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Abstract. The iterative procedure of removing “almost everything” from a triangle
ultimately leading to the Sierpinski’s gasket S is well-known. But what is in fact left
when almost everything has been taken out? Using the Sir Pinski’s game described
by Schroeder [4], we identify two dual sets of invariant points in this exquisite game,
and from these we identify points left over in Sierpinski gasket. Our discussion also
shows that the chaos game does not generate the Sierpinski gasket. It generates an
approximation or, at most, a subset of S.
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1 Introduction

Let T be a triangle with vertices A,B,C, and denote a, b, c the corresponding
opposite sides.

The first step of the classical iterative construction of the Sierpinski gasket
is to remove the middle trianle M1 with vertices A′, B′, C ′, the middle points
of a, b, c, respectively. In this first step we obtain

S1 = T −M1 = T1 ∪R1 ∪ L1,

where T1 is the ‘top triangle’, R1 is the ‘right triangle’, and L1 is the ‘left
triangle’. Observe that T1, R1 and L1 are similar to T .

In the second step we repeat the above procedure, removing M2,T1 in T1,
removing M2,R1 in R1, and removing M2,L1 in L1. With the notation M2 =
M2,T1

∪M2,R1
∪M2,L1

, in this second step we obtain

S2 = S1 −M2 = T − (M1 ∪M2).

S2 is the union of 32 triangles similar to T . Each of them is easily identified

using self-explanatory notations such as
−−−→
T1R2.
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A similar procedure is indefinitely repeated: in step k we obtain Sk by
removing the middle triangles from each of the 3k−1 triangles whose union is
Sk−1; we denote Mk the union of the middle triangles removed from Sk−1 to
obtain Sk.

Notations such as
−−−−−−−−→
R1T2T3L4T5 indicate in S5 that we are considering the

triangle obtained when in the 1st, 2nd, 3rd, 4th and 5th steps we go respectively
to the right, to the top, to the top, to the left and to the top triangles of the
one obtained in the previous step.

The Sierpinski gasket is

S = lim
k→∞

Sk =

∞⋂
k=1

Sk.

From Banach’s contractive mapping fixed point theorem it follows that the
Sierpinski gasket

S = T −
∞⋃
k=1

Mk = ψA(S) ∪ ψB(S) ∪ ψC(S),

where ψA(·) is the dilation of ratio 1/2 towards the top vertex A, ψB(·) is the
dilation of ratio r = 1/2 towards the left vertex B, and ψC(·) is the dilation
of ratio 1/2 towards the right vertex C. In other words, S is the unique
non-empty fixed point of the corresponding Hutchinson [2] operator ψ, where
ψ(A) = ψA(A) ∪ ψB(A) ∪ ψC(A), i.e. ψ(A) = A if and only if A = S.

Thus, the use of the contracting ratio r = 1/2 or of the doubling scale factor
s = 1/r = 2 can provide some structural information on the Sierpinski gasket.

1.1 The Sir Pinski Game

Let T be a triangle. A player chooses a point P0 inside the triangle. Sir Pinski
game consists of iteratively jumping to the points {P1, P2, . . . }, where Pk+1

doubles the distance of Pk to its nearest vertex. The player looses at step n if
P0, P1, P2, . . . , Pn−1 ∈ T and Pn /∈ T .

It is obvious thatM1 is the set of loosing points at step 1,M2 is the set of
loosing points at step 2, and in generalMk is the set of loosing points at step k.
Loosing points are illustrated in Figure 1, that also clarifies the connection of
loosing points at step k with middle triangles removed at step k in the classical
iterative construction of the Sierpinski gasket.

Schroeder [4] characterizes Sierpinski’s gasket as the set of winning points
S = T −

⋃∞
k=1Mk of Sir Pinski game.

In other words, the Sierpinski points S ∈ S can be characterized as the set
of points S ∈ T such that S+A

2 , S+B2 , S+C2 ,∈ S. So, starting from whatever
point P ∈ T , iteratively jumping for a point halving the distance to any of the
vertices of the triangle T creates an infinite sequence of points in a straight
line that ultimately converges to the vertex considered. Observe however that

• if P ∈ S, all the iterates are Sierpinski points; but, on the other hand,
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Fig. 1. Loosing points at steps 2 (left), 3 (center) and 4 (right).

• if P /∈ S, none of the iterates is a Sierpinski point.

In fact, the halving contractions ψi generate points that are nearer and
nearer to Sierpinski points, but as the Sir Pinski game clearly shows, doubling
the distance towards the nearest vertex ultimately leaves T unless the starting
point is itself a Sierpinski point.

Observe that iteratively halving (or, alternatively, doubling) the distance to
a fixed vertex of the triangle T creates an infinite sequence of colinear points.
Hence we need some rule to use in turn, either deterministically or randomly,
the different vertices in order to approximate the Sierpinski gasket S. Sir
Pinski game uses the deterministic rule: take the nearest vertex to the starting
point/iterate, and double the distance. If the starting point is a Sierpinski
point, this deterministic rule implies that we are not using a fixed vertex, and
hence colinearity is broken up.

1.2 The Chaos Game

Barnsley [1] devised a chaos game, using randomness to generate subsets of the
three sets ψA(T ), ψB(T ), ψC(T ): pick a starting point P0, and generate iterates
{P1, P2, . . . }, such that Pk is the midpoint of the segment whose endpoints are
Pk−1 and one of the vertices vL = B, vR = C, vT = A of T , randomly chosen
using the discrete uniform law

X =

{
vL vR vT
1/3 1/3 1/3 .

This chaos game is generally presented as a device to generate the Sierpin-
ski gasket S, but in view of the above observations it produces in general an
approximation of the Sierpinski gasket, since in general P0 /∈ S. Observe also
that even starting from a Sierpinski point, what we obtain is a subset of the
Sierpinski gasket — for example, choosing P0 as the top vertex of the equilat-
eral triangle, as in [3], page 306, will generate as iterates only vertex points
of the triangles left out when middle triangles are removed, in the classical
deterministic iterative construction of S. This issue will be discussed later in
further detail.
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2 Invariant Sets of Points in the Sir Pinski Game and
the Sierpinski Gasket

As seen in the introduction, the points S ∈ S are easily described using the
concept of self-similarity and its far-reaching consequences.

Using translation and rotation, if needed, we assume that the vertices of
T are v

L
= (0, 0), v

R
= (a, 0), a > 0, and v

T
= (c, d), d > 0. Different

characterizations of the Sierpinski set arise with different choices of a, c, d.

If T is the triangle with vertices v
L

= (0, 0), v
R

= (1, 0), and v
T

= (0, 1)
its Sierpinski points are, in dyadic notation, s = (x, 1 − x), i.e. if the abcissa
is x = 0.ν1ν2ν3 · · · , the k-th digit of the ordinate is 1 − νk — for instance,
s = (0.11001011101 . . . , 0.00110100010 . . . ), cf. Peitgen et al. [3], p. 173.

Let T be the equilateral triangle with unit height, vertices v
L

= (0, 0), v
R

=
(2
√

3 /3, 0), and v
T

= (
√

3 /3, 1). Schroeder [4], pp. 22–24, used a sophisti-
cated redundant three-coordinates points affixation to show that the Sierpinski
points are those with coordinates (in dyadic expansion) x = 0.a1a2a3 · · · , y =
0.b1b2b3 · · · , z = 0.c1c2c3 · · · , such that (ak, bk, ck) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ,
k = 1, 2, . . .

For our purposes it is more convenient to consider that T is the equilateral
triangle with unit sides, with top vertex A = (1/2,

√
3 /2), left vertex B =

(0, 0), and right vertex C = (1, 0). Project A in the point A′ = (1/3, 0), B in
B′ = (5/6,

√
3 /6), and C in C ′ = (1/3,

√
3 /3).

We claim that the points

• V1 = (3/7, 2
√

3 /7), intersection of AA′ with CC ′,

• V2 = (5/14,
√

3 /14), intersection of AA′ with BB′, and

• V3 = (5/7,
√

3 /7), intersection of BB′ with CC ′,

are Sierpinski points, cf. Figure 2.
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Fig. 2. Period-3 invariant Sir Pinski {V1, V2, V3} attractor.
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In fact, V1 is the midpoint of AV2, V2 is the midpoint of BV3, V3 is the
midpoint of CV1, and therefore those points are winning points in the Sir Pinski
game, i.e. {V1, V2, V3} is an invariant cycle-3 attractor of Sierpinski points.

Project A in the point A′′ = (2/3, 0), B in B′′ = (2/3,
√

3 /3), and C in
C ′′ = (1/6,

√
3 /6). Obviously, intersecting AA′′ with BB′′ we obtain W1 =

(4/7, 2
√

3 /7), intersecting AA′′ with CC ′′ we obtainW2 = (9/14,
√

3 /14
)
, and

intersecting BB′′ with CC ′′ we obtain W3 = (2/7,
√

3 /7). As it happens with
{V1, V2, V3}, for similar reasons, {W1,W2,W3} is an invariant cycle-3 attractor
of Sierpinski points, cf. Figure 3.
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Fig. 3. Period-3 {V1, V2, V3} and {W1,W2,W3} invariant Sir Pinski points attractors.
{A}, {B} and {C} are invariant in Sir Pinski game; {A′, A′′}, {B′, B′′} and {C′, C′′}
are period-2 invariant sets in Sir Pinski game.

Remark 1. If we re-scale multiplying by 2/
√

3 in order to have unit heights
(i.e., each vertex is at distance 1 from the opposite side), the ordinates of the
transformed V ∗1 and W ∗1 become 4/7, the ordinates of the transformed V ∗2 and
W ∗2 become 1/7, and the ordinates of the transformed V ∗3 and W ∗3 become 2/7.

Hence, if we adhere to Schroeder [4] three-coordinates system (x, y, z),
where x is the distance from the bottom side, y the distance from the left
side, and z the distance from the right side, we see that the period-3 invariant
points must have x-coordinate 4/7, 1/7 or 2/7.

From the (2π/3)-rotational symmetry of T , it follows that in Schroeder’s
three coordinates system

V ∗1 = (4/7, 1/7, 2/7), V ∗2 = (1/7, 2/7, 4/7), V ∗3 = (2/7, 4/7, 1/7), W ∗1 =
(4/7, 2/7, 1/7), W ∗2 = (1/7, 4/7, 2/7), and W ∗3 = (2/7, 1/7, 4/7). ut

Remark 2. The points V1, V2, V3,W1,W2,W3 lie on a circumference of radius√
21 /21 centered at the barycenter (1/2,

√
3 /6) of T . ut
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Remark 3. Each vertex of T is invariant in Sir Pinski game. Hence A,B,C ∈ S.
On the other hand, in Sir Pinski game, the image of A′ is A′′ and vice-versa,
i.e. {A′, A′′} is a period-2 invariant set, and the same holds for {B′, B′′} and
{C ′, C ′′}. V = {V1, V2, V3} and W = {W1,W2,W3} are period-3 invariant sets
(attractors) in Sir Pinski game.

Higher order periodic invariant sets do exist. For instance, using conditions

(a−1/2)2+(b−
√

3/2
)2

= 4[(2a−1/2)2+(2b−
√

3/2)2] and (2b−
√

3 /2)/(2a− 1/2) =

(
√

3 /2− b)/(a− 1/2) on the set of points {(a, b), (2a, 2b), (1− a, b), (1− 2a, 2b)},
so that (a, b) = (0.3, 0.288675), we obtain the period-4 invariant set {(0.3, 0.288675),
(0.6, 0.636194), (0.7, 0.288675), (0.4, 0.636194)}, cf. Figure 4.

A

B C

(0.4, 0.636194) (0.6, 0.636194)

(0.3, 0.288675) (0.7, 0.288675)

Fig. 4. A period-4 invariant Sir Pinski set.

Using the (2π/3)-rotational symmetry of T , two other period-4 invariant
sets are readily obtained.

More complex conditions may be used to generate other periodicity invari-
ant sets. ut

Now we perform the same construction in the T1 (Top), L1 (Left) and R1

(Right) triangles remaining once the middle triangle of T is removed in step 1
of the classical construction of the Sierpinski gasket, obtaining 2×32 points —
32 V s and 32 W s — , as shown in Figure 5. With the self-explaining address-
ing and notations V

i,
−→
L1
,W

i,
−→
L1
, i = 1, 2, 3, it is obvious that V

i,
−→
L1

= 1
2 Vi and

W
i,
−→
L1

= 1
2 Wi — for instance, V

2,
−→
L1

= (5/28,
√

3 /28), V
1,
−→
L1

= (4/14, 2
√

3 /14).

Analogously, the corresponding points in the Right triangle R1 are V
i,
−→
R1

=

(1/2, 0)+ 1
2 Vi and W

i,
−→
R1

= (1/2, 0)+ 1
2 Wi, and the corresponding points in the

Top triangle T1 are V
i,
−→
T1

= (1/4,
√

3 /4)+ 1
2 Vi and W

i,
−→
T1

= (1/4,
√

3 /4)+ 1
2 Wi.

For instance, V
1,
−→
T1

= (13/28, 11
√

3 /28).

The 32 V points in this second stage of the construction are, following the
above algorithm, (3/14,

√
3 /7), (5/7,

√
3 /7), (13/28, 11

√
3 /28), (5/28,

√
3 /28),

(19/28,
√

3 /28), (3/7, 2
√

3 /7), (5/14,
√

3 /14), (6/7,
√

3 /14), (1/28, 9
√

3 /28)
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Fig. 5. More Sierpinski points, in T1, in L1 and in R1.

— exactly the 9 points we obtain when we compute the middle point of the seg-
ments joining each of the (3/7, 2

√
3 /7), (5/14,

√
3 /14), (5/7,

√
3 /7) V points

from stage one of the construction with each of the three vertices of T . Similar
results hold in what concerns W points.

Continuing the procedure, in step 3 of the iterative construction of Sier-
pinski’s gasket we obtain 2× 33 points as shown in Fig. 6. (We have included
some extra segments connecting points to make clear that in Sir Pinski game
whatever the initial V point [respectively, W point], in a few steps we shall
land in the attractor V = {V1, V2, V3} [respectively, in W = {W1,W2,W3}].)

A

B C

Fig. 6. More Sierpinski points, in T1, in L1 and in R1.
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Once again the coordinates of any V or W point are easy to compute. For
instance W

1,
−−−→
L1T2

= (1/8,
√

3 /8)+(1/2)2× (4/7, 2
√

3 /7) = (9/56, 11
√

3 /56),

since the left vertex of the triangle whose address is
−−−→
L1T2 is (1/8,

√
3 /8).

Using the same line of reasoning, the V
i,
−−−−−→
R1T2R3

points of
−−−−−→
R1T2R3 have co-

ordinates (3/4,
√

3 /8) + (1/2)3 Vi, the W
i,
−−−−−−−→
R1L2T3T4

points of
−−−−−−−→
R1L2T3T4 have

coordinates (13/16, (13/16)(
√

3 /2)) + (1/2)4Wi. More generally,
• in step n, the coordinates of the original V s and W s are scaled by a factor

(1/2)n;
• the address determines the left vertex of the triangle: a

−→
Lk does not affect

neither the abcissa nor the ordinate, a
−→
Rk shifts the left corner (1/2)k

and does not affect the ordinate, and a
−→
Tk adds (1/4)k to the abcissa and

(1/2)k
√

3 /2 to the ordinate.

For instance, the left corner of
−−−−−−−−−−−→
T1L2L3R4R5T6 is (1/4 + (1/2)4 + (1/2)5 +

(1/4)6, (1/2 + (1/2)6) (
√

3 /2)) = (1409/4096, 33
√

3 /128). Hence, the Sierpin-
ski point W

3,
−−−−−−−−−−−→
T1L2L3R4R5T6

is (1409/4096, 33
√

3 /128) + (1/2)6(2/7,
√

3 /7) =

(10119/28672, 233
√

3 /896).

Remark 4. Suppose that in the k-th step of the iterative deterministic con-
struction of the Sierpinski gasket we focus our attention in one of the remaining

triangles, for instance
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk.

• The midpoints of the segments whose endpoints are the vertex A and the

points of
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk are the points of

−−−−−−−−−−−−−−−→
T1T2R3R4T5 · · ·Lk+1.

• The midpoints of the segments whose endpoints are the vertex B and the

points of
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk are the points of

−−−−−−−−−−−−−−−→
L1T2R3R4T5 · · ·Lk+1.

• The midpoints of the segments whose endpoints are the vertex C and the

points of
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk are the points of

−−−−−−−−−−−−−−−−→
R1T2R3R4T5 · · ·Lk+1.

Hence, the chaos game transforms the V points [respectively, the W points] of
−−−−−−−−−−−−→
T1R2R3T4 · · ·Lk in V points [respectively, W points] of either

−−−−−−−−−−−−−−−→
T1T2R3R4T5 · · ·Lk+1,

or
−−−−−−−−−−−−−−−→
L1T2R3R4T5 · · ·Lk+1 or

−−−−−−−−−−−−−−−−→
R1T2R3R4T5 · · ·Lk+1. ut

It seems useless to elaborate more on this matter to conclude that:

• In the k-th step of the classical construction of the Sierpinski gasket we
may explicitly compute the coordinates of 3 V points and of 3 W points in
each remaining triangle.

• The midpoint of any V point [respectively, W point] and any vertex of T
is a V point [respectively, a W point]. In other words, in the chaos game
the set of V points and the set of W points do not communicate.

• In Sir Pinski game, a V starting point generates iterates that ultimately
will land in V, and a W starting point generates iterates that ultimately
will land in W. Hence all V and W points are winning points of the Sir
Pinski game, i.e. they lie in S. We say that V points [respectively, W
points] are in the attraction domain of V [respectively, of W], or that V
and W are invariant periodicity-3 attractors in Sir Pinski game.

Remark 5. We also observe that subsets of 3 V points and 3 W points lie in
circumferences centered at the barycenter of T , cf. Fig. 7. ut
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CB

Fig. 7. A consequence of the 2π
3

-rotational symmetry of S

3 Concluding Remarks

3.1 The Chaos Game Does Not Generate the Sierpinski Gasket

Under the heading “Randomness Creates Deterministic Shapes”, Peitgen et al.
[3], p. 299, raise some interesting questions. The discussion in the previous
section patently shows that the chaos game does not generate the Sierpinski
gasket.

More precisely, if the starting point P0 is not a Sierpinski point, its de-
scendants are not Sierpinski points, and eventually some of them computed in
the initial steps are clearly spurious specks observed upon close scrutiny of the
images. The set looks like the Sierpinski gasket, because the composition of
contractions creates something that is very close to the Sierpinski gasket, but
its intersection with the Sierpinski gasket S is void.

On the other hand, our discussion shows that sets generated by the chaos
game starting with a Sierpinski V point and with a Sierpinski W point are
disjoint. Moreover, any of them leaves out points in the domain of attraction
of invariant attractors with periodicities other than 3.

So, even with a carefully selected Sierpinski point in any of those invariant
sets, the best we can get applying the chaos game is a rarefied pale image of
the rich complexity of the Sierpinski gasket. The gross imperfection of the
representation of points and our eyes trick us in believing we are generating
the Sierpinski gasket. In fact, the representation we get is as innacurate as
the representation we get after a finite number of steps of removal of middle
triangles, in the classical deterministic construction.
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3.2 The Chaos Game and Sierpinski Polygons

The Sierpinski gasket is the sole fixed point resulting from 1
2 contractions to-

wards the vertices A, B and C of a triangle; for aesthetic reasons, in most
situations it is worked out using an equilateral triangle.

We now consider contractions on regular polygons with n > 3 vertices. Pick
a point at random inside the polygon, and then draw the next point a fraction
of the distance between it and a polygon vertex picked at random. Continue
the process (after eventually throwing out the first few points). The result of
this “chaos game” is sometimes, but not always, a fractal. In Fig. 8 we show
the result of the contractions r1 = 1

3 and r1 = 3
8 towards the vertices of a

regular pentagon.

Fig. 8. Contractions r1 = 1
3

and r1 = 3
8

towards the vertices of a regular pentagon.

It is obvious that greater scaling factors s = 1
r will originate “islands”, and

smaller scaling factors can create overcrowded sets, with overlapping. Conse-
quently we must refine our original definition, so that the union of contractions
creates the richest fixed point without overlapping. Looking at what happens
in what regards hexagons and decagons, see Fig. 9, it is easy to conclude that
the ideal scaling factor for a n vertices regular polygon is

Fig. 9. Geometric rationale for computing the appropriate scaling factor.

s = 2

[n
4 ]∑

k=0

cos
2π k

n
.
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(where
[
n
4

]
denotes the integer part of n

4 ) — in particular, for the regular
pentagon, s = 2 (1 + cos 4π

5 ) ≈ 2.618033989, and hence the ideal contraction
is r = 1

s ≈ 0.381966011.

Once again the chaos game — generating the next point as the weighted
mean of the current point and a vertex selected at random (i.e., using a discrete
uniform law), with weights 1

r and 1− 1
r — gives a hint of aspect of the resulting

fractal.

For instance, Fig. 10 exhibits the result of 25,000 runs of the chaos game
associated with the Sierpinski octogon, generated using in R the source file

Fig. 10. Chaos game associated with Sierpinski octogon.

with the instructions

# Sierpinski Octogon

# 2011/01/14

######################

#######################

cat("Number of runs?")

nruns<-scan(n=1)

cat("Initial point abcissa?")

x<-scan(n=1)

cat("initial point ordinate?")

y<-scan(n=1)

u<-runif(1)

if (u <= 1/8)

{

x<-0.29289322*x
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y<-0.29289322*y

}

if (u>1/8 & u<=1/4)

{

x<-(0.29289322*x+0.707106781)

y<-(0.29289322*y)

}

if (u>1/4 & u<=3/8)

{

x<-(0.29289322*x+0.707106781*1.70710678 )

y<-(0.29289322*y+0.707106781*0.70710678)

}

if (u>3/8 & u<=1/2)

{

x<-(0.29289322*x+0.707106781*1.70710678 )

y<-(0.29289322*y+0.707106781*1.70710678)

}

if (u>1/2 & u<=5/8)

{

x<-(0.29289322*x+ 0.707106781 )

y<-(0.29289322*y+0.707106781*2.41421356)

}

if (u>5/8 & u<=3/4)

{

x<-(0.29289322*x )

y<-(0.29289322*y+0.707106781*2.41421356)

}

if (u>3/4 & u<=7/8)

{

x<-(0.29289322*x-0.707106781*0.70710678 )

y<-(0.29289322*y+0.707106781*1.70710678)

}

if (u>7/8)

{

x<-(0.29289322*x-0.707106781*0.70710678 )

y<-(0.29289322*y+0.707106781*0.70710678)

}

plot(x,y,xlim=c(-1,2),ylim=c(0,3),pch=20, cex=0.2,

xaxt="n",yaxt="n",xlab="",ylab="",bty="n")

for(i in 1:nruns)

{

u<-runif(1)

if (u <= 1/8)

{
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x<-0.29289322*x

y<-0.29289322*y

}

if (u>1/8 & u<=1/4)

{

x<-(0.29289322*x+0.707106781)

y<-(0.29289322*y)

}

if (u>1/4 & u<=3/8)

{

x<-(0.29289322*x+0.707106781*1.70710678 )

y<-(0.29289322*y+0.707106781*0.70710678)

}

if (u>3/8 & u<=1/2)

{

x<-(0.29289322*x+0.707106781*1.70710678 )

y<-(0.29289322*y+0.707106781*1.70710678)

}

if (u>1/2 & u<=5/8)

{

x<-(0.29289322*x+ 0.707106781 )

y<-(0.29289322*y+0.707106781*2.41421356)

}

if (u>5/8 & u<=3/4)

{

x<-(0.29289322*x )

y<-(0.29289322*y+0.707106781*2.41421356)

}

if (u>3/4 & u<=7/8)

{

x<-(0.29289322*x-0.707106781*0.70710678 )

y<-(0.29289322*y+0.707106781*1.70710678)

}

if (u>7/8)

{

x<-(0.29289322*x-0.707106781*0.70710678 )

y<-(0.29289322*y+0.707106781*0.70710678)

}

points(x,y,pch=20,cex=0.25)

for (j in 1:25000) a=1

}

4e (we used the approximation r = 2 +
√

2 ≈ 3.414213562 for the scaling
factor, and the weights 0.292893219 for the current point and 0.707106781 for
the randomly chosen vertex in order to compute weighted means at each step).
This code is easily modified for any n, using the appropriate scaling factor.
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Once again, for any n this generates a subset or an approximation of the
fixed point of an Hutchinson operator which is the union of contractions towards
each of the vertices of the polygon, with appropriate scaling factor, but is not,
in fact, the (extended) Sierpinski fixed point.
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