
Chaotic Modeling and Simulation (CMSIM) 2: 345–354, 2012

On the Computation of the Kantorovich
Distance for Images

Constantinos Alexopoulos1 and Vassileios Drakopoulos2

1 University of Athens, Panepistimioupolis, 15784 Athens, Greece
(E-mail: calexop@di.uoa.gr)

2 University of Athens, Panepistimioupolis, 15784 Athens, Greece
(E-mail: vasilios@di.uoa.gr)

Abstract. We consider the theory and applications of the Kantorovich metric in
fractal image compression. After surveying the most important approaches for its
computation, we highlight its usefulness as a mathematical tool for comparing two
images and improve its performance by means of more appropriate data structures.
Keywords: Fractals, Hutchinson metric, Image comparison, Kantorovich metric.

1 Introduction

In many fields of computer science like pattern recognition and image process-
ing, it is important to have an efficient way to compare geometric objects. The
natural approach to this problem is to define a metric in the space of the ge-
ometric objects and use this metric to compute the distance between them.
Considering digitized images as geometric objects, we can use that metric to
compare them.

The Kantorovich (or Hutchinson) metric, a.k.a. Wasserstein (or Vaser-
shtein), earth mover’s or match metric, takes into account the spatial struc-
ture of the compared images and, hence, corresponds more closely than other
metrics to our notion of the visual differences between two images. John E.
Hutchinson[6] used the Kantorovich distance to measure the distance between
self-similar probability measures obtained as limiting distributions for a fairly
simple type of Markov chains induced by affine, contractive mappings. He used
the Kantorovich metric to prove an existence and uniqueness theorem of such
limit measures.

The Kantorovich metric is also used by Michael F. Barnsley[2] and co-
workers to approach the convergence of iterated function systems, which were
introduced by Hutchinson. In trying to solve the so-called “inverse problem”
or “image encoding problem”, i.e. find an IFS that generates a predetermined
image, it is natural to use this metric as an objective function to be minimised.
Moreover, this metric appears to be a good indicator of the perceived difference
between two images.

Received: 20 July 2011 / Accepted: 30 March 2012
c© 2012 CMSIM ISSN 2241-0503

346 C. Alexopoulos and V. Drakopoulos

Considering digitized images as a set of pixels, the problem of computing the
Kantorovich distance between them is equivalent to the formulation of a linear
programming problem called the balanced transportation problem. According to
Michael Werman et al.[9] the computational complexity of standard algorithms
for transportation problems are of order O(N3), where N denotes the total
number of pixels in the compared images. An algorithm for the computation
of the Hutchinson metric in the case of finite one-dimensional sequences is
presented in [3].

Thomas Kaijser[7] presented a variation of the primal-dual algorithm for
computing the Kantorovich distance function. To decrease the computational
complexity for updating the values of the dual variables for both transmitting
and receiving images, he always increases them by a constant value of 1. Un-
fortunately, this is applicable, only if the underlying pixel distance value is the
L1-metric. Moreover, he developed two methods for fast determination of new
admissible arcs, one for the L1-metric and one for the L2-metric. Kaijser’s
method was implemented by Niclas Wadströmer[8] in the context of his PhD
thesis, but the data structures used to implement the above mentioned method
as well as the way that the labelling procedure was implemented are not so
clear.

Another work on the computation of the Kantorovich distance is the one
of Drakopoulos V. et al.[5]. In this work the problem of computing the Kan-
torovich distance is transformed into a linear programming problem which is
solved using the simplex method. To decrease the computational complexity
of the method, they developed an approximation algorithm for “large images”.
Yuxin Deng et al.[4] give a brief survey of the applications of the Kantorovich
distance in probabilistic concurrency, image retrieval, data mining and bioin-
formatics.

The main purpose of the present paper is to improve the algorithm presented
by Thomas Kaijser for computing the Kantorovich distance function by means
of more appropriate data structures. The metric we are using as the underlying
distance-function between pixels is the L1-metric. Using kd-trees we don’t have
to use different methods, but only to change the metric for the construction of
the appropriate kd-tree.

2 Problem Formulation

We are interested in computing the Kantorovich distance between grey-scale
images. There are three types of image models: Measure spaces, pixelated
data and functions. Using this approach, we consider an image as a measure
space. Therefore, by an image P with support K we mean an integer-valued
nonnegative function p(i, j) defined on K, i.e. P = {p(i, j) : (i, j) ∈ K}. We
define as a Borel measure on the space of grey-scale images the pixel value
p(i, j), where i and j are the Cartesian coordinates of the pixel.

For a compact metric space (X, d), let P1 and P2 be two Borel probability
measures on X and define Θ(P1, P2) as the set of all probability measures P
on X ×X with fixed marginals P1(·) = P (· ×X) and P2(·) = P (X × ·). Next,

Chaotic Modeling and Simulation (CMSIM) 2: 345–354, 2012 347

let

Lip(X) = {f :X → R
∣∣| f(x)− f(y) |≤ d(x, y),∀x, y ∈ X}

and define the distance between P1 and P2 as

Bd(P1, P2) = sup

{∣∣∣∣∫
X

f(x)P1(dx)−
∫
X

f(x)P2(dx)

∣∣∣∣ , f ∈ Lip(X)

}
.

The images considered are sets of finite collection of pixels, so they constitute
compact metric spaces.

Let K1 and K2 be two images, Sn, 1 ≤ n ≤ N be the pixels of K1 and Rm,
1 ≤ m ≤M the pixels of K2. Using the terminology of Kaijser we call K1 the
transmitting image and K2 the receiving image; Sn, 1 ≤ n ≤ N denote sources
whereas Rm, 1 ≤ m ≤M denote sinks or destinations. By a flow we mean the
amount of goods sent from the source Sn to the sink Rm denoted by x(n,m)
whereas c(n,m), 1 ≤ n ≤ N, 1 ≤ m ≤M denote the cost of transferring goods
from Sn to Rm. In our case the cost corresponds to the distance between Sn

and Rm. If a(n) denote the amount of goods available in a source and b(n) the
amount of goods needed in a sink, the Kantorovich distance between K1 and
K2 can be formulated as a balanced transportation problem as follows:

Minimize

N∑
n=1

M∑
m=1

c(n,m) · x(n,m)

subject to x(n,m) ≥ 0, 1 ≤ n ≤ N, 1 ≤ m ≤M ,

M∑
m=1

x(n,m) = a(n), 1 ≤ n ≤ N (1)

N∑
n=1

x(n,m) = b(m), 1 ≤ m ≤M (2)

and
N∑

n=1

a(n) =

M∑
m=1

b(m).

The distance can be any of the following distances: L1-metric or L2-metric. For
each source and each sink we define two quantities α(n) and β(m) respectively,
called dual variables. If

c(n,m)− α(n)− β(m) ≥ 0, 1 ≤ n ≤ N, 1 ≤ m ≤M,

we call the set of dual variables feasible. A pair of indices (n,m), where n is
an index of a source Sn and m is an index of a sink Rm, is called an arc. If an
arc (n,m) satisfies the condition

d(n,m)− α(n)− β(m) = 0, (3)

348 C. Alexopoulos and V. Drakopoulos

where d(n,m) is the underlying distance-function between the pixels Sn and
Rm, it is called an admissible arc; otherwise it is called nonadmissible. We say
that a flow is optimal if Equations (2) and (3) hold.

The dual version of the transportation problem, i.e. the dual formulation
of the Kantorovich distance, is

dK(P,Q) = Max

{
N∑

n=1

α(n) · a(n) +

M∑
m=1

β(m) · b(m)

}
(4)

when the set of dual variables is feasible.

3 The proposed algorithm

Our algorithm is based on the well known primal-dual algorithm which solves
the balanced transportation problem on the plane. We make several enhance-
ments, however, that improve the efficiency of the algorithm. Our improve-
ments are based on the data structures used to store image data and on the
fact that the transportation cost is the distance between the pixels. The latter
allows us to use some spatial data structures which facilitate the computations
and minimise the complexity of the problem. Before describing our method in
detail, we give the main steps of the primal-dual algorithm:

1. Determine an initial value of the dual variables, find the corresponding
set of admissible arcs and their flow.

2. Check if the current admissible flow is maximal. If it is go to (4), else go
to (3).

3. Update the admissible flow and go to (2).
4. Check if the current maximal flow is optimal. If it is go to (7), else go

to (5).
5. Update the dual variables.
6. Find the new admissible arcs and go to (2).
7. Stop.
Let us define as total transporting grey mass the summation of the grey value

of all pixels in the transporting image. Similarly, we define as total receiving
grey mass the summation of the grey value of all pixels in the receiving image.
In order to convert the Kantorovich distance problem between images to a
balanced transportation problem on the plane, both transporting and receiving
total grey values must be equal. In general, these two amounts are different
and in order to make them equal we change both masses accordingly applying
the following formula on every single pixel value of both images:

pnew(n) = p(n) · L̂(K2), L̂(K2) =
[M∑
m=1

q(m)
]
/GCD(L,Q),

qnew(m) = q(m) · L̂(K1), L̂(K1) =
[N∑
n=1

p(n)
]
/GCD(L,Q),

Chaotic Modeling and Simulation (CMSIM) 2: 345–354, 2012 349

where p(n) and q(m) are the pixel values of the transmitting and receiving

images respectively, L =
∑N

n=1 p(n), Q =
∑M

m=1 q(m) and GCD(L,Q) is the
greatest common divisor of L and Q. In the following we shall describe our
algorithm as well as the data structures we use to facilitate our computations
and image storage.

3.1 Dual variables and the flow of the current admissible arcs

After having made the total grey masses of both images equal we have to ini-
tialise the dual variables. We set as initial values α(n) = min{d(n,m), 1 ≤
m ≤ M}, i ≤ n ≤ N and β(m) = 0, 1 ≤ m ≤ M. From the above equa-
tions we observe that the initial values of the dual variables α(n) associated
with the transmitting image pixels are the distances of their nearest neighbour
pixels in the receiving image. In order to compute this quantity we create a
kd-tree structure using the coordinates of the receiving image pixels and we
search for the nearest neighbour of every single transmitting pixel. So, if n is a
transmitting pixel and m one of its nearest neighbours in the receiving image,
then (n,m) is an admissible arc. Therefore, the initial flow along this arc is
x(n,m) = min{p(n), q(m)}, whereas the new pixel values are p(n) − x(n,m)
and q(m)− x(n,m).

3.2 Increasing the flow along the current set of admissible arcs

We call surplus source a transmitting pixel with p(n) > 0; otherwise, it is
called a zero source. A receiving pixel having q(m) > 0 is called a deficient
sink ; otherwise, it is called zero sink. We define as augmenting path a set of
admissible arcs connecting sources and sinks starting from a surplus source
and ending with a deficient sink running through zero sinks and sources in-
terchangeably. Moreover, the flow along admissible arcs connecting zero sinks
with zero sources must be positive. In this step we use a labelling procedure to
determine augmenting paths. It is clear that we can have flow increment only
along augmenting paths. The labelling procedure is described as follows.

Start by labelling all surplus sources and then label all sinks that are con-
nected to those sources with admissible arcs. Then, using the last labelled
sinks, label all sources that are not labelled yet and are connected to those
sinks with admissible arcs of positive flow. Repeat the above procedure un-
til either a deficient sink is labelled or no more nodes can be labelled. If a
deficient sink is labelled, then proceed to flow augmentation along the path
that has been found. If no such path is found, the current admissible flow is
maximal. For faster labelling procedure, we don’t use any extra data structure.
We reorder the pixels of both the transmitting and the receiving image in the
initial data structure depending on whether they are labelled or unlabelled. To
speed up the reordering process, we store the pixel data in doubly linked lists
which need O(1) to move the nodes along the list.

http://www.cs.umd.edu/∼mount/ANN/

350 C. Alexopoulos and V. Drakopoulos

Let θ1 = min{x(m,n)} be the minimum value of the positive flows belonging
to the augmenting path connecting a labelled source and a label sink directed
from sink to source. We define by

θ = min
{
a(n)−

M∑
j=1

x(n, j), b(m)−
N∑
i=1

x(i,m), θ1

}
.

Then, we can increase the flow along the path by setting the value of the
starting source pixel to p(n) − θ, the value of the ending sink to q(m) − θ, by
increasing the flows directed from source to sink by θ and by decreasing the
flows from sink to source by the same amount. A drawback of this labelling
procedure is that, after increasing the flow along an augmenting path, we may
obtain cycles. In order to avoid them, we change the way we apply the labelling
procedure by using only positive admissible arcs during the whole procedure. In
that way, however, we cannot find all the augmenting paths. So, we use a flow
tuning procedure which finds all possible augmenting paths for the current set
of admissible arcs without having to store and use all the zero flow admissible
arcs.

3.3 Flow tuning procedure

We define as surplus flow tree a set of paths starting from a surplus source and
ending to zero sinks. A zero flow tree is a flow tree with a zero source as starting
node. The main purpose of the flow tuning procedure is to find admissible
arcs that connect zero sources belonging to surplus flow trees and unlabelled
deficient sinks. To do that, a kd-tree is constructed using the coordinates of
the unlabelled deficient sinks. Then, using the kd-tree structure for each zero
source belonging to a surplus flow tree, we locate all the deficient unlabelled
sinks that lay within a distance α(n) from itself. After that, a new augmenting
path has been located and the flow is augmented as described in the previous
subsection. According to the definition of the augmenting path, there is no
reason to search for arcs that connect zero sources that belong to zero flow
trees with unlabelled zero sinks. In such a way we decrease the number of
sinks as well as the number of considered sources. The first one leads to a faster
construction of the kd-tree whereas the second one minimises the number of
input points.

3.4 Dual variable update and the new set of admissible arcs

When no more augmenting paths can be located for the current set of admissible
arcs, we proceed to the dual variable update procedure. The main reason for
updating the dual variables associated with both sources and sinks is to create
new admissible arcs in order to achieve the maximal and also the optimal flow.
According to Kaijser[7], if the underlying metric is the L1-metric, the dual
variable can be changed by δ = 1. In order to preserve the current flow along
the current set of admissible arcs, the dual variables are changed as follows:

αnew(n) = αold(n) + δ, n ∈M1, αnew(n) = αold(n), n ∈ U1,

Chaotic Modeling and Simulation (CMSIM) 2: 345–354, 2012 351

βnew(m) = βold(m)− δ, m ∈M2, βnew(m) = βold(m), m ∈ U2,

where M1 and M2 denote the sets of indices of labelled sources and sinks,
respectively, whereas U1 and U2 denote the sets of indices of unlabelled sources
and sinks, respectively. To improve the dual variable update, we define a new
variable ∆ as the running total of the dual variable changes as the algorithm
evolves; see also [1]. We apply the above mentioned dual variable change routine
using ∆ instead of δ. Because of the way we change the dual variables, new
positive flow admissible arcs are created between the labelled surplus sources
and the unlabelled deficient sinks. To find out the new set of admissible arcs,
a kd-tree is constructed using the coordinates of the unlabelled deficient sinks.
Then, for each surplus source, we locate all the deficient sinks that lay within
a distance of α(n) + ∆ from it. After finding out the new set of positive flow
admissible arcs, the algorithm is applied again until no more surplus nodes
exist.

4 Results

We now present typical results from the application of our algorithm to real
images, aiming to demonstrate its applicability to the demanding problems
inherent in the image compression area and its performance. The original
images used as our reference point in the experiments presented here are the
256 × 256 × 8 bpp Lena and Barbara images shown in Figure 1. We examine

Fig. 1. The original images of Lena (left) and Barbara (right) used in our experiments
(256 × 256 × 8 bpp).

for each original image how close it is to a filtered or compressed replica of it.
In other words we seek to measure the difference (i.e. the error) between two
images by computing the Kantorovich distance between the original image and
each of the associated filtered ones.

The compression schemes used in our simulations for the image of Lena
include a wavelet scheme (Figure 2(a)), which represents a generic and efficient

352 C. Alexopoulos and V. Drakopoulos

(a) (b)

(c)

Fig. 2. 256× 256× 8 bpp test images used in our experiments ((a)wavelet, (b) JPEG
and (c) fractal 8:1 compression are used).

solution to the perfect inversion problem, a Joint Photographic Experts Group
(JPEG) codec in its Corel 7 implementation (Figure 2(b)) and a fractal scheme
of 8:1 compression ratio (Figure 2(c)). Figure 3 shows compressed images of

µ, µ1 µ, µ2 µ, µ3 ν, ν1 ν, ν2 µ, ν

dK 2,789,456 8,562,357 4,532,730 3,125,789 8,998,678 15,853,930
tK 26:06 40:12 39:10 29:30 42:56 1:01:46

Table 1. The Kantorovich distance dK between the real-world images and the com-
putation time in hour:min:sec format.

Barbara at a ratio of 64:1 using (9,7) DWT combined with RLE and JPEG
coding respectively. The correspondence between the images of Lena and the
indices is the following: µ = original image, µ1 = wavelet compression, µ2 =
JPEG compression and µ3 = 8:1 fractal compression. The correspondence

Chaotic Modeling and Simulation (CMSIM) 2: 345–354, 2012 353

(a) (b)

Fig. 3. 256 × 256 × 8 bpp test images used in our experiments ((a) EZW Shapiro
(9,7) and (b) JPEG compression are used).

between the images of Barbara and the indices is the following: ν = original
image, ν1 = 64:1 compression and ν2 = JPEG compression. Time results are
given in CPU minutes on a CoreTM 2 Duo PC with a 2.13 GHz CPU clock, 4
GB RAM and running Windows 7 Ultimate. Looking at Table 1 from left to
right we can see, which of the images are closer to the originals. The runtime
of our algorithm is better than the one presented in [7].

5 Conclusions

The theory and applications of the Kantorovich metric were considered. A
model based on the primal-dual algorithm was formulated and developed. The
results support the well known fact that the Kantorovich metric unveils the
imperfections of apparently similar images.

References

1.D. S. Atkinson and P. M. Vaidya. Using geometry to solve the transportation prob-
lem in the plane. Algorithmica 13:442461, 1995.

2.M. F. Barnsley. Fractals everywhere, 2nd ed., Academic Press Professional, San
Diego, 1993.

3.J. Brandt, C. Cabrelli and U. Molter. An algorithm for the computation of the
Hutchinson distance. Information Processing Letters, 40:113–117, 1991.

4.Y. Deng and W. Du. The Kantorovich metric in Computer Science: A brief survey.
Electronic Notes in Theoretical Computer Science, 253:73–82, 2009.

5.V. Drakopoulos and N. P. Nikolaou. Efficient computation of the Hutchinson met-
ric between digitized images. IEEE Transactions on Image Processing, 13:1581–
1588, 2004.

6.J. E. Hutchinson. Fractals and self similarity. Indiana University Mathematics Jour-
nal, 30: 713–747, 1981.

354 C. Alexopoulos and V. Drakopoulos

7.T. Kaijser. Computing the Kantorovich distance for images. Journal of Mathemat-
ical Imaging and Vision, 9:173–191, 1998.

8.N. Wadströmer. Coding of fractal binary images with contractive set mappings
composed of affine transformations, PhD thesis, Linköping University, 2001.

9.M. Werman, S. Peleg and A. Rosenfeld. A distance metric for multidimensional
histograms. Computer Vision Graphics Image Processing, 32:328–336, 1985.

