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Abstract. In this paper some problems regarding to the Markov property are dis-
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1 Introduction

As it can be observed, in the last time, a great interest has been shown to some
topics relating to stochastic approximation procedures and their applications.

Generally speaking, it can be considered a problem where computation is
split among several processors, operating and transmitting data to one another
asynchronously. Such algorithms are only being to come into prominence, due
to both the developments of decentralized processing and applications where
each of several locations migth control or adjusted local variable but the crite-
rion of concern is global. For example a current decentralized application is in
Q-learning where the component update at any time depends on the state of a
Markov process.

After Robbins & Monro laid the foundations of the stochastic approxima-
tions procedures, several problems have been developed especially by Z. Schuss,
H.J. Kushner, K. Itô, H.P. McKean Jr., M.T. Wasan, B. Øksendal, N. Ikeda,
S. Watanabe. Results on almost sure convergence of stochastic approxima-
tion processes are often proved by a separation of deterministic (pathwise) and
stochastic considerations. The basic idea is to show that a ”distance” between
estimate and solution itself has the tendency to become smaller.

In the last decades a great interest has been shown to the investigations of
applications in many diverse areas, and this has accelerated in the last time,
with new applications. Shortly speaking, the basic stochastic approximation
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algorithm is nothing but a stochastic difference equation with a small step size,
and the basic questions for analysis concern its qualitative behaviour over a
long time interval, such as convergence and rate of convergence.

When a stochatic differential equation is considered if it is allowed for some
randomness in some of its coefficients, it will be often obtained a so-called
stochastic differential equation which is a more realistic mathematical model of
the considered situation. Many practical problems conduct us to the following
notion: the equation obtained by allowing randomness in the coefficients of a
differential equation is called a ”stochastic differential equation”. Thus, it is
clear that any solution of a stochastic differential equation must involve some
randomness. In other words one can hope to be able to say something about
the probability distribution of the solutions.

On the other hand, as it is known, a precise definition of the Brownian
motion involves a measure on the path space, such that it is possible to put
the Brownian motion on a firm mathematical foundation. Numerous scientific
works has been done on its applications in diverse areas including among other
things stability of structures, solid-state theory, population genetics, commu-
nications, and many other branches of the natural sciences, social sciences and
engineering. We emphasize here many contributions due to P. Lévy, K. Itô,
H.P. McKean, Jr., S. Kakutani, H.J. Kushner, A.T. Bharucha-Reid and other.

If we refer, for example, to some aspects in genetics, as the approximation
of Markov chains by solutions of some stochastic differential equations to de-
termine the probability of extinction of a genotype, then the Markovian nature
of the problem will be pointed out, and we think that this is a very important
aspect.

In this paper we shall discuss firstly some aspects relating to the approxi-
mation in the study of Markov processes and Brownian motion. Such problems
were developed particularly by Z. Schuss, H.J. Kushner, K. Itô, H.P. McKean
Jr., B. Øksendal, M.T. Wasan.

Then we refer to some aspects regarding to the Markov property in a vision
of K. Itô. And finally, as an application, a problem of stochastic approximation
in the risk analysis, based on a study of of Hu Yaozhong, in connection with a
stochastic differential equation, is considered.

2 In short about stochastic differential equations

We know that to describe the motion of a particle driven by a white noise
type of force (due to the collision with the smaller molecules of the fluid) the
following equation is used

dv(t)

dt
= −βv(t) + f(t) (1)

where f(t) is the white noise term.
The equation (1) is referred to as the Langevin’s equation . Its solution is

the following

y(t) = y0e
−βt + e−βt

∫ t

0

e−βtf(s)ds. (2)
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If we denote by w(t) the Brownian motion (see the next section), then it is
given by

w(t) =
1

q

∫ t

0

f(s)ds, (3)

so that f(s) =
qdw(s)

ds
. But w(t) is nowhere differentiable, such that f(s) is

not a function. Therefore, the solution (2), of Langevin’s equation, is not a
well-defined function. This difficulty can be overcome, in the simple case, as
follows. Integrating (2) by parts, and using (3), it results

y(t) = y0e
−βt + qw(t)− βq

∫ t

0

e−β(t−s)w(s)ds. (4)

But all functions in (4) are well defined and continuous, such that the
solution (3) can be interpreted by giving it the meaning of (4). Now, such a
procedure can be generalized in the following way. Let us given two functions
f(t) and g(t) that are considered to be defined for a ≤ t ≤ b. For any partition
P : a ≤ t0 < t1 < · · · < tn, we denote

SP =

n∑
i=1

f(ξi)[g(ti)− g(ti−1)],

where ti−1 ≤ ξi ≤ ti. If a limit exists

lim
|P |→0

SP = I

where |P | = max1≤i≤n(ti − ti−1), then it is said that I is the Stieltjes integral
of f(t) with respect to g(t). It is denoted

I =

∫ b

a

f(t)dg(t).

Now the stochastic differential equation

dx(t = a(x(t), t)dt+ b(x(t), t)dw(t)

x(0) = x0 (5)

is defined by the Itô integral equation

x(t) = x0 +

∫ t

0

a(x(s), s)ds+

∫ t

0

b(x(s), s)dw(s). (6)

The simplest example of a stochastic differential equation is the following
equation

dx(t) = a(t)dt+ b(t)dw(t)

x(0) = x0 (7)
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which has the solution

x(t) = x0 +

∫ t

0

a(s)ds+

∫ t

0

b(s)dw(s).

The transition probability density of x(t) is a function p(x, s; y, t) satisfying
the condition

P (x(t) ∈ A |x(s) = x) =

∫
A

p(x, s; y, t)dy

for t > s where A is any set in R. It is supposed that a(t) and b(t) are
deterministic functions.

The stochastic integral

χ(t) =

∫ t

0

b(s)dw(s)

is a limit of linear combinations of independent normal variables∑
i

b(ti)[w(ti+1)− w(ti)].

Thus, the integral is also a normal variable.
But, then

χ(t) = x(t)− x0 −
∫ t

0

a(s)ds

is a normal variable, and therefore

p(x, s; y, t) =
1√
2πσ

e−
(y−m)2

2σ

where
m = E(x(t) |x(s) = x).

Now

E(x(t) |x(s) = x) = x+

∫ t

s

a(u)du

is the expectation of the stochastic integral vanishes.
And the variance is given by the relation

σ = V ar x(t) = E

[∫ t

s

b(u)dw(u)

]2
=

∫ t

s

b2(u)du.

In conclusion, p(x, s; y, t) is given by the following equation

p(x, s; y, t) =

[
2π

∫ t

s

b2(u)du

]− 1
2

· e
−

(
y − x−

∫ t
s
a(u)du

)2

2
∫ t
s
b2(u)du .

[For more details and proofs see, for example: G. Da Prato and J. Zabczyk[3],
G. Da Prato[4], N. Ikeda and S. Watanabe[6], K. Itô and H. P. McKean Jr.[8],
B. Øksendal[13], Z. Schuss[26]].
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3 Brownian motion

Brownian motion, used especially in Physics, is of ever increasing importance
not only in Probability theory but also in classical Analysis. Its fascinating
properties and its far-reaching extension of the simplest normal limit theorems
to functional limit distributions acted, and continue to act, as a catalyst in
random Analysis. It is probable the most important stochastic process. As
some authors remarks too, the Brownian motion reflects a perfection that seems
closer to a law of nature than to a human invention.

In 1828 the English botanist Robert Brown observed that pollen grains
suspended in water perform a continual swarming motion. The chaotic motion
of such a particle is called Brownian motion and a particle performing such a
motion is called a Brownian particle.

The first important applications of Brownian motion were made by L.
Bachélier and A. Einstein. L. Bachélier derived (1900) the law governing the
position of a single grain performing a 1-dimensional Brownian motion starting
at a ∈ R1 at time t = 0

Pa[x(t) ∈ db] = g(t, a, b)db (8)

where (t, a, b) ∈ (0,+∞)×R2 and g is the Green (or the source) function

g(t, a, b) =
1

t
√

2π
e−

(b−a)2

2t2

of the problem of heat flow

∂u

∂t
=

1

2

∂2u

∂2a
, (t > 0).

Bachélier also pointed out the Markovian nature of the Brownian path
but he was unable to obtain a clear picture of the Brownian motion and his
ideas were unappreciated at that time. This because a precise definition of the
Brownian motion involves a measure on the path space, and it was not until
1908-1909 when the works of É. Borel and H. Lebesgue have been appeared.
Beginning with this moment was possible to put the Brownian motion on a
firm mathematical foundation and this was achived by N. Wiener in 1923.

It is very interesting that A. Einstein also derived (8) in 1905 from statistical
mechanical considerations and applied it to the determination of molecular
diameters. He wanted also to model the movement of a particle suspended
in a liquid. Einstein’s aim was to provide a means of measuring Avogadro’s
number, the number of molecules in a mole of gas, and experiments suggested
by Einstein proved to be consistent with his predictions.

We remind, for example, the following aspect. Let us consider that x(t) is
the notation for the displacement of the Brownian particle. Then, the proba-
bility density of this displacement, for sufficiently large values of t, is as follows

p(x, t,x0,v0) ≈ 1

(4πDt)
3
2

e−
|x−x0|

2

4Dt (9)
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where D is

D =
kT

mβ
=

kT

6πaη
(10)

and is referred to as the diffusion coefficient.
Furthermore it results that p(x, t,x0,v0) satisfies the diffusion equation

given below
∂p(x, t,x0,v0)

∂t
= D∆p(x, t,x0,v0). (11)

The expression of D in (10) was obtained by A. Einstein.

Remark 1. From physics it is known the following result due to Maxwell: Let
us suppose that the energy is proportional to the number of particles in a gas
and let us denoted E = γn, where γ is a constant independent of n. Then,

P{a < v1i < b} =

b∫
a

(
1− x2m

2γn

) 3n−3
2

dx

+( 2γn
m )

1
2∫

−( 2γn
m )

1
2

(
1− x2m

2γn

) 3n−3
2

dx

→

→
(

3m

4πγ

) 1
2

b∫
a

e
−

3mx2

4γ dx.

Now, for γ =
3kT

2
the following Maxwell’s result is found

lim
n→∞

P{a < v1i < b} =
( m

2πkT

) 1
2

b∫
a

e
−
mx2

2kT dx.

T is called the ”absolute temperature”, while k is the ”Boltzmann’s constant”.

[For details and proofs see K. Itô and H. P. McKean Jr.[8], Z. Schuss[26], D.
W. Stroock[27], G. V. Orman[20]].

4 On Markov property

In some previous papers we have dicussed on Markov processes in a vision of
Kiyosi Itô. In this section we shall continue this discussion by considering the
extended Markov property.

More details and other aspects can be found in K. Itô[7],[9], K. Itô and H.
P. McKean Jr.[8], D. W. Stroock[27], A. T. Bharucha-Reid[2].

Let S be a state space and consider a particle which moves in S. Also,
suppose that the particle starting at x at the present moment will move into
the set A ⊂ S with probability pt(x,A) after t units of time, “irrespectively of
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its past motion”, that is to say, this motion is considered to have a Markovian
character.

The transition probabilities of this motion are {pt(x,A)}t,x,A and is consid-
ered that the time parameter t ∈ T = [0,+∞).

The state space S is assumed to be a compact Hausdorff space with a count-
able open base, so that it is homeomorphic with a compact separable metric
space by the Urysohn’s metrization theorem. The σ-field generated by the open
space (the topological σ-field on S) is denoted by K(S). Therefore, a Borel set
is a set in K(S).

The mean value

m = M(µ) =

∫
R

xµ(dx)

is used for the center and the scattering degree of an one-dimensional proba-
bility measure µ having the second order moment finite, and the variance of µ
is defined by

σ2 = σ2(µ) =

∫
R

(x−m)2µ(dx).

On the other hand, from the Tchebychev’s inequality, for any t > 0, we
have

µ(m− tσ,m+ tσ) ≤ 1

t2
,

so that several properties of 1-dimensional probability measures can be derived.
Note that in the case when the considered probability measure has no finite

second order moment, σ becomes useless. In such a case one can introduce
the central value and the dispersion that will play similar roles as m and σ for
general 1-dimensional probability measures.

Remark 2. We recall that J. L. Doob defined the central value γ = γ(µ) as
being the real number γ which verifies the following relation∫

R

arctg(x− γ)µ(dx)) = 0.

Here, the existence and the uniqueness of γ follows from the fact that

arctg(x− γ) is continuous and decreases strictly from
π

2
to −π

2
, for x fixed, as

γ moves from −∞ to +∞.

The dispersion δ is defined as follows

δ = δ(µ) = − log

∫ ∫
R2

e−|x−y|µ(dx)µ(dy).

We will assume that the transition probabilities {pt(x,A)}t∈T,x∈S,A∈K(S)

satisfy the following conditions:

(1) for t and A fixed,
a) the transition probabilities are Borel measurable in x;
b) pt(x,A) is a probability measure in A;

(2) p0(x,A) = δx(A) (i.e. the δ-measure concentrated at x);
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(3) pt(x, ·)
weak−→ pt(x0, ·) as x→ x0 for any t fixed, that is

lim
x→x0

∫
f(y)pt(x, dy) =

∫
f(y)pt(x0, dy)

for all continuous functions f on S;
(4) pt(x, U(x)) −→ 1 as t↘ 0, for any neighborhood U(x) of x;
(5) the Chapman-Kolmogorov equation holds:

ps+t(x,A) =

∫
S

pt(x, dy)ps(y,A).

The transition operators can be defined in a similar manner. Consider
C = C(S) to be the space of all continuous functions (it is a separable Banach
space with the supremum norm).

The operators pt, defined by

(ptf)(x) =

∫
S

pt(x, dy)f(y), f ∈ C

are called transition operators.
The conditions for the transition probabilities can be adapted to the tran-

sition operators, but we do not insist here.

Remark 3. Let us observe that the conditions (1) – (5) above are satisfied for
”Brownian transition probabilities”. One can define

pt(x, dy) =
1

t
√

2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

Now the Markov process can be defined.

Definition 1 A Markov process is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K,Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the probability
space (Ω,K,Pa).

The transition probabilities of a Markov process will be denoted by {p(t, a,B)}.
Now let us denote by {Ht} the transition semigroup and let Rα be the resolvent
operator of {Ht}.

The next results shows that p(t, a,B), Ht and Rα can be expressed in terms
of the process as follows:

Theorem 1 Let f be a function in C(S). Then

i) p(t, a,B) = Pa(Xt ∈ B).
ii) For Ea(·) =

∫
Ω
·Pa(dω) one has Htf(a) = Ea(f(Xt)).

iii) Rαf(a) = Ea
(∫∞

0
e−αtf(Xt)dt

)
.
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Proof. One can observe that i) and ii) follow immediately.
To prove iii), we will use the following equality:

Rαf(a) =

∫ ∞
0

e−αtHtf(a)dt =

∫ ∞
0

e−αtEa(f(Ht))dt.

Since f(Xt(ω)) is right continuous in t for ω fixed, and measurable in ω for
t fixed, it is therefore measurable in the pair (t, ω). Thus, we can use Fubini’s
theorem and therefore we obtain

Rαf(a) = Ea

(∫ ∞
0

e−αtf(Xt)dt

)
,

which proves iii).

Definition 2 The operator θt : Ω → Ω defined by

(θtω)(s) = ω(s+ t)

for every s ∈ T is called the “shift operator”.

Obviously, the operator θt satisfies the property

θt+s = θtθs,

called the semigroup property.
For C a σ-field on Ω, the space of all bounded C-measurable functions will

be denoted by B(Ω, C), or simple B(C).

4.1 The classical and the extended Markov property

Now the Markov property is expressed in the theorem below.

Theorem 2 Let be given Γ ∈ K. The following is true

Pa(θtω ∈ Γ |Kt) = PXt(ω)(Γ ) a.s.(Pa);

that is to say
Pa(θ−1t Γ |Kt) = PXt(ω)(Γ ).

Remark 4. The following notation can be used

PXt(ω)(Γ ) = Pb(Γ )|b=Xt(ω).

Now, to prove the theorem, it will be suffice to show that

Pa(θ−1t Γ ∩D) = Ea(PXt(Γ ), D) (12)

for Γ ∈ K and D ∈ Kt.

Three cases can be distinguished.

1). Let us consider Γ and D as follows:

Γ = {Xs1 ∈ B1}
⋂
{Xs2 ∈ B2}

⋂
· · ·
⋂
{Xsn ∈ Bn},
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and
D = {Xt1 ∈ A1}

⋂
{Xt2 ∈ A2}

⋂
· · ·
⋂
{Xtm∈Am}

with

0 ≤ s1 < s2 < · · · < sn

0 ≤ t1 < t2 < · · · < tm ≤ t

and Bi, Aj ∈ K(S).
Now it will be observed that the both sides in (12) are expressed as integrals

on Sm+n in terms of transition probabilities. Thus, one can see that they are
equal.

2). Let now be Γ as in the case 1) and let us denote by D a general member
of Kt. For Γ fixed the family D of all D’s satisfying (12) is a Dynkin class. If
M is the family of all M ’s in the case 1) then, this family is multiplicative and
M⊂ D. In this way it follows

D(M) ⊂ D = K(M) = Kt

and one can conclude that, for Γ in the case 1) and for D general in Kt, the
equality (12) holds.

3). (General case.) This case can be obtained in a same manner from 2)
by fixing an arbitrary D ∈ Kt.

It will be obtained that Pa(Γ ) is Borel measurable in a for any Γ ∈ K.

Corollaire 1

Ea(G ◦ θt, D) = Ea(EXt(G), D) for G ∈ B(K), D ∈ Kt,

Ea(F · (G ◦ θt)) = Ea(F · EXt(G)) for G ∈ B(K), F ∈ B(Kt),

Ea(G ◦ θt|Kt) = EXt(G) (a.s.)(Pa) for G ∈ B(K).

But it is interesting to see that the Markov property can be extended, as it
is given in the following theorem, according to K. Itô:

Theorem 3 (The extended Markov property).

Pa(θtω ∈ Γ |Kt+) = PXt(Γ ) a.s. (Pa)

for Γ ∈ K.

Proof. Let us come back to the equality (12) before. Now it will be proved for
D ∈ Kt+. To this end the following equality will be shown:

Ea(f1(Xs1(θtω)) · · · fn(Xsn(θtω)), D) =

= Ea(EXt(f1(Xs1) · · · fn(Xsn)), D) (13)

for fi ∈ C(S), D ∈ Kt+ and 0 ≤ s1 < s2 < · · · < sn.
But D ∈ Kt+h for h > 0, so that by Corollary 1 it results

Ea(f1(Xs1(θt+hω)) · · · fn(Xsn(θt+hω)), D) =

= Ea(EXt+h(f1(Xs1) · · · fn(Xsn)), D). (14)
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Now one can observe that

Ea(f1(Xs1) · · · fn(Xsn))

is continuous in a, if it is considered that

Ea(f1(Xs1) · · · fn(Xsn)) =

= Hs1(f1 · · · (Hsn−1−sn−2
(fn−1 ·Hsn−sn−1

fn)) · · ·)

and Hs : C −→ C.
But Xt(ω) being right continuous in t, one gets

fi(Xsi(θt+hω)) = fi(Xsi+t+h(ω)) −→ fi(Xsi+t(ω)) = fi(Xsi(θtω))

as h ↓ 0.
Now, the equality (13) will result by taking the limit in (14) as h ↓ 0.
In this way, for Gi open in S, the following equality will result from (13)

Ea(Xsi(θtω) ∈ G1, · · · , Xsn(θtω) ∈ Gn, D) =

= Ea(PXt(Xs1 ∈ G1, · · · , Xsn ∈ Gn), D), (15)

and now the Dynkin’s theorem can be used.

Remark 5. Theorem (Dynkin’s formula). Let us suppose that σ is a stopping time
with Ea(σ) <∞. Then, for u ∈ D(A) it follows:

Ea

(∫ ∞

0

Au(Xt)dt

)
= Ea(u(Xσ))− u(a).

5 A problem of financial risk

This section is referred, shortly, to a study of Hu Yaozhong[30] involving the
so-called Onsager-Machlup functional. This operator is computed for the gen-
eralized geometric Brownian motion and also the general equation which the
most probable path must satisfy is found. We shall consider only some aspects
according to our review G. V. Orman[17].

The most probable path is obtained in a form which permit to conclude
about the risk when someone want to invest money into several stocks.

Definition 3 The solution of the following stochastic differential equation

dxt = xt{a(t)dwt + b(t)dt}, 0 < t <∞, (16)

is called the geometric Brownian motion, where a(t), b(t) are deterministic
functions of t; wt is a Brownian motion, and dwt is the Itô integral.

Now let us given the following stochastic differential equation

dxt = A(t)xt dw(t) +B(t)xt dt

x0 = ξ (17)
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where

A(t) = diag (a1(t), · · · , ad(t)) =


a1(t) 0 · · · 0

0 a2(t) · · · 0
· · · · · · · · · · · ·
0 0 · · · ad(t)

 ,

B(t) = (bij(t)) satisfying bij(t) ≥ 0 for all 1 ≤ i, j ≤ d, i 6= j and w(t) =
(w1(t), · · · , wd(t)) are standard Brownian motions which are not necessarily
independent.

If a1(t), · · · , ad(t) are continuous functions with bounded derivative one con-
siders

B(t) = (bij(t))1≤i,j≤d

where bij(t) ≥ 0, ∀ i 6= j.
Denote A(t) = diag (a1(t), · · · , ad(t))T and consider the stochastic differen-

tial equation

dxi(t) = ai(t)xi(t) dwi(t) +

d∑
j=1

bij(t)xj(t) dt

xi(0) = ξi i = 1, · · · , d . (18)

Or its integral form

xi(t) = ξi +

t∫
0

ai(s)xi(s) dwi(s) +

d∑
j=1

t∫
0

bij(s)xj(s) ds, i = 1, 2, · · · , d . (19)

The problem is to perform asymptotic evaluation of the probability

P{ sup
0≤t≤T

|x(t)− Φ(t) | < ε} as ε→∞ ,

where | · | denotes the Euclidian norm in d-dimensional space, and Φ : [0, T ]→
R is a function with continuous and bounded first and second derivatives.
[To develop such aspects see, for example, L. Onsager and S. Machlup[15], Y.
Takahashi and S. Watanabe[28], O. Zeitouni[31]].

Now we comeback to the geometric Brownian motion. The equation (16)
has been successfully applied to the financial problems such as modeling the
prices of stocks. For i = 1, 2, · · · , d we have the stochastic differential equation

dxi(t) = xi(t) [ai(t) dwi(t) + bi(t) dt]

xi(0) = ξi . (20)

On the other hand, the most probable path Ψi associated to the equation
(20) is proved that satisfies the following conditions

Ψ
′

i (t) = bi(t)Ψi(t)−
1

2
a2i (t)Ψi(t),

Ψi(0) = ξi, i = 1, 2, · · · , d (21)
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or, equivalently

Ψ
′

i (t) = Ψi(t) [bi(t)−
1

2
a2i (t)],

Ψi(0) = ξi, i = 1, 2, · · · , d . (22)

From this equation we come to the conclusion that if an investment is made
in a stock with the mean return b(t) and the volatility a(t), then the real return
rate is most likely be given by the equality

c(t) = b(t)− 1

2
a2(t) (23)

instead of b(t). That is to say the interest rate is most likely to be b(t)− a2(t)
2

instead of b(t). The quantity c(t) in (23) is referred to as the most probable
interest rate.

In conclusion, when an investment is made into several stocks with the
mean return bi(t) and the volatility ai(t) it is recommended to compare the
most probable interest rate

ci(t) = bi(t)−
1

2
a2i (t)

instead of the mean interest rate bi(t).
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