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Abstract. The Frequency Modulated - Atomic Force Microscope (FM-AFM) is a
powerful tool to perform surface investigation with true atomic resolution. The con-
trol system of the FM-AFM must keep constant both the frequency and amplitude of
oscillation of the microcantilever during the scanning process of the sample. However,
tip and sample interaction forces cause modulations in the microcantilever motion.
A Phase-Locked Loop (PLL) is used as a demodulator and to generate feedback sig-
nal to the FM-AFM control system. The PLL performance is vital to the FM-AFM
performace since the image information is in the modulated microcantilever motion.
Nevertheless, little attention is drawn to PLL performance in the FM-AFM litera-
ture. Here, the FM-AFM control system is simulated, comparing the performance
for different PLL designs.
Keywords: Frequency Modulated Atomic Force Microscope, Phase-Locked Loops,
Synchronization.

1 Introduction

The Atomic Force Microscopy started with the development of the Atomic
Force Microscope (AFM) in 1986 by G. Binnig [1]. Simple contact measure-
ment techniques resulted in many discoveries and developments to the surface
investigation science. However, contact AFM cannot generate true atomic res-
olution images in a stable operation, and the samples are frequently damaged
due to the contact with the microcantilever tip during the scanning process.
On the other hand, noncontact AFM achieve true atomic resolution without
damaging the samples.

The Frequency-Modulated Atomic Force Microscope (FM-AFM) is a non-
contact AFM technique. In the FM-AFM the microcantilever is deliberately
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vibrated (Fig. 1) and is driven to oscillate at a fixed amplitude and frequency
[2,3] by the Automatic Gain Control loop (AGC) and by the Automatic Dis-
tance Control (ADC) loop, respectively. In addition, the AGC and ADC control
systems generate the dissipation and topographic images (Fig. 2).

Fig. 1. Schematic view of the microcantilever oscillation

Fig. 2. FM-AFM control system

In the FM-AFM the feedback signal is provided by the Phase-Locked Loop
(PLL) present in the FM-AFM control system [4–6] demodulating the tip and
sample interaction forces used by the ADC. The PLL also sinthesizes the AGC
signal (Fig. 2) in order to control the microcantilever oscillation amplitude.

The PLL (Fig. 3) is control system that synchronizes a local oscillator to
an incoming signal, playing important roles in communication, computation
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and control systems [7,8]. PLLs are nonlinear devices and behaviors such as
bifurcations and chaos may arise [9,11]. Additionally, ripple oscillations such
as the Double Frequency Jitter (DFJ), generated by the Phase Detector (PD),
corrupts the synchronization quality [12]. Therefore, PLL design is crucial to
demodulation systems and consequently to FM-AFM.

Fig. 3. PLL block diagram

In section 2 the FM-AFM mathematical model is presented. In section 3
the lock-in range of the third order PLL with second order Salley-Key filter is
determined by means of bifurcation analysis. In addition a design technique is
discussed. In section 4 the simulations results are shown.

2 FM-AFM Mathematical Model

The mathematical model for the FM-AFM is obtained, considering the external
driving signal and the tip-sample interaction, the amplitude detector and the
PLL. The modeling follows what was presented in [4].

2.1 The Micro-Cantilever

The micro-cantilever is considered to be a damped second order system that
can be described by the equation:

z̈(t) + γż(t) + ω2
cz(t) = r(t)v(t) + Fts(z, d) (1)

where z(t) is the micro-cantilever tip position, γ is the damping factor, ωc is
the natural frequency of the micro-cantilever and d is the tip height (see Fig.
1). Fts(z, d) is the tip and sample interaction force, r(t) controls the amplitude
of the oscillation and v(t) is the PLL output signal [2,3,5,6].

The FM-AFM operates in a long range distance between tip and sample,
and considering that the tip and sample are not conductive, Fts is mainly due
to the van der Waals force, given by:

The photodiode response is considered to be fast, and therefore it is neglected.
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Fts =
AH

6(d(t) + z(t))2
, (2)

where AH is the Hamaker constant that depends on the type of materials of
the tip and sample [3]. It can be seen in Fig. 2 that r(t) is the control signal
from the AGC. However, the tip and sample interaction force Fts(z, d) gener-
ates modulations on both the amplitude and frequency of the microcantilever
motion. For that reason, the micro-cantilever supposedly oscillates according
to:

z(t) = A(t) sin(ωct+ ϕc(t)), (3)

where A(t) and ϕc(t) carry the modulations generated by the tip and sample
interaction. Equation 3 is also the input signal to the PLL, as it can be seen
in Fig. 2.

2.2 The Amplitude Detector

The amplitude A(t) of the micro-cantilever and tip oscillation is obtained by
a circuit composed of a diode followed by a first-order low pass filter as shown
in Fig. 4,

Fig. 4. The amplitude detector.

and the mathematical model of the amplitude detector is given by:

Ȧ(t) + τdA(t) = τdzd(t), (4)

where τd = 1
RC , and

zd(t) =

{
z(t), z(t) > 0

0, z(t) ≤ 0.
(5)

2.3 The PLL mathematical model

The PLL is a closed loop control system composed of a phase detector (PD), a
low-pass filter f(t) and a voltage controlled oscillator (VCO), that synchronizes
the local VCO output to the input signal z(t) (Fig. 3). This is performed by

In the FM-AFM the tip and sample interactions generate frequecy shifts [2].
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adjusting the VCO frequency according to vc(t), which in turn is the filter
response to the PD output vd(s). The output signal is given by:

vo(t) = vo cos (ωct+ ϕo(t)) , (6)

where ϕo is the estimative of the loop to the input phase ϕc (see eq. 3), vo
is the amplitude of the output signal. Since both input and output signals
are supposed to have the same central frequency ωc(rad/s), the phase error is
defined as follows:

ϑ(t) = ϕc(t)− ϕo(t). (7)

Since the AGC keeps the microcantiler amplitude constant, the only pa-
rameter that can react to tip and sample forces is the change of the resonant
frequency. This shift of frequency is detected and used to change the distance d
(Fig. 1), in order to generate topographic images [3]. Consequently, for design
and analysis purposes, the input ϕc to the PLL can be written as:

ϕc(t) = Ωt. (8)

The PLL is described by a differential equation of order P+1 [9], considering
that the order the filter f(t) is P . The filter transfer function is given by:

F (s) =

∑M
m=0 αms

m∑P
p=0 βps

p
. (9)

considering that M ≤ P .
The PD output is given by:

vd(t) = kmvi(t)vo(t), (10)

where km is the PD gain.
The VCO frequency is controlled according to:

ϕ̇o(t) = kovc(t), (11)

where ko is the VCO gain, and vc is the filter output given by the convolution:

vc(t) = f(t) ∗ vd(t). (12)

The loop gain G is defined as folows:

G =
1

2
kmkovoAc. (13)

Considering the foregoing relations, the convolution theorem [13] and the
trigonometric identity sin(A) cos(B) = 1

2 [sin(A−B) + sin(A+B)], the dy-
namics of the phase error is given by:

L [ϑ] +GQ
[
Λ(t)

(
sin(ϑ(t)) + sin(2(ωct+ ϕc(t))− ϑ(t))

)]
= L [ϕo(t)] (14)

The trigonometric identity is applied into equation 10 in order to transform the
product of trigonometric functions into a sum. The term with sin(A−B) yields the
phase difference term, and the term with sin(A+B) yields the double frequency term.
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where Λ(t) = A(t)
Ac

. The operatorsQ and L depend on the filter transfer function
(Eq. 9), and are given by:

Q[·] =

M∑
m=0

αm
dm

dtm
(·), (15)

L[·] =

P∑
p=0

βp
dp+1

dtp+1
(·). (16)

Second-order Sallen-Key filter

The filter considered is a second-order Sallen-Key filter shown in Fig. 5,
with transfer function given by:

Fig. 5. Sallen and Key filter

F (s) =
µω2

n

s2 + ωn
Q s+ ω2

n

(17)

with

ω2
n =

1

R1R2C1C2
, (18)

Q =
1

ωn [C2(R1 +R2) +R1C1(1− µ)]
, (19)

and

µ = 1 +
RA
RB

. (20)

For R1 = R2 = R and C1 = C2 = C in equations 17 to 20, the transfer
function of the ”equal component” Sallen-Key filter [14] becomes:
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F (s) =
µω2

n

s2 + (3− µ)ωns+ ω2
n

. (21)

2.4 The complete FM-AFM control system model

Considering what was shown above the complete model of the FM-AFM is
given by the following set of equations:

...
z (t) + γż(t) + ω2

cz(t) = r(t)vo sin (ωct+ ϕo(t)) +
AH

6(d(t) + z(t))2
, (22)

Ȧ(t) + τdA(t) = τdzd(t), (23)

...
ϑ + (3− µ)ωnϑ̈+ ω2

nϑ̇+ µω2
nGΛ(t) sinϑ = ω2

nΩ (24)

r(t) = ΦAGC (Ac −A(t)) , (25)

d(t) = ΦADC (∆ωc − ϕ̇0(t)) . (26)

where Eqs 22, 23 and 24 are the micro-cantilever, amplitude detector and PLL
mathematical models, respectively. Additionally, equations 25 and 26 are the
control law for the AGC and ADC systems, respectively.

In Equation 24, the double frequency term was dropped since it is sup-
posed to be cut by the low pass filter, however, the double frequency jitter is
always present, and depending on the system requirements it must be consid-
ered [9,10,12].

3 PLL lock-in range

Equation 24 represents the dynamics of a third-order PLL on a cylindrical
phase surface, i. e., a complete analysis of the PLL behavior can be performed
considering ϑ ∈ (−π, π]. In this case the synchronous state corresponds to a
constant phase error ϑ and null frequency and acceleration errors ϑ̇ = ϑ̈ = 0
for t > ts [7,12,15].

The lock-in range for the Sallen-Key third-order PLL is composed of the set
of the values of the loop gain G, of the filter gain µ, of the filter cutoff frequency
ωn and of the microcantilever resonant frequency shift Ω for which equation 24

presents an asymptotically stable synchronous state
(
ϑ, ϑ̇, ϑ̈

)
= (ϑ∗, 0, 0) with

ϑ ∈ (−π, π]. In this case it is considered that Λ(t) = 1 for all t. The lock-in
range can be determined with the bifurcation analysis of equation 24, which
can be transformed into state space equations by defining:
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x1 = ϑ(t)

x2 = ϑ̇(t) (27)

x3 = ϑ̈(t)

resulting in

ẋ1 = x2

ẋ2 = x3 (28)

ẋ3 = ω2
nΩ − (3− µ)ωnx3 − ω2

nx2 − µω2
nG sin(x1).

The Jacobian matrix is given by:

J
∣∣∣
x1=x∗

1

=

 0 1 0
0 0 1

−µω2
nG cos (x∗1) −ω2

n −(3− µ)ωn

 , (29)

and consequently, the characteristic polynomial by:

P (λ) = λ3 + (3− µ)ωnλ
2 + ω2

nλ+ µω2
nG cos (x∗1) . (30)

For x1 ∈ (−π, π], x2 = x3 = 0 and from equation 28 the equilibrium points
can be determined by:

x∗1 = sin−1

(
Ω

µG

)
. (31)

It can be seen from equation 31 that for

|Ω| > µG (32)

there is no synchronous state. Additionally, for |Ω| = µG, and from equa-
tion 30, there are two non-hyperbolic syncronous states, namely,

(
π
2 , 0, 0

)
and(

−π2 , 0, 0
)
, for Ω > 0 and Ω < 0, respectively.

For |Ω| < µG there are four synchronous states. Two for Ω > 0, given

by: x∗,1 =
(
x∗,11 , 0, 0

)
and x∗,2 =

(
π − x∗,11 , 0, 0

)
; and another two for Ω < 0,

given by: x∗,3 =
(
−x∗,11 , 0, 0

)
and x∗,4 =

(
−
(
π − x∗,11

)
, 0, 0

)
.

Since x∗,2 and x∗,4 are respectively located on the third and fourth quad-
rants, it follows from the Routh-Hurwitz criterion [16] and the characteristic
polinomial (equation 30) that both are unstable for any parameters combina-
tion.

On the other hand, x∗,1 and x∗,3 can be stable or not, depending on

the parameters combination. In addition, since cos
(
x∗,11

)
=

√
1−

(
Ω
µG

)2
=√

1−
(

−Ω
µG

)2
= cos

(
−x∗,11

)
= cos

(
x∗,31

)
the characteristic polynomial can be

rewritten as:
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P (λ) = λ3 + (3− µ)ωnλ
2 + ω2

nλ+ µω2
nG

√
1−

(
Ω

µG

)2

, (33)

and, consequently, the stability analysis performed on the characteristic poli-
nomial of equation 33 is valid for both x∗,1 and x∗,3, i.e., for Ω > 0 and Ω < 0,
respectively.

The stability of x∗,1 and x∗,3 can be determined by the Routh-Hurwitz
criterion. Therefore, the Routh-Hurvitz matrix is written as follows:

R =



1 ω2
n

(3− µ)ωn µω2
nG

√
1−

(
Ω
µG

)2
(3−µ)ω2

n−µωnG
√

1−( Ω
µG )

2

3−µ 0

µω2
nG

√
1−

(
Ω
µG

)2
0


.

The synchronous states x∗,1 and x∗,3 are asymptoticaly stable if all elements
in the first column of R are positive. Consequently, µ that is greater than 1,
due to the construction of the filter, must be lower than 3, or concisely:

1 < µ < 3. (34)

In addition, (3− µ)ω2
n−µωnG

√
1−

(
Ω
µG

)2
must be positive, and for phys-

ical meaningful parameters, it results that:

G <
1

µ

√
(3− µ)2ω2

n +Ω2. (35)

Inequality 34 defines the lower and upper bounds for the lock-in range of
the filter gain µ, and inequality 35 defines the upper bound of the loop-gain G.
The Lower bound of G is defined by the synchronous states existence condition
(equation 32), resulting that:

G ≥ |Ω|
µ
. (36)

The inequalities 34, 35 and 36 define the lock-in range for the Sallen-Key
third-order PLL. For design purposes the lock-in range must be defined for
Ω = Ωmax, i. e., the maximun microcantilever resonant frequency shift possible
for a given scanning of a sample. As an exemple, Figs. 6 and 7 show the lower
bound of the lock-in range and the lock-in range for Ω = Ωmax = 200πrad/s
(100Hz).

The existence of the synchronous states is determined by a saddle-node
bifurcation, represented by the lower bound of the lock-in range. For parameter
values lower than the critical value, there are no equilibrium solutions, i.e., a
constant phase error ϑ and null frequency and acceleration errors ϑ̇ = ϑ̈ = 0
for t > ts [7,12,15]. On the other hand, for parameter values higher than the
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Fig. 6. Lower bound of the lock-in range for the third order Sallen-Key PLL
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Fig. 7. Lock-in range for the third order Sallen-Key PLL

critical values, there are four hyperbolic equilibrium solutions, two stable, and
two unstable.

The upper bound of the lock-in range is given by a Hopf bifurcation, gener-
ating a family of periodic solutions (limit-cycles) for loop gains above the upper
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bound [7,17]. Therefore, combining the lower bound, given by the saddle-node
bifurcation, with the upper bound, given by the Hopf bifurcation, it can be
concluded that the lock-in range for the third order PLL with second-order
Sallen-Key filter is represented by the region between the two surfaces as shown
in Fig. 7.

4 Simulations results

In this section some simualtion results are presented in order to illustrate the
PLL behavior concerning the lock-in range and the frequency demodulation
process. The simulations are performed built-in Simulink blocks, using the 4th

order Runge-Kutta integration algorithm. The central frequency ωc is 200π ×
103rad/s (100kHz).

The loop filter used in the simulation is a Butterworth Sallen-Key filter [14]
with parameters set to ωn = ωc

100 and µ = 1.5858. In accordance with inequality
35 and for Ω = Ωmax = 200πrad/s it results that Gmax < 5.6174 × 103, and
from inequality 36 Gmin > 396.2189. The simulations results are shown in
Figs. 8, 9 and 10.

The simulations results in Fig. 8 show the response of the PLL operating
inside the lock-in range. Figs. 8(a), 8(c) and 8(e) show the phase error response
for G = Gmin, G = 0.4Gmax and G = 0.8Gmax, respectively. Since the PLL
designed is a type 1 system it presents steady state phase error and, as expected,
the bigger the loop gain G the lower the stead state error.

Likewise, Figs. 8(b), 8(d) and 8(f) show the frequency demodulation re-
sponse of the PLL to the FSK signal with amplitude Ωmax, for G = Gmin,
G = 0.4Gmax and G = 0.8Gmax, respectively. It can be noticed that the bigger
the loop gain G the more oscillatory the frequency demodulation response. On
the other hand, the settling time is bigger for loop gains set near the boundaries
of the lock-in range.

Fig. 9 show simulations responses to loop gains above the upper bound of
the lock-in range. Since the upper bound represents a Hopf bifurcation Figs.
9(a) and 9(b) show the onset of a limit-cycle [17]. Additionaly, the limit-cycle
amplitude increases over the loop gain G.

In addition, Fig. 10 show the simulations responses for loop gains G set
bellow the lower bound of the lock-in range. The lower bound represents the
saddle-node bifurcation and, as mentioned earlier, it indicates that bellow this
boundary there are no syncronous states. Accordingly, in Fig. 10(a) it can be
seen that the phase error increases over time, also, in Fig. 10(b) it is clear that
the FSK signal Ωmax is not properly demodulated.

5 Conclusion

The PLL performance is vital to the FM-AFM and, accordingly, it must be
properly designed in order to assure the correct demodulation of the tip and

The type of de system is given by the number of the poles of the PLL open loop
transfer function located at the origin (s = 0) [16].
Frequency Shift Keying
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Fig. 8. Simulations with Gmin ≤ G < Gmax.

sample interactions from the microcantilever motion. Here, the lock-in range
for a third-order PLL with second-order Sallen-Key filter is determined, and
simulations supporting the theoretical results are shown, giving hints on how to
determine the PLL parameters in order to assure the existence of synchronous
states, and how to improve the PLL performance.
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Fig. 9. Simulations with G ≥ Gmax.
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Fig. 10. Simulations with G < Gmin.
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