.e., instantaneously). The rain increases the
mass of the particle with a factor between 0 and 0.0001. The graph of the
kinetic energy (Fig. 5) shows a ”stick-slip” dynamic. The distribution f(x) the
kinetic energy (Fig. 6) is well approximated by an exponential

f(x) = a · ebx, (19)

with a ' 3.2 · 104 and b ' −0.1042.
In Fig. 7 the statistical distribution of the intervals between trigger times

is reported. This distribution is well fitted by a power law

f(x) = a · xb, (20)

with a ' 691.1 and b ' −0.4295.
Several authors have observed that some natural hazards such as landslides,

earthquakes and forest fires exhibit a power law distribution [10–12].

3.2 Simulation 1b

In this simulation we use the same parameters as in simulation 1, but we stop
the rain event at time t = 20. This is a special case: we want to study the
effect of a steady rain until a fixed time. Fig. 8 shows the arrangement of the
particles and Fig. 9 the kinetic energy at t = 300.

One can note that the maximum kinetic energy is much greater in this
simulation. In the case 1 the maximum value of kinetic energy is 5.74 · 10−4

while here it is 2.6 ·10−3. Many small events are observed in the first case while
in the present one we observe a single large event.
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Fig. 4. (a) Position of particles in Simulation 1 at t = 3000.

Fig. 5. (b) Kinetic energy vs. time.
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Fig. 6. (a) Frequency distribution of the kinetic energy in Simulation 1. The plot in
semi-log axes shows an exponential distribution.

Fig. 7. (b) Frequency distribution of trigger intervals in Simulation 1. The plot in
log-log axes shows a power-law distribution.

3.3 Simulation 2

In order to explore the dependence of the system behavior on the coefficient of
cohesion c′, we wary it from 0.01 to 1. The other parameters are the same of
Simulation 1. We observe that the final disposition of the particles (Fig. 10) is
not too different from Simulation 1 (Fig. 4), however, it occurs at time t = 7500
versus t = 3000 of Simulation 1.

As reported in Fig. 11, the increase of the cohesion coefficient c′ causes a
time dilatation, i.e., a translation of the time at which similar events occur.

3.4 Simulation 3

We explore here the behavior of the system as a function of coefficients of static
and dynamic friction µs and µd. Their values are shown in Table 1. The other
parameters are the same of Simulation 1. The consequence of the reduction of
friction causes an immediate movement of particles. Moreover the number of
particles involved during the event are larger then in the previous simulations
(Fig. 13).
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Fig. 8. (a) Position of particles in Simulation 1b at t = 300.

Fig. 9. (a) Kinetic energy versus time. We observe that the ”stick-slip” events dis-
appear and the fixed duration of precipitation changes the dynamics of the system:
in particular, there is peak at t = 20 at the end of the rain event.
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Fig. 10. (a) Position of particles in Simulation 2 at t = 7000. We observe that to
have a spatial arrangement of particles similar to those of the previous simulation
(Fig. 4) a larger time is needed.

Fig. 11. (b) Kinetic energy of the systems versus time. The black line is the kinetic
energy of Simulation 2. Comparing it with Fig. 5 of Simulation 1, we observe that
an increase in the cohesion coefficient induces a translation of the events.

Fig. 16 shows that also in this case the statistical distribution of the kinetic
energy follows an exponential distribution. The data fit of Eq. (19) gives a '
2.592 · 104 and b ' −0.091.

4 Conclusions

In this article we presented a theoretical model that may be useful for studying
the effect of precipitation on granular materials. The main hypothesis is that
the rain acts as a lubricant between the terrain and the granular: this effect
has been modeled by a preliminary report that includes the reduction of static
(or dynamic) friction when we simulate the rainfall (Eq. (8) and Eq. (11)). The
reduction in friction allows to follow the evolution and change in the position
of the particles during and after a rainfall. The results obtained are very en-
couraging as regards both the displacement and evolution of the particles and
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Fig. 12. (a) Position of particles in Simulation 3 at t = 3000. The gray area represents
the particle position of Simulation 1 (Fig. 4).

Fig. 13. (b) Number of particles involved. The decrease of the friction coefficients
leads to an increase in the number of particles in motion.
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Fig. 14. (a) Kinetic energy of the systems vs. time. The black line is the kinetic
energy of Simulation 3. In the last simulation the value of the kinetic energy is
greater than that in Simulation 1. This is due by the number of particles involved in
the event (Fig. 13).

Fig. 15. (b) Mean velocity of the system versus time after t = 1000 for Simulations
1 and 3. We can observe that the two values are not too different between the two
simulations. The difference of the kinetic energy is due to the number of particle in
movement.

in the statistical properties of the system. The next step will be to develop
an experimental setup where granular material (sand or gravel) will be placed
on a sloping surface: through liquid lubricant (soap and water) we will study
the dynamics of these particles. The comparison of experimental and compu-
tational model will be very useful for the analysis of the effect of lubrication of
the soil caused by rainfall.
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Fig. 16. (a) Statistical distribution of kinetic energy in Simulation 3. It follows an
exponential distribution like in Simulation 1.

Fig. 17. (b)The blue line refers to Simulation 3 with parameters a3 ' 2.88 · 105 and
b3 ' −2.365. The black line refers to Simulation 1 with parameters a1 ' 2.83·105 and
b1 ' −3.078. The dots represent the normalized value of the respective simulations.
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