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Abstract. Natural convection flows arising from a horizontal cylinder centred in
a square-sectioned enclosure are studied numerically. The sequence of bifurcations
marking the transition of base fixed-point solutions to unsteady, chaotic flows is fol-
lowed for increasing values of the Rayleigh number, and for two values of the enclosure
aspect ratio, A. It is observed that, for the lower A-value, the route to chaos is trig-
gered by a supercritical Hopf bifurcation, followed by a sequence of period-doublings,
while, for the higher A-value, the symmetry of the system is broken by a pitchfork
bifurcation, with periodic orbits originating from both branches, and eventually ap-
proaching chaos, exhibiting features typical of blue-sky catastrophes.
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1 Introduction

Buoyancy-induced flows in enclosures are very complex in nature, and highly
unpredictable, due to the bi-directional interaction between the flow and tem-
perature fields, and the sensitivity of the thermal-flow regimes to the geometric
and thermal configuration of the system.

The importance of bifurcations and chaos in buoyancy-induced flows as
a research topic goes far beyond the field of thermal sciences. In fact, it is
deeply entwined with the history of chaos theory, since the discovery of the
renown Lorenz attractor, originating from a simplified Rayleigh-Bénard con-
vection model [1]. From that seminal study, many works have been carried
out on the non-linear dynamics of thermal convection in basic enclosure con-
figurations, such as the rectangular enclosures heated from below and from
the side [2,3], and, more recently, the horizontal annulus between two coaxial
cylinders [4]. Fewer works dealt with more complex geometrical and thermal
configurations [5,6]. Nevertheless, from a theoretical and practical standpoint,
the interest in this topic is growing continuously.
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The physical system considered in the present study is the cavity formed
by an infinite square parallelepiped with a centrally placed cylindrical heat-
ing source. The system is approximated to its 2D transversal square section
containing a circular heat source, as sketched in Fig. 1. The temperature of
both enclosure and cylinder is assumed as uniform, the cylindrical surface be-
ing hotter than the cavity walls. The resulting flow is investigated with respect
to the leading parameter of the non-dimensionalized problem, the Rayleigh
number Ra, based on the gap width H, and for two values of the aspect ra-
tio A = L/H, between the cavity side length and the minimum enclosure to
cylinder gap width, namely A = 2.5 and A = 5. The third parameter of the
system, the Prandtl number, is fixed at a value Pr = 0.7, representative of air
at environmental conditions.

Fig. 1. Left: schematic of the system under consideration; (×) symbols indicate
locations of the sampling points. Right: quadrant of the computational grid for
A = 2.5.

Numerical predictions are carried out by means of a specifically developed
finite-volume code. Successive bifurcations of the low-Ra fixed point solu-
tion are followed for increasing Ra. To this aim, time series of the dependent
variables (velocity components and temperature), are extracted in 5 locations
represented in Fig. 1 by points P1 to P5. Nonlinear dynamical features are
described by means of phase-space representations, power spectra of the com-
puted time series, and of Poincaré maps.

2 Numerical method

The problem is stated in terms of the incompressible Navier-Stokes formulation,
under the Boussinesq approximation. The governing equations (continuity,
momentum and energy) are tackled in their non-dimensional form:
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∇ · u = 0 (1)

∂u

∂t
+ u · ∇u = −∇p +

Pr1/2

Ra1/2
∇2u + T ĝ (2)

∂T

∂t
+ u · ∇T =

1

(RaPr)1/2
∇2T (3)

where t, u, p and T represent the dimensionless time, velocity vector, pressure
and temperature, respectively, and ĝ is the gravity unit vector. A value Pr =
0.7 is assumed for air. Boundary conditions for T and u are reported in Figure
1.

The numerical technique adopted is based on a second-order, Finite Volume
implementation of equations (1)-(3) on non-uniform Cartesian grids: a more
detailed description of the spatial and temporal discretization schemes is found
in [7]. The 2D modelling of arbitrarily irregular boundaries on Cartesian grids
is achieved thanks to the original scheme developed by Barozzi et al. [8], which
preserves second-order accuracy for the method, as well as the computational
efficiency of the Cartesian approach.

In view of the work objectives, special care was put on the grid sizing of
both near-wall areas and internal domain regions, as shown in Fig. 1. The
average cell spacing in each region was chosen according to scaling considera-
tions, as illustrated in [6]. The time step size has been chosen small enough
so as to ensure a suitably accurate reproduction of the continuous-time system
dynamics.

For either A-value, the initial conditions were chosen so as to follow the
evolution of low-Ra base-flow, fixed-point solutions [7]. In order to detect
the occurrence of successive bifurcations, Ra was increased monotonically with
suitable steps, each simulation starting from the final frame of the preceeding
one. All the simulations were protracted to steady-state or, when unsteady
flows were detected, until a fixed dimensionless time span was covered.

A = 2.5 (190× 190 grid) A = 5 (288× 288 grid)

Ra Bifurcation Ra Bifurcation

4× 104 S (base flow) 1.8× 104 S (base flow)

6.6 ∼ 6.8× 104 S → P1 (supercritical Hopf) 3.2 ∼ 3.4× 104 S → NS (pitchfork)

1.7 ∼ 1.8× 105 P1 → P2 (period-doubling) 6.0 ∼ 7.0× 104 NS → P (Hopf)

1.8 ∼ 1.9× 105 P2 → P4 (period-doubling) 6.0 ∼ 7.0× 105 P → N (Blue-sky

1.9 ∼ 2.0× 105 P4 → . . .→ N catastrophe)

Table 1. Bifurcations of the low-Ra base flow solution for each A.
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3 Results and discussion

Table 2 summarizes the sequences of bifurcations leading to chaos for both
values of the aspect ratio A. The nomenclature used in defining the different
types of asymptotic behaviours follows the systematic introduced by Angeli et
al. [4]. In the following, details of both routes are briefly illustrated by means
of established nonlinear analysis tools.

For A = 2.5, starting from the base solution at Ra = 4 · 104, the system
asymptotically reaches a fixed-point for Ra ≤ 6.6 × 104. As Ra is increased
from Ra = 6.6 × 104 to Ra = 6.8 × 104, oscillatory behaviour sets in, until a
periodic limit cycle is reached. In Fig. 2, 2D projections of the corresponding
T -ux-uy attractors are plotted as a function of Ra. The passage from the
lower-Ra fixed-point solution to the periodic orbit is clearly portrayed, thus
suggesting the occurrence of a Supercritical Hopf bifurcation.

Fig. 2. Sequence of 2D attractors uy-T at point P2, for A = 2.5 and for increasing
Ra.

Fig. 3 reports the power spectral density distribution of the temperature
time series at point P1 for the case A = 2.5 and for increasing values of the
Rayleigh number. The values of Ra have been chosen with the aim of showing
the occurrence of a period doubling route to chaos which characterises the
evolution of the system dynamics for the mentioned aspect ratio. In fact, it is
possible to observe that the two original fundamental harmonics observed in
the power spectrum of temperature at Ra = 1.7 × 105 become four for Ra =
1.8×105 and double again for Ra = 1.9×105; the last case, at Ra = 2.0×105,
is instead characterised by a broadband power spectrum, which represents a
first hint of chaotic dynamics, with the broadened bands arising around the
original harmonics of the previous cases.
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Ra = 1.7× 105 Ra = 1.8× 105

Ra = 1.9× 105 Ra = 2.0× 105

Fig. 3. Power spectral density of T at point P1, for A = 2.5 and for increasing Ra

This observation is confirmed by the analysis of the system attractors re-
ported in the T -ux-uy state space, as reported in Fig. 4. Considering that each
of the fundamental harmonics observed in the power spectrum corresponds to
a loop of the attractor in the phase space representation, it is possible to ob-
serve that the original two-loop limit cycle at Ra = 1.7 × 105 gives rise to a
four-loop limit cycle at Ra = 1.8 × 105, which, in turn, is doubled again in a
eight-loop limit cycle at Ra = 1.9 × 105. Finally, for the last of the reported
values of Ra, Ra = 2.0× 105, in accordance with previous observations on the
power spectrum, the attractor shows a chaotic morphology, with fractal bands
distributed around the loops of the original limit cycles.

Fig. 4 reports also the intersections of the 3-dimensional attractors with
Poincaré surfaces of section that have been obtained considering the plane
ux-T passing by the mean values of the calculated time series of the state
variable uy. Such intersections have been reported in the maps in Fig. 5. It is
observed that a couple of intersections arises for each loop of the limit cycle.
Again, the successive period doublings can be observed by spanning the maps at
Ra = 1.7×105 to Ra = 1.8×105 and, then, to Ra = 1.9×105, whereas ordered
series of intersections, typical of deterministic chaotic dynamics, characterise
the Poincaré map at Ra = 2.0 × 105. For brevity, it is just mentioned here
that an accurate observation of the local structure of such series of intersections
reveals the stretching and folding typical of fractal sets.
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Ra = 1.7× 105 Ra = 1.8× 105

Ra = 1.9× 105 Ra = 2.0× 105

Fig. 4. 3D attractor in state space T -ux-uy at point P1, for A = 2.5 and for increasing
Ra

For the higher value of the aspect ratio A considered, A = 5, the system
undergoes a different sequence of bifurcations leading to chaos. Fig. 6(a) repre-
sents the evolution of the T -uy attractors at point P2 as a function of Ra. As Ra
is increased beyond Ra = 3.2× 104, the base flow becomes unstable, and gives
rise to two different solution branches, suggesting the occurrence of a pitchfork
bifurcation (whose sub- or supercritical nature is still to be ascertained). The
two solution branches correspond to stable mirrored dual solutions [6].

By further increasing Ra, each of the two solution branches undergo a Hopf
bifurcation to a periodic limit cycle, as clearly visible in Fig. 6(a). Such
transition occurs between Ra = 6 × 104 and Ra = 7 × 104. The periodic
orbits remain stable for a wide range of Ra-values, up to Ra = 6× 105. From
Fig. 6(b), a progressive increase of the period of the limit cycle, i.e. of the
loop extension can be appreciated. This trend eventually leads to the chaotic
attractor reported in Fig. 6(c), for Ra = 7× 105, in a general evolution which
seems to belong to the class of blue-sky catastrophes [9]. Such an observation
deserves further analyses which, however, are beyond the scope of the present
study.
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Ra = 1.7× 105 Ra = 1.8× 105 Ra = 1.9× 105 Ra = 2.0× 105

Fig. 5. Poincaré surfaces of section of the 3D attractors at point P1, for A = 2.5 and
for increasing Ra

4 Concluding remarks

Natural convection flows arising from a horizontal cylindrical source centred
in a square enclosure were investigated numerically. Two values of the aspect
ratio A were considered; for which the entire scenario leading to deterministic
chaos was outlined, for increasing values of the Rayleigh number.

For the lower A-value, A = 2.5, the flow undergoes a Hopf bifurcation,
followed by a sequence of period-doublings. For the higher A-value, A = 5, a
pitchfork bifurcation gives rise to stable periodic orbits, persisting for a large
range of Ra-values. Chaotic behaviour is finally observed, on top of an evolution
which resembles a blue-sky catastrophe.

Fig. 6. (a) Sequence of 2D attractors T -uy at point P2, for A = 5 and for increasing
Ra; (b) 3D periodic orbits in state space T -ux-uy at point P1, for A = 5 and for
increasing Ra; (c) chaotic attractor at point P1, for A = 5 and Ra = 7× 105.
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