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Abstract: Power spectra of nonlinear time series often contain relevant information 

across all frequencies. Traditional filtering results in loss of information at the high 

frequencies. Nonlinear local projective noise reduction is a method that allows us to 

reduce noise while retaining high-frequency information. Results for two quasi-periodic 

stars, a variable white dwarf and a period-doubling star, are discussed. For both, we show 

that average mutual information (AMI) allows us to preview the power spectrum 

including at higher frequencies in the white-noise tail.  Once a power spectrum is 

obtained, AMI can also serve as an indicator of the limits to which nonlinear noise 

reduction can be taken.  
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1 Introduction: Phase-space Portrait and the Parameters of the 

Time-Delay Reconstruction 
 

One of the tools to explore nonlinear systems is a time-delay phase-space 

portrait. According to the embedding theorems [10, 8, 9], the geometry of this 

time-delay phase-space portrait is diffeomorphic to the geometry of the phase-

space representation that would be obtained if the equations governing the 

system were known. Thus, this object is a surrogate and can be studied in lieu of 

the system.  

To obtain a time-delay phase-space portrait of a uniformly-sampled time series, 

the parameters of the reconstruction have to be determined first. These are the 

phase-space dimension and the time delay, which are both obtained from the 

data. 

 
1.1 Dimension of the Phase Space 
 

The dimension of the reconstructed phase space is obtained using the False 

Nearest Neighbour (FNN) method [7] on the time series itself. This dimension is 

important because it is related to the number of degrees of freedom needed to 

model the system. 
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1.2 Time Delay 
 

Autocorrelation Function 

    
Historically the choice of the time delay was initially made using the 

autocorrelation function. Given N observations s1, s2, s3, s4… at times t1, t2, t3, 

t4,…. the autocorrelation lag τ is given by: 
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Here y is the mean and σ is the standard deviation. The autocorrelation function 

quantifies the similarity between observations as a function of the time 

separation between them. The options for the time delay are the correlation 

time, the zero or the minimum of the autocorrelation function. 

 

Average Mutual Information 
 

Over time the trend has been to choose the optimal time delay at the minimum 

of average mutual information [3]. Average mutual information (AMI) is an 

information-theory analog to the autocorrelation function. AMI is defined in 

terms of probabilities as: 

 

 
 

 

AMI is the amount of information (in bits) shared by the signal and its time 

shifted value averaged over the orbit. It is a measure of how much one learns 

from one signal about the other. 

For a uniformly sampled time series such as a stellar light curve AMI is: 
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Here s is the sampled scalar time series and τ is the time delay. The range of the 

time series is divided into m sub-intervals and a histogram is obtained that 

yields the probability pi for a point to be in the interval i, the probability pj for a 

point to be in the interval j, and the joint probability pi,j  that if sk is in interval i 

then sk+τ is in interval j. 

Whether the first, local minimum, or the global minimum best determine the 

optimal delay is still a point open to discussion. 
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Though AMI is analogous to the autocorrelation function of linear signal 

processing, it is more general in the statistical sense since the autocorrelation is 

the expectation of a quadratic polynomial statistic, while AMI represents the 

expectation of the average degree of independence incorporating all higher 

orders. Though AMI was initially used to obtain the optimal time delay for 

time-delay embeddings its probabilistic nature gives it wider applicability [2]. 

 
2  Locally-projective nonlinear noise reduction  
 

The measured data are assumed to be the output of a low-dimensional 

dynamical system and random high-dimensional noise. This noise spreads the 

data off  its manifold in phase space. For small amplitude noise, it is assumed 

the data are distributed closely around the manifold [4, 5]. 

In order to reduce noise it is therefore important to first identify this manifold 

and then to orthogonally project the data points onto it. For a trajectory whose 

delay vectors an lie inside a m-dimensional manifold, while the dynamical 

system with noise forms a q-dimensional manifold where q>m. To reduce noise 

we over-embed and repeat the process until, due to iteration, the average 

correction ceases to decrease rapidly. An example of the application of the 

method is detailed in Jevtic et al. [6]. 

However, reducing noise in signals from nonlinear systems poses unique 

challenges. Most nonlinear systems have broadband power spectra. 

Differentiating noise from signal in such spectra is difficult if not impossible. It 

would be to great advantage if the shape of the spectrum buried by noise were 

known. Moreover, in such spectra, over-reduction can result in spurious results. 

An indication when to stop nonlinear noise reduction would greatly reduce the 

generation of spurious results. We will show that average mutual information 

can be used to advantage in both of these cases. 

 
3 Requirements on the data 
 

At this time, nonlinear phase-space reconstruction can only be used for 

uniformly-sampled continuous data sets.  

 

4 Data Analysis 
 

The light-curve data for two quasi-periodic stars are analysed. For a variable 

white dwarf and a period-doubling star we show that average mutual 

information (AMI) is a better predictor of the power spectrum since it can 

preview what is under the noise. It can also serve as a guide to when to stop 

nonlinear noise reduction to guard against spurious results.  

For the period-doubling star for which long continuous light curves are 

available, phase-space portraits and power spectra are investigated for sub-

intervals over time.  
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DB White Dwarf PG1351+489 
 

Eleven hours of continuous DB white dwarf PG1351+489 data were analysed 

[6], Fig. 1. This section of the light curve was obtained by the ground-based 

Whole Earth Telescope international collaboration during its xCov12 campaign. 

 
Fig. 1. PG 1351+489 light curve 

  

The autocorrelation function (black curve) and the Average Mutual Information 

(AMI) (red curve) for the above data are shown in Fig. 2. The two curves are  

       

  
Fig. 2. PG 1351+489 autocorrelation function (gray) and Average Mutual 

Information (AMI) (black)  

 

scaled to the first maximum. The correlation function (red curve) indicates the 

presence of only a single periodicity. The AMI (black curve) indicates a 

“primary” comb of a fundamental and harmonics whose magnitude diminishes 
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with delay. A “secondary” comb of sub-harmonics is also present between the 

“primary” ones which has constant magnitude. 

 

 
 

Fig. 3 PG 1351+489 power spectra before (gray) and after noise reduction 

(black) 
 

Power spectra for white dwarf PG 1351+489 before (gray) and after noise 

reduction (black) are shown in Fig. 3 for ~11h of data. The black power 

spectrum is after noise reduction from 7 dimensions with 6 iterations. The 

white-noise tail is lowered by a factor of ~50. More lines were identified than 

from the whole xCov12 run of 84 h [1]. Thus noise reduction allows us to 

shorten the data-collection time by a factor of 7.  

In both power spectra, as predicted by AMI, a fundamental and its harmonics 

are present. Also, there is a comb of sub-harmonics. Moreover, the line 

amplitude diminishes with frequency.  
 

TYC 3544-1245-1 
 

The second star analysed is listed in the Tycho2 catalogue as TYC 3544-1245-1. 

Its light curve is shown in Fig. 4. 
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Fig 4. TYC 3544-1245-1 Light Curve 

 

Though there is period doubling, the classification of this star is still being 

debated. At times it has been classified as a solar-like star, an RR Lyrea star, a 

delta Scuti star and a W UMa contact binary. However, for the purposes of this 

paper, behaviour not classification is important. 

 
Fig. 5 Autocorrelation function (red) and Average Mutual Information (AMI) 

(black) for TYC 3544-1245-1 
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In Fig. 5 the correlation function (red curve) indicates the presence of a 

periodicity and its harmonics and a single sub-harmonic all of constant 

amplitude. The AMI  (black) curve also indicates that the periodicities present 

consist of a “primary” comb consisting of a fundamental frequency and its 

harmonics but the single sub-harmonic has become a “secondary” comb of  

three smaller sub-harmonics between subsequent “primary” peaks. The 

amplitudes of the “primary” comb diminish with delay while the amplitudes of 

the “secondary” comb remain constant.   

 
Fig. 6 The power spectrum of three months of data for TYC 3544-1245-1 

 

The power spectrum of three months of TYC 3544-1245-1 data is shown in Fig. 

6. This spectrum has a significant noise contribution and widened line bases. It 

does not agree with the “prediction” of the AMI. 

 

 
Fig. 7. TYC 3544-1245-1 phase-space portrait with evident changes in the 

dynamics 
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However, the phase-space portrait for the same period (Fig. 7) indicates that 

behaviour changed over time. As a result the data were divided into one month 

intervals and the last month was further subdivided into two fifteen-day 

segments. The results of nonlinear projective local noise reduction for the two 

last month two fifteen-day segments are shown in Fig. 8. 

 

 
 

Fig. 8 Comparison of the power spectra for the two consecutive 15-day intervals 

after noise reduction: blue - 1st interval (top); red - 2nd interval (bottom). 

 
The power spectra after nonlinear noise reduction for the two fifteen-day 

intervals are compared in Fig. 8. Noise reduction was considerably more 

efficient for the second. For the 2
nd

 fifteen-day interval the AMI prediction of a 

comb of primary frequencies of diminishing amplitude with delay, and a triplet 

of smaller sub-harmonics between primary peaks can be seen to be correct.  

However, the number of “primary” harmonics that can be identified has not 

increased. 

Since the red power spectrum for the second 15 days can be interpreted as a 

change in the dynamics, the search for an explanation led to a second inspection 

of the phase-space portraits of the two 15-day intervals separately. 
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Fig. 9 Phase-space portraits of the two 15-day intervals (figures are color-coded 

to correspond to the top and bottom power spectrum in Fig. 8, respectively.). 

 

Noise reduction was much more efficient for the second (red) segment that has a 

more developed surface in phase space due to de-threading. Thus we observe all 

the frequencies predicted by AMI due to an interplay of a moderate parameter 

change and the nature of that change that allows for efficient noise reduction. 

A second noise reduction resulted in the power spectra shown in Fig. 10.  

 
Fig. 10 Power spectra of the two 15-day intervals after a second round of 

nonlinear noise reduction: 1st interval (top-violet); 2nd interval  (bottom-green). 

 
The power spectra of the two 15-day data sets after a second round of nonlinear 

noise reduction in Fig. 10 are an illustration of another aspect of the utility of 

AMI.  
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For the second interval power spectrum (rendered in green), the number of 

accessible “primary” harmonics has increased dramatically. However, the 

“triplet sub-comb” predicted by AMI has been considerably suppressed at the 

higher frequencies. If  the bottom (2
nd

 interval-green) spectrum is compared 

with the top (1
st 

interval-violet) 15-day power spectrum in Fig. 10, at the higher 

frequencies the onset of the region in which the triplets are over-suppressed  in 

the bottom (green) spectrum corresponds to the onset of spurious structures in 

the top (violet) spectrum. Thus, AMI can also be used to estimate when noise 

reduction should be stopped to avoid the introduction of artefacts. In practice, 

fewer iterations will protect against this. 

 

5 Conclusions 
 

Average Mutual Information (AMI) remains the most effective tool to select the 

optimal delay for time-delay phase space reconstruction. Earlier work [2] 

demonstrated the predictive value of a variant of average mutual information in 

the time domain. In the frequency domain, for quasi-periodic light curves, we 

show that AMI is a much  more powerful tool than generally appreciated. For 

the light curves considered, AMI over a range of delays previews the shape of 

the Fourier power spectrum with fidelity even when there is considerable white 

noise present. 

Moreover, as complexity grows with the increase of the number of sub-

harmonics present the autocorrelation function, the AMI linear analog, 

continually underestimates the multiplicity of sub-harmonics. Even without a 

definitive, more extensive study of a variety of light-curve shapes, it is safe to 

say, by analogy, that AMI yields a reliable estimate for the lower bound on the 

multiplicity of sub-harmonics. 

A preview of the power spectrum is a major advantage when reducing noise in 

signals from nonlinear systems which have broadband power spectra. 

Differentiating noise from signal in such spectra is difficult if not impossible. 

However, there is an additional benefit in that AMI also allows us to set limits 

on when noise reduction should be stopped since over-reduction may lead to 

spurious results.  Knowing when noise reduction starts suppressing parts of the 

power spectrum that are actually integral to it and needed to model the dynamics 

is also extremely valuable. 

 
Of the two light curves used to illustrate this new approach to AMI, the  

TYC 3544-1245-1 data proved to be the more interesting. Period doubling was 

detected for TYC 3544-1245-1. In addition, the phase-space portrait for two 

successive intervals indicated a moderate change in dynamics that resulted in 

de-threading [6] leading to a surface that allows for more efficient noise 

reduction. Nonlinear noise reduction for that part of the light curve resulted in a 

power spectrum predicted by the AMI consisting of a “primary” fundamental, 

its harmonics and a “secondary” sub-harmonic triplet structure between them. 

Moreover, even though repeated noise reduction resulted in better access to the 

“primary” harmonics, it proved excessive at higher frequencies suppressing the 
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“secondary” triplet structure. This can practically be easily remedied by using a 

smaller number of iterations.  
 

To our knowledge, no other method gives as good a preview of the power 

spectrum in the presence of considerable noise.  Also, though not quantitative as 

yet, AMI promises to develop into a useful tool to delineate useful from 

artefact-generating noise reduction. 
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