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Abstract. The Verhults differential equation d
dt
N(t) = r N(t) (1−N(t)) and its lo-

gistic parabola difference equation counterpart xt+1 = αxt (1−xt) I(0,1)(xt), α ∈ [0, 4],
are tied to sustainable growth. We investigate the implications of considering 1−N(t),
the linear truncation of the MacLaurin expansion of − lnN(t), or N(t), the lin-
ear truncation of − ln(1 − N(t)), i.e. of curbing down either the retroaction factor
1 − N(t) or the growing factor N(t), which leads to Gumbel extreme value pop-
ulation for maxima or minima, respectively. More generally, we consider d

dt
N(t) =

r N(t) (− lnN(t))1+γ
∗

— or, alternatively, d
dt
N(t) = r (− ln(1−N(t)))1+γ

∗
(1−N(t))

—- and its difference equation counterpart. Simple extensions of the beta densities
arise naturally in this context, and we discuss a BetaBoop(p, q, P,Q), p, q, P,Q > 0
family of probability density functions, that for P = Q = 1 reduces to the usual
Beta(p, q) family.
Keywords: Population dynamics and chaos, extremal models, beta family.

1 Introduction

The rationale of the Verhulst population dynamics model

d

dt
N(t) = r N(t) (1−N(t)) (1)

is well-known: due to the malthusian reproduction rate r > 0, r N(t) im-
plies growth, but on the other hand the retroaction term −r N2(t) slows down
the growth impetus, and ultimately dominates, an action that is often inter-
preted in terms of sustainability. Hence the logistic solution of (1), N(t) =
1/(1 + e−rt) (normalized so that N(t) is a probability distribution function),
is often tied to the idea of sustainable population dynamics growth.

Using Euler’s algorithm, with an appropriate factor s, the equation (1) can
be rewritten as

N(t+ 1) = N(t) + sr N(t) (1−N(t)) ⇐⇒ xt+1 = αxt (1− xt) (2)
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where xt = sr N(t)/(sr + 1), α = 1 + sr; if α ∈ (0, 4), xt ∈ (0, 1) =⇒ xt+1 ∈
(0, 1).

Due to its connection to the logistic curve, αx (1 − x)I(0,1)(x) is some-
times referred to as logistic parabola. Observe that, with the notation Xp,q _
Beta(p, q), αx (1−x) I(0,1)(x) = α

6 fX2,2(x), where fX2,2(x) = 6x (1−x) I(0,1)(x)
is the probability density function of X2,2 _ Beta(2, 2).

The fact that Euler’s algorithm transforms the logistic differential equation
in the difference equation model xn+1 = αxn (1−xn) had an important impact
in the recognition that bifurcations, fractality, and ultimate chaos were indeed
important tools in modeling population dynamics, when the reproduction rate
r is explosive and sustainability fails.

As the Verhulst model is closely tied to the Beta(2, 2) probability den-
sity function, Aleixo et al. [1], [2], investigated the population dynamics of
its natural extensions tied to general Beta(p, q) models. Explicit solutions
of the differential equation d

dtN(t) = r Np−1(t) (1 − N(t))q−1 exist only for
some (p, q) other than (2, 2) — for instance, 4 ert/ (1 + ert)2 is the solution of
d
dtN(t) = r N(t)

√
1−N(t) — but using appropriate software (we used Math-

ematica 7) numerical approximations of the solutions of practical problems are
easily worked out.

As lnN(t) = −
∑∞
k=1 (1−N(t))k/k, the factor 1 − N(t) in (1) may be

looked at as the linear truncation of − lnN(t). In the differential equation

d

dt
N(t) = r N(t) (− lnN(t)), (3)

the retroaction factor − lnN(t) is much lighter than 1−N(t), and hence it is

not surprising that the solution of (3), N(t) = e−e
−rt

(once again normalized
to be a probability distribution function) is one of the extreme value laws for
maxima, namely the Gumbel law.

On the other hand ln(1 − N(t)) = −
∑∞
k=1N

k(t)/k, and considering that
the growing factor N(t) in (1) is the linear approximation of − ln(1 − N(t)),
we may regard (1) as an approximation of

d

dt
N(t) = r (− ln(1−N(t))) (1−N(t)) (4)

whose solution, once again normalized, is the Gumbel extreme value distribu-
tion for minima, N(t) = 1 − e−e

rt

, which makes sense since in this case we
curbed down the growing factor.

Pestana et al. [9] investigated d
dtN(t) = r N(t) (− lnN(t)) and its discretiza-

tion counterpart xt+1 = s r xt(− lnxt) in modeling extremal growth rate, as
observed in the dynamics of cancer cells populations.

The generalization

fp,Q(x) =
pQ

Γ(Q)
xp−1(− lnx)Q−1I(0,1)(x)

of the beta densities, has been introduced by Brilhante et al. [3]. In Section
2 we discuss the behavior of xt+1 = r xt(− lnxt) I(0,1)(x), the more general
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differential equation d
dtN(t) = r N(t) (− lnN(t))1+γ and its connection to ex-

treme value laws, as well as the behavior of xt+1 = s r xt(− lnxt)
1+ 1

γ I(0,1)(x).
In Section 3 we introduce a new extension of the beta densities, namely

fp,q,P,Q(x) = c xp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1I(0,1)(x), (5)

p, q, P,Q > 0, and a general discussion on modeling population dynamics via
differential equations/difference equations, questioning whether chaos is in fact
an appropriate framework in the description of evolution of populations.

2 Extreme value laws and population dynamics

As observed in Section 1, the Gumbel distribution function for maxima, N(t) =

e−e
−rt

, is a solution of the differential equation d
dtN(t) = r N(t) (− lnN(t)),

and the Gumbel distribution function for minima, N∗(t) = 1 − e−e
rt

, is a
solution of the differential equation d

dtN
∗(t) = r (− ln(1−N∗(t))) (1−N∗(t)).

We now consider difference equations closely tied to those differential equations,
i.e., we assume that there exists an appropriate c such that

N(t+ 1) = N(t) + cN(t) (− lnN(t))⇐⇒ N(t+ 1) = −cN(t) ln

(
N(t)

e
1
c

)
,

and we obtain the difference equation,

xt+1 = c xt (− lnxt), (6)

closely associated to (3). As long as xt ∈ (0, 1), if c ∈ (0, e) we also have
xt+1 ∈ (0, 1). The stationary solutions of (6) are xt+1 = xt = x0 with x0 = 0

or x0 = e−
1
c . In view of the stability criterion for the stationary solutions,∣∣c (− lnx − 1)
∣∣ < 1, and hence the stationary solution x0 = e−

1
c is stable for

0 < c < 2., cf. Fig. 1
Using in Mathematica 7 the output of the instructions

Clear[f, x]

f[c_][x_] := c x *(-Log[x]) // N

x[c_][n_] := x[c][n] = f[c][x[c][n - 1]] // N

x[c_][0] := 0 // N;

tb = Table[{c, x[c][n]}, {c, .1, Exp[1], .01}, {n, 1000, 1300}];

Short[tb]

as input for the instructions

tb2 = Flatten[tb, 1];

ListPlot[tb]

we obtain the graph in Fig. 2, exhibiting bifurcations for c ≥ 2, and ultimately
chaos, as expected from the observations above.
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Fig. 1. Left: 1.5xt (− lnxt); right: 2.5xt (− lnxt).
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Fig. 2. Bifurcation diagram, solving x = f(c, x) = c x (− lnx), c ∈ (0, e), using the
fixed point method.

As we have discussed previously, the Gumbel distribution for minimaN(t) =

1 − e−e
rt

is a solution for the differential equation d
dtN

∗(t) = r (− ln(1 −
N∗(t))) (1−N∗(t)), which is tied to the difference equation xt+1 = c(− ln(1−
N(t))) (1−N(t)). Fig. 3 is the simile of Fig. 2 for this case.

A more general situation involves the study of the differential equations

• d
dtN(t) = r N(t) (− lnN(t))1+

1
γ , whose solution for γ > 0 is (again in

standardized form) the Fréchet distribution function for maxima N(t) =

e−(
r
γ x)

−γ
I[0,∞)(t), and whose solution for γ < 0 is the Weibull distribution

function for maxima N(t) = e−(−
r
γ t)

γ

I(−∞,0)(t) + 1 I[0,∞)(t).
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Fig. 3. Bifurcation diagram, solving x = f(c, x) = c (− ln (1 − x)) (1 − x), c ∈ (0, e),
using the fixed point method.

• d
dtN(t) = r N(t) (− lnN(t))1+

1
γ , whose solution for γ > 0 is the Fréchet

distribution for minima, and for γ < 0 is the Weibull distribution function
for minima.

Fig. 4 and Fig. 5 illustrate the dynamical behavior when solving by the
fixed point method the difference equations closely associated to the above

differential equations, namely xt+1 = c xt (− lnxt)
1+ 1

γ for γ = 1 (Fréchet-1)
and γ = −2 (Weibull-0.5).

Remark 1. Considering the General Extreme V alue (GEV ) distribution for

maxima, Gγ∗(t) = e−(1+γ
∗t)−1/γ∗

, 1 + γ∗t > 0, it is obvious, from

(1 + γ∗t)−1/γ
∗−1 = ((1 + γ∗t)−1/γ

∗
)

1/γ∗+1
1/γ∗ = (− lnGγ∗(t))1+γ

∗
, that Gγ∗

satisfies the differential equation

d

dt
Gγ(t) = Gγ(t) (− lnGγ(t))1+

1
γ , γ =

1

γ∗
.

In the GEV representation, a shape parameter γ∗ > 0 corresponds to the
Fréchet- 1

γ∗ , γ∗ < 0 corresponds to the Weibull- 1
|γ∗| , and γ∗ → 0 corresponds

to the Gumbel.
The similarity of

d

dt
N(t) = r N(t) (− lnN(t))1+

1
γ

and
d

dt
N(t) = r (− ln(1−N(t)))1+

1
γ (1−N(t))

comes from the fact that stable distributions G for maxima (either Gumbel, or
Fréchet or Weibull) and the corresponding stable distributions G∗ for minima
are tied through the relationship G∗(x) = 1−G(−x).
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Fig. 4. Bifurcation diagram, solving x = f(c, x) = c x (− lnx)2 using the fixed point
method.
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Fig. 5. Bifurcation diagram, solving x = f(c, x) = c x (− lnx)0.5 using the fixed point
method.

3 The BetaBoop family

Brilhante et al. [3] extensively studied the family of probability density func-
tions

fp,Q(x) =
pQ

Γ (Q)
xp−1(− ln x)Q−1 I(0,1)(x),

p,Q > 0, and their relevance in population studies.
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Denote Xp,Q _ Betinha(p,Q), p,Q > 0, the random variable whose prob-
ability density function is fp,Q, given above.

In fact, 4x (− lnx) I(0,1)(x), tied to the Gumbel model, is the case p = Q = 2
in this family, just as 6x (1− x) I(0,1)(x), tied to the logistic parabola and the
Verhulst population model, is the case p = q = 2 of the Beta(p, q) family of
probability density functions, whose dynamical behavior has been studied in
depth in Aleixo et al. [1], [2], and references therein. This new family provides
difference models whose associated differential models have as solution, among
others, the stable distributions for maxima.

In the previous section we have seen that the probability density function
of random variables YP,q = 1 − Xq,P , with q = 2, are connected to difference
equations associated to differentail equations having as solutions the stable
distributions for minima.

In fact, in view of Hölder’s inequality, the function

xp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1 I(0,1)(x)

is integrable for every p, q, P,Q > 0, and hence there exists c ∈ (0,∞) such
that fp,q,P,Q, in (5), is a probability density function. We denote the cor-
responding random variable Xp,q,P,Q _ BetaBoop(p, q, P,Q). Observe that
BetaBoop(p, q, 1, 1) is the same as Beta(p, q), and BetaBoop(p, 1, P, 1) is the
same as Betinha(p, P ).

Betty Boop brought in chaos to the American Board of Censorship — sorry,
we were dreaming of Betty Boop and Jessica Rabbit, and what we really meant
to say is BetaBoop(p, q, P,Q) brings in chaos, in the sense that the fixed point
solution of equations of the type

x = c xp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1

exhibit all the problems first encountered in the numerical solution of the case
p = q = 2, P = Q = 1. In Fig. 6 we illustrate this for p = q = P = Q = 1.5,
and in Fig. 7 for p = q = 1, P = Q = 3.

In fact, many other generalizations of the logistic parabola
fc(x) = cx(1 − x) I(0,1)(x) are potentially interesting in modeling popu-

lation dynamics, as far as they reflect recognizable characteristics. For in-
stance, the linear truncation of e−x ≈ (1 − x) shows that c x e−x I(0,1)(x) ≈
c∗ x (1 − x) I(0,1)(x). In Fig. 8 we represent the bifurcation diagram corre-
sponding to the difference equation xt+1 = c x e−x, modeling extremely slow
growth.

Tsoularis, [10], in his overview of extensions of the logistic growth model,
describes a hyper-Gompertz class, introduced by Turner et al., [11], which is a
subclass of the BetaBoop family. Our approach, using retroaction factor func-
tions whose linearization is (1−x) (such as − ln x or e−x) and/or growing factor
functions for which x is the linear truncation (such as − ln(1− x)), leads to a
wider class of growth models. Knowledge of the biological population dynam-
ics may serve as an educated guess guideline to choose appropriate growth and
retroaction factors, and as a basis to choose among competing growth models.
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Fig. 6. Bifurcation diagram, solving x = f(c, x) = c(x(1− x)(− ln(1− x))(− lnx))0.5

using the fixed point method.
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Fig. 7. Bifurcation diagram, solving x = f(c, x) = c((− lnx (− ln(1− x)))2 using the
fixed point method.
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Fig. 8. Bifurcation diagram, solving x = f(c, x) = c x e−x using the fixed point
method.

4 Avoiding Chaos and a Class of New Non-Stable
Extreme Value Laws

Finally, let us remark that there are grounds to argue that the chaos map
(
for

instance xt+1 = c xt (− lnxt)
)

is not an appropriate discrete equivalent of the

original differential equation — for that example, d
dtN(t) = r N(t) (− lnN(t))

—, inasmuch as the chaos map implies bifurcations and ultimately chaos, in-
existent in the original differential equation.

An interesting point is that if we consider that the retroaction acts at time
t+1, we obtain a difference equation xt+1 = c xt (− lnxt+1), that has the same
stationary solutions as the chaos map xt+1 = c xt (− lnxt), but does not exhibit
bifurcation and chaos. In fact, from xt+1 = c xt (− lnxt+1) we get a solution
fc(x) = cxW

(
1
cx

)
, where W () is the Logarithmic Product function, a function

taking on real values for x > −0.5.
Fig. 9 below shows that cxW

(
1
cx

)
I(0,∞)(x) is a distribution function, that

may serve as a non-stable extreme value law, but that definitively is not a good
approximation to the Gumbel distribution. (We used c = 2, and computed the
Gumbel scale parameter 0.52688, so that the the lines cross at the 0.9 quantile.)

This is patently a rather poor approximation, even for quite large values.
In fact, investigating this approximation has been motivated solely from the
fact that this is a non-chaotic solution of a modified difference equation ap-
proximation to the differential equation whose solution is the Gompertz curve,
i.e. the Gumbel distribution, when properly normalized.

In fact

lim
x→∞

1− ctxW (1/(ctx))

1− cxW (1/(cx))
= t−1,

showing that this new law is in the domain of attraction of the Fréchet with
shape parameter 1, whatever the value c > 0.

Fig. 10, comparing the distribution function 2xW
(

1
2x

)
I(0,∞)(x) and the

Fréchet distribution e−
0.44995

x I(0,∞)(x), shows that this approximation is quite
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Fig. 9. 2xW
(

1
2x

)
I(−0,∞)(x) (solid line) approximation of e−e−0.52688 x

(dashed line).

good. Once again, the scale parameter of the Fréchet distribution has been
chosen so that the lines cross at the common 0.9 quantile.
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Fig. 10. 2xW
(

1
2x

)
I(−0,∞)(x) (solid line) approximation of e−

0.44995
x I(0,∞)(x)

(dashed line).

Below, in Fig. 11, we plot the second derivative of 2xW
(

1
2x

)
I(−0,∞)(x).

Observe that Mejzler [4], [5], [6], [7], [8] developed an interesting M-class of
“self-decomposable” extreme value laws that arise as limit of suitably consis-
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tent sequences of independent — but not necessarily identically distributed —
random variables, that is in the extreme values scheme a simile of Khinchine’s
L-class in the asymptotic additive theory. Mejzler’s characterization is done in
terms of log concavity.
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Fig. 11. Log-concavity of 2xW
(

1
2x

)
I(−0,∞)(x).
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