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Abstract: Biological systems are characterized by their potential for dynamic adaptation. 

Such systems, whose properties depend on their initial conditions and response over 

time, are expected to manifest non-linear behaviour. In a previous work we examined the 

oscillatory pattern exhibited by leukemic cells under in vitro growth conditions, where 
the system was simulating the dynamics of growth with disease progression. Our 

question in a previous study evolved around the nature of the dynamics of a cell 

population that grows, or even struggles to grow, under treatment with chemotherapeutic 

agents. We mentioned several tools that could become useful in answering that question, 
as for example the in vitro models which provide information over the spatio-temporal 

nature of such dynamics, but in vivo models could prove useful too. 

In the present work we have studied the non-linear effects that arise from cell 

population dynamics during chemotherapy. The study was performed not only in the 
sense of cell populations per se but also as an attempt of identifying sub-populations of 

cells, such as apoptotic cells and cells distributed within the cell cycle. The temporal 

transition from one state to the next was revealed to follow non-linear dynamics. We 

have managed to approximate the non-linear factor that influences these temporal space 
transitions. Such approaches could become very useful in understanding the nature of 

cell proliferation and the role that certain chemotherapeutic drugs play in cell growth, 

with emphasis given on the underlying drug resistance and cell differentiation 

mechanisms. Further on, we have attempted to approach this problem by using 
experimental data using the case of glucocorticoids. Glucocorticoids are considered to be 

indispensable agents in the treatment of hematologic malignancies. A critical established 

glucocorticoid action is the apoptotic effect that they exert on leukemic cells. However, 

little is known about the molecular response of malignant cells on glucocorticoid 
exposure. Even less is known about the cell proliferation dynamics governing leukemic 

cells under glucocorticoid influence. Dynamic parameters of the cell population state, 

like growth rate or its time derivative, are largely overlooked in cell population studies. 

In the present work a quantitative mathematical and modeling approach is endeavored 
regarding growth and metabolic dynamics. Cell populations and metabolic factors, such 
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as glucose, lactate and lactate dehydrogenase (LDH) are measured. Growth and 
metabolic features are assumed to be of nonlinear nature. A model-based prediction of 

glucocorticoid effects is derived by applying a non-linear fitting approximation to the 

measured parameters. 
To the best of our knowledge there are not many studies dealing with this topic, which 

makes it even more interesting. 
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1 Introduction 

Population dynamics have been the subject of study among various groups. It 

has already been shown that even cells that grow under normal conditions can 

manifest proliferation dynamics of non-linear nature [1, 2]. In addition, other 

groups have demonstrated that this non-linear behavior can also exist under the 

influence of drugs [3], or similarly, under the influence of environmental 

factors. Any new knowledge on the mechanisms underlying cell proliferation is 

of major importance, and even the smallest of indications towards a certain 

direction could enable us to further discover differences in the mechanisms 

distinguishing between health and disease. This issue is especially important in 

tumors, the incidence of which is approaching that of an epidemic. In the 

present study we focused on the dynamics that were revealed through an in vitro 

cell system, and particularly on the dynamics manifested under the influence of 

a certain type of chemotherapeutic drug, such as glucocorticoids. 

Glucocorticoids (GC) are among the most important alternatives in the 

treatment of leukemia. Resistance to glucocorticoids represents a crucial 

parameter in the prognosis of leukemia [4-6], whereas it has been shown that 

GC-resistant T-cell leukemia cells manifest a biphasic mechanism of action or 

imply an inherent resistance mechanism of action to glucocorticoids [7]. New 

questions arise regarding the nature of the dynamics of a cell population under 

the influence of a drug. If certain physical measures, such as proliferation, are 

observed on the phenotypic level, how are they translated on the molecular / 

genomic level? For example, if a cell population increases its rate of 

proliferation, does it mean that the genes required for this effect transcribe faster 

than usual? An interesting report by Mar et al. (2009) suggested that gene 

expression takes place in quanta, i.e. that it happens discretely and not 

continuously [8, 9]. Also, in two other reports it was suggested that gene 

expression follows oscillatory patterns, which makes things even more 

complicated with regards to the proliferation rate, be it growth acceleration or 

deceleration [10, 11]. This means that cells cannot simply transit from one state 

to another in terms of growth rate. Should the hypothesis of oscillatory 

modulation of gene expression, which implies non-linearity, stand correct, then 

a much more complicated regulatory pattern is required by a cell so as to change 

its state, as a function of environmental stimuli. The present work provides 

evidence supporting this view, with respect to glucocorticoids. The answer on 

whether cells possess inherent mechanisms inducing GC tolerance or whether 

they develop resistance as a response to treatment remains elusive. In other 
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words, do cells evolve to a certain phenotype or they already possess traits such 

as drug resistance?  

The same applies for critical aspects of the metabolism of cancer cells and in 

particular, leukemic cells. Already in 1924, Warburg et al. observed that a shift 

occurred in tumors from oxidative phosphorylation to aerobic glycolysis, known 

as the Warburg effect [12]. It is known, that metabolites, or metabolic 

molecules, do not only participate in metabolic processes related solely with 

energy production and thermodynamical conservation of the cell, but also 

mediate numerous signal transduction related functions. 

We did not give emphasis on the molecular profile of proliferating cells but 

rather on cell populations as they are measured during glucocorticoid treatment, 

in a spatio-temporal manner. Previous works have dealt with this issue, giving 

emphasis on the glucocorticoid receptor and the pharmacokinetics of 

glucocorticoids (methylprednisolone) [13, 14]. 

The present work uses numerical analysis methods along with fitting and 

modeling approximations in order to establish a mathematical model for the 

analysis and prediction of the effects of glucocorticoids on T-leukemic cells. 

Also, we attempted to demonstrate the non-linear nature of the present 

biological system using experimental data from both proliferation measures and 

metabolic factor measurements, complementary to the theoretical aspects. We 

have also, tried to measure and calculate physical constants, such as, growth and 

consumption rate and its time derivative (the analogues of velocity and 

acceleration) of the observed processes, if such exist. Overall, the significance 

of the present work relies on the effort to set up a mathematical framework for 

the prediction of glucocorticoid effects on leukemic cells and its connection to 

non-linear phenomena. To the best of our knowledge, there are no previous 

reports on modeling the effects of glucocorticoids on leukemic systems. 

2 Materials and Methods 

Cell Culture and Prednisolone Treatments 

The CCRF-CEM (ALL) cell line was obtained from the European Collection of 

Cell Cultures (ECACC) and was used as the model cell line. The T-

Lymphoblastic Leukemia CCRF-CEM cells were grown in RPMI-1640 medium 

supplemented with 2mM L-Glutamine and Streptomycin/Penicillin 100 U/ml 

(Gibco, Carlsbad, CA), 20% FBS (Gibco, Carlsbad, CA) at 37
o
C, 5% CO2 and 

~100% humidity. Cells were allowed to grow to ~900-1.500×10
3
 cells/ul for 

CCRF-CEM. The following concentrations of prednisolone (Pharmacia, Boston, 

MA) were used: 0μM (control), 10nM, 100nM, 1uM, 10μM, 100uM and 700μM 

[7]. 

Cell Population Measurements 

Cell population counts were determined with the use of a NIHON KOHDEN 

CellTaq-α hematology analyzer. Cells were counted at the -24 h time point as 

well as at 0 h, 4 h, 24 h, 48 h, 72 h after having been let to grow under normal 
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conditions. For this purpose, 200 μl of cell suspensions were obtained from each 

flask and counted directly with the analyzer [7]. 

Biochemical Measurements 

Supernatants from the cell culture were taken every 24h and kept at -80
o
C 

thereafter until further processing. In brief, 1ml of cell culture media was 

centrifuged at 1200 rpm for 10min and the supernatant was removed and kept 

for further processing. Samples were then measured with a Siemens biochemical 

analyzer Advia 1800. The factors measured were Glucose (mg/dlt), Lactic Acid 

(mg/dlt), Lactate Dehydrogenase (LDH, IU/lt) and Alkaline Phosphatase (ALP, 

IU/lt). 

Flow Cytometric Measurements 

Flow cytometry was performed on a Beckman Coulter flow cytometer 

FlowCount XL. Cytotoxicity measurements were performed as previously 

described [7]. All experiments were performed in triplicate. The reported data 

constitute the average of three independent experiments. 

Data Analysis 

Flow cytometry and cell cycle data (cell cycle data not shown) were analyzed 

with WinMDI software version 2.8 (The Scripps Institute, Flow Cytometry Core 

Facility) and Cylchred version 1.0.2 (Cardiff University, Wales) which is based 

on the algorithms proposed by Watson et al. and Ormerod et al [15-17]. Raw 

data from cytometric studies were pre-processed in Microsoft Excel® and 

further data processing was performed with the Matlab® Computing 

environment (The Mathworks Inc.). 

 

3 Mathematical Formulations 

Generalized Cell Population Dynamics under Drug Influence 

In order to establish a modeling approach to the phenomenon described above, 

we discriminated between different cell populations. That is, if at time t a cell 

population is considered to be N, then this is a mixture of cells in various stages. 

More specifically, we have discriminated between the cell cycle phases and cell 

death. The cell cycle is the path through which cells manifest proliferation. The 

identification of cells in specific cell cycle phases is of critical importance, since 

it will determine cellular proliferation, cessation or cell death. Also, in various 

systems the detection of cells at specific cell cycle points, denotes a mechanism 

of reaction to an environmental stimulus, as for example in the present case is 

the glucocorticoid. In Figure 1, we present the model diagrammatically. 

The three phases of the cell cycle are represented. G1,t, G1,t+1, G1,t+n is the 

number of cells in G1 phase at time t, t+1 and t+n respectively, St, St+1, St+n is 

the number of cells in S phase at time t, t+1, t+n, respectively, G2,t is the 

number of cells in G2 phase at time t, t+1, t+n, respectively and CDt, CDt+1, 

CDt+n is the number of dead cells at time t, t+1, t+n, respectively. The arrows 
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connecting the different cell states, denote the possibilities that a cell has to 

transit from one state to another. So, for example, a cell in G1 phase has three 

possibilities: to remain in the G1 phase, to transit to the S phase or to become 

apoptotic, such as cell death (CD). This means that it is impossible for the cell to 

go from the G1 phase to G2 phase. A very important factor shown in Figure 1, is 

the Kfactor,t, which denotes the rate of transition from one cell state to another. 

Hence, the factor k will take the following subscripts: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G1,t→ G1,t+1: k1, G1,t→ St+1: k2, G1,t→ CDt+1: k3, 

St→ St+1: k4, St→ G2,t+1: k5, St→ CDt+1: k6 

G2,t→ G2,t+1: k7, G2,t→ G1,t+1: k8, G2,t→ CDt+1: k9 

CDt→ CDt+1: k10 

The following equations describe the transitions from one state to the next:
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Where, N denotes the respective cell population at time t. These equations could 

be formulated in more generalized form since each population at time t+1 

consists of two other populations at time t. Hence, the generalized form would 

be: , 1 , ,x y zp t p t y p t zN N k N k  
            

 

In other words, our model shows that the next state is defined by the previous 

one. Each cell subpopulation consists of parts of the other subpopulations. 

Fig. 1. A schematic representation of the model 

approach for cell population showing transitions 

between cell cycle phases and cell death. 
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These equations appear to be of linear form and are simple to solve. Yet, the 

factor k is a non-linear factor, which can be determined only experimentally. It 

is dependent upon environmental factors f(environmental), such as nutrient 

availability and space, and in the present case is a function of glucocorticoid 

concentration f(Cp). We have reported this previously, that cell populations 

defined experimentally, could be described with Fourier series, with respect to 

the transition factor k [12]. 

The generalized form of the series we have used for our approach was given by: 

0 1 2( , ) cos( ) sin( )f x y a a xy a xy    

Hence, the factor k for each transition, meaning from one cell state to the next 

would be given by the following system of equations: 
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We could write this system of equations in a more generalized form, which 

would be: 

, ,0 1 , , 1 2 , , 1cos( ) sin( )
y z x y z xp t p t p t p tk a a N N a N N   

, [Eq. 1]
 

Where k is the transition factor, a0,1,2 are constants, Np1,t and Np2,t+1 are the 

populations implicated in the transition at time t and t+1 respectively. 

Substituting the equation describing the generalized k with the equation of the 

generalized Np,t+1 we obtain: 

, [Eq. 2] 

This equation describes the transition of a cell population from one state to the 

next but it cannot be solved analytically. Solutions can only be found 

numerically, since future populations (Nx) depend on the previous ones and on 

the fraction of other future cell populations (Ny,z).  
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Metabolism Dynamics under Drug Influence 

Besides the generalized population model, we also attempted to model the 

glucocorticoid effects, as far as metabolic factors are concerned. A 

mathematical model was set that enabled numerical solutions for the study of 

their effects. As described previously in the previous section, the model 

presumes that the fraction of cells linked to a certain phenotypic effect can be 

derived from the previous total cell population so, let Ne,t+1 be the cell 

population under a certain effect. This effect can be, for the present analysis, 

either viability or cell death. Therefore, the total population estimate under the 

impact of a given effect will be given by: 

TABLE I 
SYMBOLS AND UNITS FOR VARIABLES 

Symbol Quantity Units 

Nt Total cell population at time t  cells/ul ∙103 

Ne Cell population under an effect, e can 

take the following values: 

v: viable 

n: necrotic 

a: apoptotic 

ea: early apoptotic 

ta: total apoptotic 

td: total cell death 

cells/ul ∙103 

NG1 Cell population in G1 phase of the cell 

cycle  

cells/ul ∙103 

NS Cell population in S phase of the cell 

cycle 

cells/ul ∙103 

NG2 Cell population in G2 phase of the cell 

cycle 

cells/ul ∙103 

k The factor by which total population 

proliferates from time t to time t+1. 

 

Ke,t The factor by which cell population 

under a certain effect proliferates from 

time t to time t+1. e takes values as 

mentioned above in the same table 

 

CG Glucose concentration mg/dlt 

CLA Lactic Acid concentration mg/dlt 

CALP Alkaline Phosphatase concentration IU/lt 

CLDH Lactate Dehydrogenase IU/lt 

km The factor by which metabolic factors 

are produced or consumed. from time t 

to time t+1. m can take the following 

values: 

 

 G: Glucose  

 LA: Lactic Acid  

 ALP: Alkaline Phosphatase  

 LDH: Lactate Dehydrogenase  

um Reaction rate (reaction kinetics) M/sec 
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,( 1) , ,e t e t e tN k N   , (1) where 
,e tk is a generalized nonlinear coefficient of the 

effect e  in the population 
,e tN at this instance. 

At the same time, apart from cell proliferation, we have to account for metabolic 

factors that change over time and probably influence the course of proliferation. 

In the case of metabolic factors, the rate of change in concentration is defined as 

the rate of the respective reaction which is: 

m
m

dC
u

dt
  [Eq. 3]. However, in the present case two of the substances 

measured are glucose and lactic acid. It is known that glucose is transformed 

into two lactic acid molecules based on the reaction: 

C6H12O6→2CH3CHOHCOOH. This is due to the formation of two molecules of 

pyruvate from the anaerobic catabolism of glucose and the subsequent 

formation of two molecules of lactate in the cytosol. However, this reaction 

represents a lump reaction, namely one that represents the algebraic sum of 

many reactions. With many intermediates in between and therefore kinetic rules 

such as Michaelis-Menten or Le Chatelier’s/Van’t Hoff cannot be directly 

applied to these data. However, under the assumption that there is not 

significant biochemical cross-talk of these intermediates with other external 

metabolic pools, the lumping of the reactions to a single one, is plausible as is 

the case of lactate production through the catalysis of pyruvate. The substrates 

of this reaction were measured. LDH concentration can be accounted only from 

cells that were lysed and not from the total population. Although the LDH 

concentration can be numerically calculated, it would still not be a reliable 

numerical approximation. Therefore, we used the same principle as in the case 

of cell population. The concentration C of a metabolite or substance at time t+1 

can be written as: 

,( 1) , ,m t m t m tC k C   , [Eq. 4]. Applying mass balance equations [18] for the 

metabolic pools with respect to time we have, 
, ,

m
m t m t

dC
k C

dt
   where ,m tk  is 

a generalized coefficient of the net effect observed in the pool ,m tC  at time t. 

This resembles a modification of the Lotka-Voltera-Kolmogorov equations 

which were initially used for the description of reaction dynamics and further 

expanded to population dynamics [19, 20]. The Lotka-Voltera functions were 

derived from the Verhulst logistic equation [21]. Though succinct this 

mathematical formulation introduces through the use of factor ,m tk , non- 

linearity. Coefficient ,m tk  bears a critical biological significance in the model. 

Presuming that the effects in this study are directly linked to glucocorticoid 

exposure, k=f(Cp), where p stands for prednisolone, the glucocorticoid used in 

the present study, the effects observed depend solely on the drug’s 

concentration. In order to approximate the values, i.e. numerically solve our 
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functions, we have used phase-space maps of the measured data. Symbols and 

definitions are given in Table I. 

4 Results 

The major challenge of computational and systems biology is to make 

contributions to the description of population and reaction dynamics [22]. This 

is applied to both systems under no external influences but also to systems under 

the influence of external stimuli, such as pharmacological interventions (as in 

the present case) or environmental stresses. In the case of the cell system studied 

in the present work, the most interesting observation was that the system was 

resistant to GCs and therefore our attempt was in fact to model dynamics of 

cellular growth and metabolism in resistant cases. Future research directions 

could point towards describing drug effects as a function of time or 

concentration and towards predicting the outcome of certain treatments or even 

towards improving the state of treatment in such a way, that it would be more 

effective. We suggest that the transition of the cell system that we have studied 

from one state to the next, follows complicated dynamics, manifesting in almost 

all cases oscillatory behaviour. The use of mathematical and modelling tools for 

the discovery of such mechanisms is a unique method for understanding 

complicated biological systems. Many research efforts are dedicated to the 

improvement of the existing or to the development of new pharmaceuticals. In 

Figure 2, experimental measurements are presented as an effort to calculate the 

rate of population change for the total population and data were fitted with 

Fourier series. 

 

Modelling approaches could assist in such efforts as they would provide with a 

more in-depth understanding of biological systems. The general idea is to be 

able to predict the future states of a system, based on the present ones. This is 

proved to be a difficult task, since biological systems follow nonlinear 

Fig. 2. Simulating the factor k in relation to time (A) and glucocorticoid concentration (B) 

showed that both could be fitted with Fourier series. In (A) the x-axis corresponds to 

experimental values from time point measurements of cell numbers, while each curve 

corresponds to the respective k factor of each glucocorticoid concentration. Similarly, in (B) the 

x-axis corresponds to the glucocorticoid concentrations and each curve corresponds to the time 

points measured. 

B A 
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behaviour and, unlike physical systems, there are only a few generalizations that 

can be formulated. In Figure 3, we have performed numerical approximations of 

the function (Eq. 2) in order to represent this schematically. The function 

appeared to give interesting dynamics, as it manifested a saddle point. Also, 

these phenomena were time dependent, as clearly seen on the experimental 

level. Thus, by differentiating with respect to time we could obtain a possible 

role of the temporal factor in this system. Similarly, we have made numerical 

approximations in order to design the dynamics of the first derivative for both 

variables, that is Np,y and Np,z. The result is presented in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Using a numerical 

approximation of the function 

describing the population 

transitions manifested interesting 

dynamics as they formed a saddle. 

 

Fig. 4. Numerical representation of the first partial derivative with respect 

to Np,y (upper left and right) and with respect to Np,z (lower left and right). 
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Accordingly, as far as metabolic data are concerned, the determination of the 

factor k was implemented with numerical approximations. We have assumed 

again that k is a nonlinear factor. The first aim was to determine the dynamics of 

the factor k i.e. how it changes as a function of concentration. In order to do this, 

we used the simplified model presented in Figure 5. Glucose measurements 

were taken from cell culture supernatants (CG). We assumed that glucose 

entering the cell was transformed as a total into ATPs and pyruvate. Since cells 

presumably follow a lactic acid fermentation cycle, pyruvate should be 

transformed into lactate through LDH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, the enzyme LDH (Lactate Dehydrogenase) was measured as a 

function of the total population of necrotic cells (CLDH). It is important to note 

that LDH is released from the cells only if cell lysis takes place, thus allowing 

the contents of the cytosol to be released in the extracellular medium. 

At the same time the measured lactate (CLA) was considered to be diffused from 

both living and apoptotic cells and also released from necrotic cells due to cell 

membrane lysis. Finally, we accounted for three possible cell fates: progression 

of proliferation (Nv), necrosis (Nn) and apoptosis (Nta). One of the first 

correlations calculated was that of the measured LDH and the respective number 

of necrotic cells. We would be expected to observe a positive correlation 

between the two factors. We have previously reported that LDH concentration 

and necrotic cell population indeed showed a positive correlation in two 

particular cases: untreated cells and cells treated with a large dose of 

prednisolone (700uM) [23]. This effect can be interpreted as follows: all other 

glucocorticoid concentrations beside necrotic cell death, also lead to the rupture 

of the cell membrane and cell lysis. Interestingly, the largest concentration that 

would be expected to have a lytic effect due to the overdose per se, showed a 

negative correlation, exactly matching that of cells with no glucocorticoid 

treatment. As mentioned earlier, we have attempted to impute numerically the 

factor k by plotting conditions at time t+1 vs. conditions at time t. In other 

Fig. 5. A simple model of cell fate and measurements of metabolic 

factors.  
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words we have attempted to model the total cell population over time as a 

function of the drugs concentrations. As it is shown in Figure 6 it appeared that 

cells followed complicated dynamics under the influence of the glucocorticoids 

even when the cell populations are separated into viable, necrotic and apoptotic. 

The manifested oscillatory behaviour indicates that cells proliferate with 

nonlinear dynamics, and despite the very few data points, their behaviour could 

still be revealed. In addition, the plotting of the phase-space of metabolic factors 

shows that the transition from one state to the other also follows oscillations 

(Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Discussion 

Fig. 6. Phase-space analysis of the different 

populations manifested complex dynamics 

with respect to time. In particular, viable 

cells (A), apoptotic cells (B) and necrotic 

cells (C) manifested oscillatory behavior as 

far as the k factor is concerned as modelled 

with Fourier series. 

Fig. 7. Fitting of glucose concentration CG,t 

vs. CG,t+1 (A), lactate CLA,t vs. CLA,t+1 (B) and 

CLDH,t vs. CLDH, t+1 (C). The factor k 

manifested again complicated dynamics 

resembling oscillatory behavior.  
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In the present work we attempted to identify non-linear factors of cell 

proliferation under the influence of chemotherapeutics, and more specifically 

under the influence of the glucocorticoid prednisolone. We attempted to 

establish an initial theoretical framework for the analysis of such phenomena 

and for future considerations. Cell growth appeared to be of a non-linear 

character. This knowledge could be proved useful in the treatment of tumors, 

since understanding the biology of proliferation would lead us to a better 

understanding of cellular resistance to chemotherapeutics. Biological systems 

are extremely complicated and they manifest, without doubt, non-linear/chaotic 

phenomena. Therefore, as we have mentioned in previous works, we believe 

that the maturity of biological sciences would come through integration with 

other disciplines, such as mathematics and physics, and the ability to give 

generalized models for these phenomena. Such an example is the understanding 

of cell proliferation in which we attempted to contribute with hints. 

We also attempted to create a modelling framework, along with its 

mathematical formulation, for describing the dynamics of leukemic cells under 

the influence of glucocorticoids. We used two factors in our analysis: cell 

populations, including changes in viability and cell death, and metabolic factors. 

Approximations of experimental data of course require large datasets, in order 

to have a more precise view of the fitted phenomena. However, we must 

mention that obtaining large amounts of data from biological systems can 

sometimes be proved to be a tedious task. This is owed to the fact that cells in 

culture preserve a proliferation potential and if they remain in culture for a long 

period of time, the observed results should be accounted for additional effects 

besides the one under investigation. In the present analysis, the Jacobian matrix 

J determines the transition dynamics of the system from one state to the next. In 

a previous work the use of Jacobian matrices was used for the determination of 

the possible dynamics of a system at a metabolic state [22]. There is a great 

amount of mathematical formulations concerning biological systems dating 

back in the early 19
th
 century but the whole idea of integrating biological 

systems with analytical or stochastic formulations is still in its infancy [13, 19-

21]. Therefore, such approaches could prove very useful in gaining more insight 

into the proliferation dynamics of cell populations and the dynamics emerging 

under the influence of external stimuli such as chemotherapeutics. 
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APPENDIX 

The functions that have been used for the fitting of the data and the 

mathematical formulations were the following: Quadratic: 

 a) 2y ax bx c    

b) Cubic: 3 2y ax bx cx d     

c) polynomial of n
th
 , m

th
 degree: 

1 1

1 1 1 1 0 0( , ) ...n m n m

n m n mf x y a x b y a x b y a xb y a b 

      d) d) 1
st
  order 

Fourier Series:  1 1 0cos( ) sin( )a xw b xw a   

e) 2
nd

 order Fourier Series: 

2 1 2 1 0cos(2 ) cos( ) sin(2 ) sin( )a xw a xw b xw b xw a    ff) Lotka-Voltera 

equations: ( )

( )

dx
x y

dt

dy
y x

dt

 

 

 

  

 

g) Kolmogorov variation of Lotka-Voltera functions 

0 1 2

0 1 2

( , )

( , )

( , )

( , )

dx
f x y x

dt

dy
g x y y

dt

f x y A A x A y

g x y B B x B y





  

    
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