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Abstract: Modified combined scattering rate Monte Carlo technique is proposed. 

Electron collisions with phonons, impurities and among themselves are taken into 

account. The proposed technique avoids the short-time-step procedure inherent to 

conventional ensemble Monte Carlo method. All N modelled electrons move using the 

total probability for the scattering of each electron by the thermal bath and mutual 

scattering between electrons pairs (“events in the electron system”). The quantitative 

fitting to the available experimental data on the spectral density is achieved and the range 

of moderate fields is defined for interparticle collisions to manifest themselves in the 

noise. In the second part of the presented report a drift velocity correlator is investigated 

numerically by Monte Carlo simulation and for the fist time analytically by a 

phenomenological approach taking into account electron-phonon and electron-electron 

scattering between free carriers. The thermodynamic approach is investigated. The 

results of the velocity-to-velocity correlation functions and electron noise spectrum 

obtained analytically are in quite good agreement with those given by the Monte Carlo 

method. 

Keywords: Monte Carlo, Electron-electron collisions, Drift velocity fluctuations, 

Spectral density.  

 

1. Introduction 
Fluctuations phenomena in semiconductors have been intensively investigated 

during the last three decades [1-3]. Fluctuation effects have been conventionally 

investigated without an account on the Coulomb electron-electron (e-e) 

scattering. However at sufficiently high electron densities, it is necessary to take 

into account e-e scattering to the total distribution function and related 

correlators. 

Interparticle collisions though conserving energy and momentum of the electron 

system have an indirect effect on transport and – even more direct – on velocity 

correlations. In the presented report the ‘combined scattering method’ (CSR) 

Monte Carlo method [4] is used to interpret the results of microwave noise. 

The important role of e-e collisions is demonstrated, and drift-velocity to drift-

velocity cross-correlation under non-e1uilibrium conditions is calculated. In the 

second part drift velocity correlation functions are investigated analytically in a 
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phenomenological approach and numerically through Monte Carlo simulation. 

Thermodynamic equilibrium state is investigated. Analytical results are in good 

agreement with those obtained by Monte Carlo method in the GaAs crystal. 

 

2. Electron-electron collisions. Drift velocity fluctuations 
It can be shown [4] that the “time of free flight” for independent scattering 

events of the N electron system with ki wave-vectors is defined by the combined 

scattering rate: 
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where )( ii kλ  and ),( ji

ee

ij kkλ are conventional integral rates of scattering of the 

ith electron by the thermal bath and by the jth electron respectively [5]. 

Equation (1) reduces to that written down in [6] for N=2. All N electrons move 

without scattering for the “time of free flight of the system” between two 

successive events of an electron scattering by the thermal bath or mutual 

collision between two electrons occurs. The “time of free flight” is defined from 

the sum of the each electon scattering rate on the thermal bath and on the all 

remaining electrons. CSR technique avoids the short-time step procedure and a 

large electron number inherent to conventional ensemble MC simulation. 

The time-displaced drift-velocity correlation function is 
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where the auto- and cross-correlation functions are defined as: 
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In order to demonstrate the effect of e-e collisions on fluctuations, the calculated 
velocity correlation functions in a heating electric field are shown in Figure 1 

for the model corresponding to n-type GaAs with the impurity scattering 

neglected. In our case τee ≤ τp strong cross-correlation appears. The equal-time 

cross-correlation also appears in non-equilibrium system as it was predicted in 

[1]. The auto-correlation decreases mainly in time τee. The decay of totalΦ is 

caused by the electron interaction with thermostat. In thermodynamic 

equilibrium, when 0)0( =Φ cross , the latter is equal to  

mkTVautototal /)0()0( 2
==Φ=Φ . 
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The results of the spectral density of drift velocity fluctuations are presented in 

Figure 2. The experimental data are obtained from the current fluctuations data 

through normalization at zero field by using mobility data and Nyquist formula 

[7]. One can see that the most pronounced effect is obtained at intermediate 

fields ranging from 5 V/cm to 500 V/cm 
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Fig. 2. Dependence of the spectral density of electron drift velocity fluctuations 

for compensated n-GaAs. MC with phonon, impurity and e-e scattering: (closed 

circles), without e-e scattering (diamonds). Experimental data–open squares [7].  

 

The nearly constant behavior at fields up to 100 V/cm can be explained by 

enhanced energy loss by electrons on optical phonons in the presence of e-e 

collisions. The role of e-e collisions diminishes at higher field. 

Fig. 1. Drift-velocity correlation functions: total (solid line), auto-

correlation (dashed line) and cross-correlation (dotted line). Phonon 

and interelectron scattering is taken into account, impurity 

scattering is neglected 
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3. Drift velocity correlations in semiconductors in the 

thermodynamic equilibrium state.  
The values of correlators at the thermodynamic equilibrium have been 

calculated for the parabolic model of  Г valley in GaAs. The material parameters 

correspond to these listed in [8]. Electron scattering on non-elastic acoustic and 

optical modes of lattice vibrations, as well as e-e scattering (ne = 10
15

 cm
-3

) is 

taken into account. Inter-electron collisions are treated in the Brooks-Herring 

approximation. Standard expressions for electron scattering rates are used [5]. 

The calculations are performed by the CSR MC method. 

Let us start with the simplified Boltzmann-Langevin equation for the fluctuation 

distribution function. In the state of thermodynamic equilibrium it can be 

written as 
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Here Fp(t) is the instantaneous electron momentum distribution function, Fp

M (t) 

is the drifted Maxwellian distribution corresponding to the Fp(t)  at time t, )(typ  

describes the Langevin random force. In our case the rate of fluctuation 

relaxation is governed by the lattice and e-e scattering mechanisms. 
The first term on the right-hand side of equation (4) ensures the relaxation of 

instantaneous distribution )(tFp to the equilibrium distribution during lattice 

relaxation time τp. The second term is written in accordance with the Gross-

Bhatnager-Krook approach [9]. Its form is based on the property of the 

instantaneous electron distribution function to acquire symmetric form (the 

drifted Maxwellian distribution) in the e-e scattering time τee under the influence 

of e-e scattering. R. Liboff in his textbook [10] gives considerable attention to 

this approach (see also [11]). Electron momentum can be intensively scattered 

by impurity centres too, but the energy of electrons is conserved in this 

scattering process. Even in this simple approach we cannot predict the final 

distribution that will result under the influence of impurity scattering. Therefore, 

we will omit further the impurity scattering. 

The therm )(tF M

pδ  describes the deviation of a drifted Maxwellian distribution.  

E-e scattering does not tend to bring either )(tF M

p  or )t(Fp  to  the 

thermodynamic equilibrium, because the average energy and momentum do not 

change during e-e collisions. So, the drifted Maxwellian distribution is supposed 

to relax only under the influence of lattice scattering during the corresponding 

scattering time τp. Therefore, we have used )/exp()0()( p

M

p

M

p tFtF τδδ −= . 



Chaotic Modeling and Simulation (CMSIM) 1: 199-205, 2011 203

Then, we multiply the equation (4) by the initial distribution function 

fluctuation )( 11 tFpδ , and average the product. Let us denote the correlator 

)()( 111 ttFtF pp +δδ  as )()0(1 tFF pp δδ ). Now we write the dynamic equation: 
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The last term in Eq. (4) representing a random force, vanishes because this force 

is δ -correlated in time. Initial fluctuations of an actual distribution and the 

drifted Maxwellian distribution are related in the following way: 
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where )0(pF∆  is deviation between them. Because of the chaotic behaviour of 

)0(pF∆  we assume that 
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We are interested in the velocity-to-velocity correlators; therefore we multiply 

the equation (5) by )()0(1 tVV ji
 and sum it up by  p1 and  p. Finally, we obtain 

the phenomenological equation describing the relaxation of the total velocity-to- 

velocity correlator coefficient )()()( tctctc crossautototal +=  in the 

thermodynamic equilibrium: 
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The first-order linear differential equations for the velocity-to-velocity 

correlator coefficients can be then written as 
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Taking into account the known initial conditions [1] under equilibrium: 

1)0( =autoc , and  0)0( =crossc , the correlation coefficients are given as 
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As it is seen the auto-correlation coefficient in equilibrium decreases 

exponentially with a combined relaxation time )/( eepeepc τττττ += . This 

result describes conventionally the relaxation of the probe particle velocity 

correlator. We obtain from the second equation that the cross-correlation 

coefficient tends to increase during the time τee , but then decreases to zero per 

lattice scattering time.   

One can see an important result of the total correlation coefficient: 

 

                     )/exp()()()( pcrossautototal ttctctc τ−=+= .                   (11) 

 

This shows that it does not depend on e-e scattering. 

The analytical dependencies calculated with equation (11) reasonably well 

coincide with those from the MC data (Fig. 3).    
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Fig. 3. Relaxation of velocity correlation coefficients in n-GaAs. Points - MC, 

curves - by equations (10). 

 

The characteristic time at which the cross-correlation function reached its 

maximum in the case of τee  ≤ τp is )/1ln(max eepeet τττ +≈ . The more details of 

the corelation functions bechavior (spectral density, etc.) can be found in [12]. 

 

4. Conclusions 
The presented MC procedure was demonstrated to be an efficient tool for 

studying electron noise in the presence of e-e scattering. Taking them in 

accordance is crucial for explanation of experimental data on microwave noise 

in doped GaAs. 

The results of analytical approach are in good agreement with the Monte Carlo 

simulation, what confirms the usefulness of our simple analytical model. Till 
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now only the single particle autocorrelation behaviour has been describe 

analytically in the textbooks of fluctuation phenomena (for example, see [13]). 
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