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Abstract. We investigate critical points of the free energy of the Cahn-Hilliard model
of a binary alloy under the constraint of a constant mass. The domain is the unit
square. Minimizers of the energy without interfacial energy term are given by a
decomposition of the two components of the alloy, but the interfaces between the
components are arbitrary. Specific patterns are only formed if an interfacial energy
term is present. We select such patterns of minimizers by an approximation of se-
quences of conditionally critical points of the free energy when the interfacial energy
term tends to zero. This is what we call Pattern Formation of the Stationary Cahn-
Hilliard Model. Mathematically it is a singular limit process.

We obtain the conditionally critical points by a global bifurcation analysis of the
Euler-Lagrange equation for the free energy where the mass is the bifurcation pa-
rameter and where the constant homogeneous mixtures give the trivial solutions. By
using characteristic symmetries and monotonicities of the bifurcating solutions we
show that singular limits exist for all masses in the so-called spinodal region and that
they are minimizers of the free energy without interfacial energy term.

Keywords: Cahn-Hilliard model, Spinodal decomposition, Global bifurcation, Ge-
ometry of global branches, Singular limit process, Pattern formation, Weierstraß-Erd-
mann corner condition.

A binary alloy in a vessel Ω can be described by a function u:Ω → IR
as follows: u(x) ∈ [0, 1] means that the mixture contains u(x) · 100 % of one
component at x ∈ Ω. The energy density of the alloy is modelled by W (u),
where W is a two-well potential (Figure 1).
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W (u(x)) is minimal, if only one component is present at x ∈ Ω. Any
mixture of the two components costs energy. The interval (a, b), where W loses
its convexity, is called “spinodal region”.

The total energy is given by

E0(u) =

∫
Ω

W (u) dx (1)

and the mass conservation is formulated as

1

|Ω|

∫
Ω

udx = m ∈ (0, 1). (2)

The energy (1) under the constraint (2) is minimal for the following con-
centrations:

u0(x) =

{
0 for x ∈ Ω0,

1 for x ∈ Ω1,
(3)

with
|Ω0| = (1−m)|Ω|,
|Ω1| = m|Ω|. (4)

The following Figure 2 sketches a possible distribution of the two com-
ponents in a square Ω. The decomposition of the two components is called
“spinodal decomposition”.
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Figure 2

Only the measures of Ω0 and Ω1 are determined, their patterns are arbitrary.
In experiments, however, certain patterns are preferred, for instance patterns
with circular “interfaces”.

The model is not yet complete: Taking care of the energy of the interfaces
between the two components the total energy is described as

Eε(u) =

∫
Ω

ε

2
‖∇u‖2 +W (u) dx, ε > 0, small, (5)

which is called the “Cahn-Hilliard Energy”.
Let uε be a minimizer of Eε(u) under the constraint of mass conservation.

One expects for small ε > 0:

uε(x) ≈
{

0 for x ∈ Ω0,ε,

1 for x ∈ Ω1,ε,

with a profile at the interface of the form (Figure 3)
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such that for ε↘ 0

uε(x) −→ u0(x) =

{
0 for x ∈ Ω0,0,

1 for x ∈ Ω1,0,

and u0 is a minimizer of E0(u) under the same constraint.
This “singular limit process” defines the sets Ω0,0 and Ω1,0, in particular

their patterns. We call it “Pattern Formation of the Stationary Cahn-Hilliard
Model”. Due to the “Criterion of Minimal Interface” of Modica from the
year 1987, see [5], patterns with circular interfaces are created (Figure 4): If
minimizers of (5) under the constraint (2) tend to u0 in L1(Ω) as ε↘ 0, then
the interface between Ω0,0 and Ω1,0 is minimal.
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Figure 4. Criterion of Minimal Interface (Modica 1987)

For one-dimensional domains Ω this was already shown by Carr, Gurtin,
and Slemrod in 1984, see [1]: The singular limit of conditional minimizers is
piecewise constant with one single jump in the interval Ω.

In 1995 Grinfeld and Novick-Cohen [2] classified all conditionally critical
points of (5) over an interval. They did not study their singular limits, i. e.,
their pattern formation.

In the sequel we study the pattern formation of conditionally critical points
of (5) over the unit square Ω in IR2. Observe that |Ω| = 1. (Proofs can be
found in [3], [4].)

We substitute m = λ, u = λ+ v and obtain

Eε(v, λ) =

∫
Ω

ε

2
‖∇v‖2 +W (λ+ v) dx (6)

under the constraint ∫
Ω

v dx = 0. (7)

Conditionally critical points of Eε(v, λ) satisfy



32 H. Kielhöfer

a) the Euler-Lagrange equation:

−ε∆v +W ′(λ+ v) = const. in Ω,

b) the natural boundary conditions:

∂v

∂n
= 0 on ∂Ω (Neumann boundary conditions),

c) the constraint of mean value zero:∫
Ω

v dx = 0.

Conditions b) and c) are incorporated into a function space X and a) is
expressed as

Gε(v, λ) := −ε∆v +W ′(λ+ v)−
∫
Ω
W ′(λ+ v) dx = 0

for (v, λ) ∈ X × IR.
(8)

We have the trivial solution

Gε(0, λ) = 0 for all ε > 0, λ ∈ IR, (9)

which describes by u ≡ λ = m a homogeneous mixture.

We look for nontrivial solutions (v, λ) of (8) that bifurcate from the trivial
solution line {(0, λ) |λ ∈ IR}.

I. In the first part we fix ε > 0 and we consider λ ∈ IR as a variable
bifurcation parameter.

I.1 Possible bifurcation points (0, λ) have to satisfy

DvGε(0, λ)v = −ε∆v +W ′′(λ)v = 0 in Ω,

∂v

∂n
= 0 on ∂Ω,∫

Ω
v dx = 0,

(10)

for some nontrivial v ∈ X. This linear eigenvalue problem (10) has the
solutions v(x1, x2) = cosnπx1 and v(x1, x2) = cosnπx2 for n ∈ IN pro-
vided W ′′(λ) = −εn2π2.

We do not consider these one-dimensional solutions here but we are rather
interested in

vn(x) = cosnπx1 + cosnπx2 for W ′′(λ) = −εn2π2,
vnn(x) = cosnπx1 cosnπx2 for W ′′(λ) = −2εn2π2.

(11)

The bifurcation points, which are solutions of the “characteristic equation”,
appear in pairs as depicted in Figure 5:
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The number of modes n = 1, . . . , N(ε), generating bifurcation points in the
spinodal region (a, b) as shown in Figure 5, tends to infinity as ε tends to zero.

The symmetries of the eigenfunctions (11) play a crucial role in the subse-
quent analysis. For vn they are shown in the following Figure 6:
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Figure 6

We define a subspace Xn ⊂ X by the symmetries (and periodicities) of vn
and we define Xnn ⊂ Xn ⊂ X by the symmetries (and periodicities) of vnn.

I.2 We solve Gε(v, λ) = 0 for (v, λ) ∈ Xn×IR as well as for (v, λ) ∈ Xnn×IR.
The bifurcation points are

(0, λ1kn), (0, λ1kn,kn), and (0, λ2kn), (0, λ2kn,kn), k ∈ IN, (12)

provided

W ′′(λikn) = −ε(kn)2π2 and W ′′(λikn,kn) = −2ε(kn)2π2 (13)

for i = 1, 2. A local and global bifurcation analysis then gives the bifurcation
diagram sketched in Figure 7:
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The branches C−n and C−nn are obtained from C+
n , C+

nn by “reversion”, i. e., by
a reflection and a phase shift of half the period in both directions and in one
direction, respectively.

By a famous result of Rabinowitz from the year 1971 all bifurcation continua
are unbounded or meet the trivial solution line a second time.

I.3 In order to decide which Rabinowitz alternative holds in our case, we
determine the geometry of solutions on the global continua C+

n . (A similar
analysis determines the geometry of solutions in C+

nn.) We define an order
in IR2 by the positive cone K = {x = (x1, x2) |x1 ≥ 0, x2 ≥ 0} in IR2 (Figure 8):
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Figure 8

x ≤ y ⇔ y − x ∈ K. (14)

The eigenfunction vn is monotonic in the square Qn = [0, 1
n ]× [0, 1

n ]:

x, y ∈ Qn, x ≤ y ⇒ vn(x) ≥ vn(y). (15)

By the symmetries (and periodicities) of vn there is a monotonicity of vn in all
squares of the symmetry lattice.

By using the elliptic maximum principle and the connectivity of C+
n it can be

shown that the monotonicity (15) is preserved for all solutions of Gε(v, λ) = 0
on C+

n :
x, y ∈ Qn, x ≤ y ⇒ v(x) ≥ v(y) (16)

The consequences of (16) are that the location of the maxima, minima,
and saddles is fixed for all solutions on C+

n . This, in turn, implies that all
bifurcating continua C+

n and C+
nn are separated.
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I.4 The geometry of solutions on C+
n described before helps to derive the

following a priori estimates:

(v, λ) ∈ C+
n ⇒ ‖v‖L∞(Ω) + |λ| ≤M1,

‖v‖C2+α(Ω) ≤M2/ε
2,

(17)

where M1 and M2 do not depend on ε > 0. The results of I.3 and (17) then
yield the global bifurcation diagram sketched in Figure 9:
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Figure 9

The turning points are explained later.

II. In the second part we fix λ in the spinodal region (a, b) and let ε tend
to 0. Since the solution continua C+

n depend on ε we change the notation:

C+
n = C+

n,ε

(v, λ) ∈ C+
n,ε ⇒ v = vλ,ε, where Gε(vλ,ε, λ) = 0.

(18)

II.1 Let εn ↘ 0 and consider the sequence (vλ,εn)n∈IN in Lp(Ω). The
estimates ‖vλ,εn‖L∞(Ω) ≤M1 and ‖vλ,εn‖C2+α(Ω)‖ ≤M2/ε

2
n do not imply that

this sequence is relatively compact in Lp(Ω) for 1 ≤ p < ∞. However, by
the monotonicity (16) it is relatively compact in Lp(Qn), and therefore, by the
symmetries (and periodicities), it is relatively compact in Lp(Ω). This follows
by an extension of Helly’s theorem on one-dimensional monotonic sequences to
two dimensions. Thus we can state (w. l. o. g.):

vλ,εn −→ vλ,0 in Lp(Ω) for 1 ≤ p <∞
as εn ↘ 0.

(19)

II.2 The properties of the singular limit vλ,0 ∈ Lp(Ω) are:
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a)

∫
Ω

vλ,0 dx = 0,

b) vλ,0 ∈ Xn, vλ,0 is monotonic in Qn,

c) λ+vλ,0 = uλ,0 is a conditionally critical point of E0(u) =
∫
Ω
W (u) dx, i. e.,

W ′(uλ,0) = const.,

d) vλ,0 6= 0, i. e., vλ,0 is nontrivial,

e) uλ,0 has precisely two values.

Property d) is not obvious. It follows from W ′′(uλ,0) ≥ 0, which, in turn,
is a consequence of the variational characterization of the positive principal
eigenvalue of an eigenvalue problem with weight function. Property e) then
follows from c) and W ′′(uλ,0) ≥ 0. Finally,

f) uλ,0 is a global minimizer of E0(u) under the constraint
∫
Ω
udx = λ = m ∈

(a, b).

Property f) is not obvious as well. It follows from the second Weierstraß-
Erdmann corner condition developed for discontinuous global minimizers of
one-dimensional variational problems:

W (uλ,0)− uλ,0W ′(uλ,0) is continuous,

which means constant by e).
(20)

Property (20) admits only the following two values for uλ,0 which proves f):

uλ,0(x) =

{
0 for x ∈ Ω0,0,

1 for x ∈ Ω1,0,
(21)

where the sets Ω0,0 and Ω1,0 depend on λ = m. This accomplishes the pattern
formation of the stationary Cahn-Hilliard model.

For n = 4 we obtain the following pattern in Xn (Figure 10):
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In the symmetry class Xnn a pattern for n = 4 is the following Figure 11:

Figure 11

The interfaces are circular, if uλ,ε are conditional mimimizers of Eε(u).
However, not all uλ,ε = λ+vλ,ε, where (vλ,ε, λ) ∈ C+

n,ε, are minimizers with
mean value λ = m ∈ (a, b).
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Figure 12

Figure 12 sketches the global continuum C+
n,ε for small ε > 0. A contin-

uous transition from pattern 1 to pattern 9 in keeping the monotonicity and
symmetry of uλ,ε in Qn is only possible through patterns 4, 5, 6, which are not
created by minimizers, since the interface is not minimal. Therefore the con-
tinuum has to have two additional turning points, where the stability changes.
In particular, the continuum with patterns 4, 5, 6 is unstable, i. e., the criti-
cal points uλ,ε are not minimizers. These heuristic arguments for the turning
points are verified by a numerical pathfollowing.
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