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1 Introduction

Many of modern machines, mechanisms and engineering devices in the capac-
ity of constructive elements contain the cylindrical tanks partially filled with a
fluid. Therefore investigation of oscillations of free surface of a fluid in cylin-
drical tanks is one of the main problems in hydrodynamics throughout last
decades [1]. Since seventieth years of past century were constructed, so-called,
”low–dimensional” mathematical models describing such oscillations [2]–[5].
The ”low-dimensional” models allow to obtain adequate enough describing
of a problem in cases, when power of source of excitation of oscillations con-
siderably exceeds a power consumed by an oscillating loading (a tank with a
fluid). These cases are defined as ideal in sense of Sommerfeld–Kononenko [6].
However, in real practice, the power of source of excitation of oscillations more
often is comparable with a power which consume the oscillating loading. These
cases are called as nonideal in sense of Sommerfeld–Kononenko. In these cases
it is necessary to consider interacting between a source of excitation of oscilla-
tions and oscillating loading, that leads to essential correction of mathematical
models which applied in ideal cases [7]–[9].

Nonideal, in sense of Sommerfeld–Kononenko, dynamic system ”tank with
a fluid–electromotor” in case of horizontal excitation of a platform of tank
are considered in the given article. Investigations of such systems have been
begun in work [10], where the mathematical model of such systems has been
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constructed for the first time. In such model the interacting between a source
of excitation of oscillations and a tank with fluid were taken into account.

The main goals of this work is detection of new peculiarities of transition
to the deterministic chaos in systems ”tank with a fluid–electromotor”.

2 Mathematical model of hydrodynamic system
”electric motor–the tank with fluid”

Let’s consider rigid cylindrical tank partially filled with a fluid. We will assume
that the electric motor of limited power excite horizontal oscillations of platform
of tank (fig. 1). The given hydrodynamic system is typical nonideal, in sense of
Sommerfeld–Kononenko [6], deterministic dynamic system. As shown in [7]–
[9] mathematical model of system ”tank with a fluid–electric motor” may be
described by following system of differential equations:

Fig. 1. The scheme of the system

dp1
dτ

= αp1 − [β +
A

2
(p21 + q21 + p22 + q22)]q1 +B(p1q2 − p2q1)p2;

dq1
dτ

= αq1 + [β +
A

2
(p21 + q21 + p22 + q22)]p1 +B(p1q2 − p2q1)q2 + 1;

dβ

dτ
= N3 +N1β − µ1q1;

dp2
dτ

= αp2 − [β +
A

2
(p21 + q21 + p22 + q22)]q2 −B(p1q2 − p2q1)p1;

dq2
dτ

= αq2 + [β +
A

2
(p21 + q21 + p22 + q22)]p2 −B(p1q2 − p2q1)q1.

(1)

The system (1) is nonlinear system of differential equations of fifth order.
Phase variables p1, q1 and p2, q2, accordingly amplitudes of dominant modes
of oscillations of free surface of fluid. The phase variable β is proportional to
velocity of rotation of shaft of the electric motor. There are six parametres
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A,B, α,N1, N3, µ1 of system (1), which are defined through physical and geo-
metrical characteristics of tank with a fluid and electric motor. α – coefficient
of forces of a viscous damping; N1, N3 – parameters of static characteristics of
the electric motor; µ1 – coefficient of proportionality of the vibrating moment;
A and B–the constants which sizes depend on diameter of a tank and depth of
filling with its fluid.

In works [7]–[9] existence of the deterministic chaos in system (1) has been
proved, some types of chaotic attractors are classified and shown that chaotic
attractors are typical attractors of the given system. We will notice that the
detailed and all-round study of chaotic dynamics of system (1) is possible only
by means of a series of numerical methods and algorithms. The technique of
carrying out of such researches is described in works [7]–[9], [11].

3 Numerical research of dynamic regimes

Let’s begin our investigations by construction the map of dynamic regimes
of system. The map of dynamic regimes represents the diagram in a plane,
on which coordinate axes values of two parameters of system are marked and
various colors (color shades) ploted areas of existence of the various steady-
states dynamic regimes. The technique of construction the map of dynamic
regimes is described in [8].

In fig. 2 the map of dynamic regimes of system ”tank with a fluid–electromotor”
constructed in regard to parameters N3 and α is presented at values A =
1.12;B = −1.531;µ1 = 0.5;N1 = −1.

 

Fig. 2. The map of dynamic regimes of system.

In the received sheet of a map (fig. 2) areas of three various types of dynamic
regimes are ploted. Areas of values of parameters N3, α in which equilibrium
position will be the steady-state regime of system are ploted by white color.
Gray color corresponds the areas of values of parameters N3, α at which limit
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cycles will be the steady-state regimes of system. At last, areas in which the
steady-state regimes of system will be chaotic attractors are ploted by black
color. Areas of existence of deterministic chaos (black areas) occupy the con-
siderable space in a map of dynamic regimes. It testifies that the deterministic
chaos is a typical steady-state regime of system (1).

Studying of types of the steady-state regimes of system (1) and features
of realization of possible scenarios of transitions between dynamic regimes of
different types we will investigate at changing of parameter N3 along vertical
section of a map (fig. 2) at α = −0.3.

Let’s consider the scenario of transition to chaos, which is realized in system
at values of parameter N3 which go out through the right boundary of a window
of periodicity −0.65269 < N3 < −0.6296. At each value of parameter in interval
−0.65269 < N3 < −0.6369 in system simultaneously exist two stable single-
turn limit cycles. Their projections of phase portraits, built at N3 = −0.64,
are presented in fig. 3a–b. These projections are symmetrical in regard to an
abscissa axis p2 = 0. At parameter increasing, at valueN3 = −0.6368, happen a
period-doubling bifurcation. In system simultaneously exist two two-turn limit
cycles of the doubled period. Projections of phase portraits of cycles of doubled
period at N3 = −0.6368 are shown in fig. 3c–d. Projections of these cycles also
are symmetrical in regard to an abscissa axis. The further increasing of value of
parameter N3 leads to arising of the symmetrical cycles of quadruple period etc.
Such infinite process of periods-doubling of simultaneously existing symmetrical
cycles comes to an end with arising of a chaotic attractor at N3 = −0.6295
(fig. 3e–f).

The projection of the arising chaotic attractor (fig. 3e) consists of two sym-
metrical parts in regard to horizontal axis. Amplitudes of temporal realizations
of the given chaotic attractor more than twice exceed amplitudes of temporal
realizations of limit cycles of the cascade of bifurcations of period-doubling.
Accordingly the chaotic attractor is localized in considerably more volume of
phase space than volume of localization of any cycles of cascade of period-
doubling. Moving of a typical trajectory on a chaotic attractor can be conven-
tionally divided into two phases. In first of these phases the trajectory makes
chaotic walks along coils of upper or lower parts of chaotic attractor. In an
unpredictable moment of time the trajectory ”jumps” from the upper or lower
part of an attractor in its symmetrical part and again starts to make chaotic
walks. Such process is repeated the infinite number of times. Thus transi-
tion to chaos has peculiarities which typical as for the Feigenbaum’s scenario
(infinite cascade of bifurcations of period-doubling of limit cycles), and as for
an intermittency (an unpredictable intermittency between the upper and lower
parts of arising chaotic attractor).

In fig. 4 are shown the distribution of spectrum density (Fourier–spectrums)
of the constructed regular and chaotic attractors. Fourier–spectrums of single-
turn limit cycles and their first bifurcation of a period-doubling (fig. 4a–b)
are discrete and harmonic. It is easy to observe occurrence of a new harmon-
ics in Fourier–spectrum in fig. 4b, that typical for the Feigenbaum’s scenario.
Distribution of a spectral density of a chaotic attractor at N3 = −0.6295 is
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Fig. 3. Projections of phase portraits of limit cycles at N3 = −0.64 (a–b), N3 =
−0.6368 (c–d) and chaotic attractor at N3 = −0.6295 (e–f)
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continuous. In its Fourier–spectrum practically completely disappear separate
spectral peaks.

  

a b

 

c

Fig. 4. Fourier–spectrum of limit cycles at N3 = −0.64 (a), N3 = −0.6368 (b) and
chaotic attractor at N3 = −0.6295 (c)

Further consider the transition to deterministic chaos through the left bound-
ary of a window of periodicity

−0.65269 < N3 < −0.6296. (2)

As it has been told earlier, at each value of parameter in interval −0.65269 <
N3 < −0.6369 in system simultaneously exist two symmetrical, in regard to
an abscissa axis, and stable single-turn limit cycles (fig. 3a–b). At reaching in
parameter N3 the left boundary of a window of periodicity (2), the both limit
cycles are disappearing and in system arise a chaotic attractor. The projection
of a phase portrait of a chaotic attractor of this kind is presented in fig. 5a.
The constructed projection of this chaotic attractor is symmetrical in regard
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to axis p2 = 0 and outwardly is similar with a projection of a chaotic attractor
shown in fig. 3e.

  

a b

Fig. 5. Projections of phase portrait (a) and distribution of invariant measure (b) of
chaotic attractor at N3 = −0.6527

In fig. 5b distribution of an invariant measure in a phase portrait of a chaotic
attractor is shown at N3 = −0.6527. The constructed distribution makes clear
the mechanism of arising of the given chaotic attractor. Contours of accurately
traced area in fig. 5b under the shape represent two ”pasted together” the
symmetrical limit cycles presented in fig. 3a–b. Scenario of arising of chaos
has many typical characteristics of an intermittency of Pomeau-Manneville.
However, in this case the moving of trajectory in an attractor consists of three
phases, two laminar phase and one turbulent.

In the first laminar phase the trajectory fulfils quasi-periodic motions in a
small neighbourhood of one of ”pasted together” disappeared cycles, either
of ”upper” or of ”lower”. In an unpredictable moment of time happens a
turbulent cruption outburst and a trajectory leaves away from a neighbourhood
of the disappeared cycle into distant phase space areas. To such turbulent phase
of motion answer a more pale areas in distribution of an invariant measure in
fig. 5b. After end of a turbulent phase, the trajectory can return into the first
laminar phase of motion, or transfer in the second laminar phase, to which
correspond quasi-periodic motions in a small neighbourhood of second of the
disappeared limit cycles. Such process of motion of a trajectory in attractor of
type ”one of the laminar phases–a turbulent phase–one of the laminar phases”
is iterate infinitely often. The moments of transition of trajectories into a
turbulent phase, as and the moments of ”switching” of trajectories between
two laminar phases are unpredictable. Thus transition to chaos reminds the
classical scenario of Pomeau-Manneville. However, unlike the classical scenario,
we have not one, but two laminar phases.
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4 Conclusions

Thus computer simulation and a numerical analysis of some aspects of the
regular and chaotic dynamics of nonideal dynamic system ”a tank with a fluid-
electromotor” is carried out. The map of dynamic regimes of system is con-
structed. Atypical peculiarities of realization of scenarios of transition to de-
terministic chaos are revealed and described. The possibility of realization of
the scenario of transition to deterministic chaos, which unites the Feigenbaum’s
scenario and an intermittency is detected. Also transition to chaos through an
intermittency which consists not of one, but of two laminar phases is described.
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Abstract: The idea of buildings in harmony with nature can be traced back to ancient 

times.  The increasing concerns on sustainability oriented on buildings have added new 

challenges in building architecture design and called for new design responses. 

Sustainable design integrates and balances the human geometries and the natural ones. 
As the language of nature, it is, therefore, natural to assume that fractal geometry could 

play a role in developing new forms of aesthetics and sustainable architecture design. 

This paper gives a brief description of fractal geometry theory and presents its current 

status and recent developments through illustrative review of some fractal case studies in 
architecture design, which provides a bridge between fractal geometry and architecture 

design.  

Keywords: Fractal geometry, Architecture design, Sustainability.  

 

1. Introduction 
The idea of buildings in harmony with nature can be traced back to ancient 

Egyptians, China, Greeks and Romans.  At the beginning of 21st century, the 

increasing concerns on sustainability oriented on buildings have added new 

challenges in building architecture design and called for new design responses. 

As the language of nature [1,2], it is, therefore, natural to assume that fractal 

geometry could play a role in developing new forms of design of sustainable 

architecture and buildings. 

 
Fractals are self-similar sets whose patterns are composed of smaller-scales 

copied of themselves, possessing self-similarity across scales. This means that 

they repeat the patterns to an infinitely small scale. A pattern with a higher 

fractal dimension is more complicated or irregular than the one with a lower 

dimension, and fills more space. In many practical applications, temporal and 

mailto:xiaoshu@cc.hut.fi
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spatial analysis is needed to characterise and quantify the hidden order in 

complex patterns, fractal geometry is an appropriate tool for investigating such 

complexity over many scales for natural phenomena [2,3]. Order in irregular 

pattern is important in aesthetics as it embraces the concept of dynamic force, 

which shows a natural phenomenon rather than mechanical process. In 

architecture design terms, it represents design principle. Therefore, fractal 

geometry has played a significant role in architecture design.   

  

In spite of its growing applications, such works in literature are rather narrow, 

i.e. they mainly focus on applications for fractal design patterns on aesthetic 

considerations. Few works have related to comprehensive and unified view of 

fractal geometry in structural design, for example, as it is intended in this study. 

We aim to fill in this gap by introducing fractals as new concepts and presenting 

its current status and recent developments in architecture through illustrative 

review of some fractal case studies in design. The paper shows that 

incorporating the fractal way of thinking into the architecture design provides a 

language for an in-depth understanding of complex nature of architecture design 

in general. This study distils the fundamental properties and the most relevant 

characteristics of fractal geometry essential to architects and building scientists, 

initiates a dialogue and builds bridges between scientists and architects. 

 

2. Basic Theory of Fractal Geometry 

 

2.1. Basic Theory 
The mathematical history of fractals began with mathematician Karl Weierstrass 

in 1872 who introduced a Weierstrass function which is continuous everywhere 

but differentiable nowhere [4]. In 1904 Helge von Koch refined the definition of 

the Weierstrass function and gave a more geometric definition of a similar 

function, which is now called the Koch snowflake [5], see Figure 1. In 1915, 

Waclaw Sielpinski constructed self-similar patterns and the functions that 

generate them. Georg Cantor also gave an example of a self-similar fractal [6]. 

In the late 19th and early 20th, fractals were put further by Henri Poincare, Felix 

Klein, Pierre Fatou and Gaston Julia.  In 1975, Mandelbrot brought these work 

together and named it 'fractal'.  

 

 

 

 

 

 

 

 

 



Chaotic Modeling and Simulation (CMSIM)  2: 311-322, 2012 313 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Illustration of Koch Curve. 

 
Fractals can be constructed through limits of iterative schemes involving 

generators of iterative functions on metric spaces [2]. Iterated Function System 

(IFS) is the most common, general and powerful mathematical tool that can be 

used to generate fractals. Moreover, IFS provides a connection between fractals 

and natural images [7,8]. It is also an important tool for investigating fractal 

sets. In the following, an introduction to some basic geometry of fractal sets will 

be approached from an IFS perspective. In a simple case, IFS acts on a segment 

to generate contracted copies of the segment which can be arranged in a plane 

based on certain rules. The iteration procedure must converge to get the fractal 

set. Therefore, the iterated functions are limited to strict contractions with the 

Banach fixed-point property. 

 
Let (X, d) denotes a complete metric space and H(X) the compact subsets of X, 

the Hausdorff distance is defined as 

 

h(A,B) = max{d(A,B), d(B,A)}  A, B H(X)  (1) 

 
It is easy to prove that h is a metric on H(X). Moreover, it can be proved that 

(H(X), h) is also a complete metric space [7] which is called the space of fractals 

for X.  

 

A contraction mapping, or contraction w: XX  has the property that there is 

some nonnegative real number k[0,1), contraction factor k, such that 

 

d(w(x), w(y))  k d(x,y)  (2) 
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In non-technical terms, a contraction mapping brings every two points closer in 

the metric space it maps. The Banach fixed point theorem guarantees the 

existence and uniqueness of fixed points of contract maps on metric spaces: If 

w: XX  is a contraction, then there exists one and only one x X such that 

w(x) = x. 

 

The Banach fixed point theorem has very important applications in many 

branches of mathematics. Therefore, generalisation of the above theorem has 

been extensively investigated, for example, in probabilistic metric spaces.  The 

theorem also provides a constructive method to find fixed-point.  

 

An IFS [9] is a set of contraction mappings wi defined on (X, d) with contraction 

factors ki for i = 1,2,…, N. We denote it as{X; wi, i = 1,2,…, N} and contraction 

factor k = max{ki, i = 1, 2,…, N}. Hutchinson [9] proved an important theorem 

on a set of contraction mappings in which IFS is based: Let {X; wi, i = 1,2,…, 

N} be an IFS with contraction factor k. Then W: )()( XHXH   defined as 

 

W(B) = 
N

i

i Bw
1

)(


   )(XHB   (3)  

is a contraction mapping on (H(X), h). From Banach's theorem, there exists a 

unique set )(XHA , the attractor of IFS, such that 

 

A = W(A) = 
N

i

i Aw
1

)(


  (4) 

 

It can be seen that A is self-similar since it is expressed as a union of 

transformations (copies) of itself. The attractor A can be taken as a definition of 

deterministic fractals.  

 

2.2. Fractal dimensions 
Mandelbrot [2] proposed a simple but radical way to qualify fractal geometry 

through fractal dimension based on a discussion of the length of the coast of 

England. The dimension is a statistical quantity that gives an indication of how 

completely a fractal appears to fill space, as one zooms down to finer scales. 

This definition is a simplification of Hausdorff dimension that Mandelbrot used 

to based. We focus on this one and briefly mentions box-counting dimension 

because of its widely practical applications. However, it should be noted that 

there are many specific definitions of fractal dimensions, such as Hausdorff 

dimension, Rényi dimensions, box-counting dimension and correlation 

dimension, etc, none of them should be treated as the universal one. 

 

For )(XHA , let n(A,), <0, denote the smallest number of closed balls of 

radius  needed to cover A. If  
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



 1
log

),(log
lim

0

An
D


   (5) 

 

exists, then D is called the fractal dimension of A.  

 

So n(A,) is  proportional to -D
 as  0 or the exponent D is in n(A,) = -D

 

which is the power law relationship. A power law describes a dynamic 

relationship between two objects which portrays a wide variety of natural and 

man-made phenomena. A key feature of the power law is that the power law 

relationship is independent of scales. A good example of intuition of fractal 

dimension is a line with the length of , where  is the measuring length. 

Assume the line is divided in 3 equal parts and  =
3

1
 then the simplified 

n(A,)= -D
 gives 3 = (1/3)

-D
 with D = 1. Similarly, the Koch curve's fractal 

dimension is D = 
3log

4log
= 1.26.  

 

Practically, the fractal dimension can only be used in the case where 

irregularities to be measured are in the continuous form. Natural objects offer a 

lot of variation which may not be self-similar. The Box-counting dimension is 

much more robust measure which is widely used even to measure images. To 

calculate the box-counting dimension, we need to place the image on a grid. The 

number of boxes, with size s1, that cover the image is counted (n1). Then the 

number of a smaller grid of boxes, with size s2, is counted (n2). The fractal 

dimension between two scales is then calculated by the relationship between the 

difference of the number of boxed occupied and the difference of inverse grid 

sizes [10]. In more chaotic and complex objects such as architecture and design, 

more flexible and robust measures, such as range analysis, midpoint 

displacement, etc, can be employed. For more detailed information, readers may 

refer to Bovill's book [10]. 

 

2.3. Examples of IFS applications 
Fractal geometry is at the conceptual core of understanding nature's complexity 

and IFS provides an important concept for understanding the core design of the 

natural objects as well as approximating the natural design. In this subsection 

we outline the evolution of the idea of IFS with our calculation examples.  

 

We know that the Banach's fixed-point theorem forms the basis of the IFS 

applications. However, applying the theorem in practiced raises two central 

questions. One is to find the attractor for a given IFS. The other is to find IFS 

for a given attractor, an inverse problem of the first. 
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For the first problem, the attractor can be obtained by successive 

approximations from any starting point theoretically. From a computational 

point of view, two techniques, deterministic and stochastic, can be applied. The 

deterministic algorithm starts with an arbitrary initial set to reach the attractor. 

The stochastic algorithm is often more complex but more efficient.  A stochastic 

algorithm associates to the IFS system a set of probabilities by assigning a 

probability to each mapping, which is used to generate a random walk.  If we 

start with any point and apply transformations iteratively, chosen according the 

probabilities attached, we will come arbitrarily close to the attractor. The 

associated probabilities determine the density of spatially contracted copies of 

the attractor. Therefore, the probabilities have no effect on the attractor but 

influence significantly the rendering of its approximations.  

 

The second problem, the inverse problem, can be solved by Barnsley's Collage 

Theorem, a simple consequence of Banach’s fixed point theorem. Such 

procedure was illustrated nicely through the 'Barnsley fern' in [9] and [11] using 

four-transformation IFS with associated probabilities.  Figure 2 shows our 

calculation examples of fractals using four-transformation IFS with variations 

and their associated probabilities produced by Matlab, where 20000 iterations 

were set. These fractals actually have more than one attractor. In Figure 2, the 

four-transformation matrices are 

 


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
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










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7.195.005.0

004.076.0

D
  (6)  

 
D has the probability 0.75 and others 0.083. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Calculation examples of fractals using IFS with variations. 

 



Chaotic Modeling and Simulation (CMSIM)  2: 311-322, 2012 317 

 

3. Applications of Fractal Geometry to Architecture Design 

 

3.1. Applications of IFS 
IFS provides wide range of architecture design applications in patterns and 

structures. Very often, IFS codes are used to generate fractals. For example, 

topology (layout) optimization has been proposed and is based on  IFS 

representations with various applications [12]. Chang [13] proposed a 

hierarchical fixed point-searching algorithm for determining the original 

coordinates of a 2-D fractal set directly from its IFS code. The IFS code cane be 

modified according to the desired transformation. Figure 3 shows the Castle 

with different reflection directions generated by the modified IFS codes. 

 

 

 

 

 

   

, 
 

 

 

 

 

Fig. 3. Castle example generated by the modified IFS codes [13]. 

 

 

3.2. Applications of fractal geometry 
Fractal geometry has been applied in architecture design widely to investigate 

fractal structures of cities [14] and successfully in building geometry [15,16] 

and design patterns [10].  

 

Early fractal building patterns can be traced to ancient Maya settlement. Brown 

et al. analysed fractal structures of Maya settlement and found that fractals 

exhibit both within communities and across regions in various ways: at the 

intra-site, the regional levels and within archaeological sites. Moreover, spatial 

organisation in geometric patterns and order are also fractals, which presents in 

the size-frequency distribution, the rank-size relation among sites and the 

geographical clustering of sites [17] 

 

In Europe, fractals were found in the early 12th century buildings. The floor of 

the cathedral of Anagni in Italy built in 1104 is adorned with dozens of mosaics 

in a form of a Sierpinski gasket fractal (See Figure 4). 
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Fig. 4. The floor of the cathedral of Anagni in Italy [18]. 

 

Fractals have been applied to many elevation structures to exclusively address 

power and balance. Some very excellent examples of classical architecture can 

be seen in many parts of the Europe, in the Middle East and Asia which have 

effects of fractal elevations, for example, Reims’ cathedral and Saint Paul 

church in France, Castel del Monte in Italy and  many palaces in Venice (ca’ 

Foscari, Ca’ d’Oro, Duke Palace, Giustinian Palace) in Italy. Venice has been 

one of the most talked about fractal Venice [18] (see Figure 5). More vital 

evidence shows that fractals exist in Gothic cathedral in general. The pointed 

arch, an impression of elevation, appear in entrance, at windows and the costal 

arch with many scales and details [19]. Figure 6 displays the elevations of a 

five-floor tenement building in the historical part of Barcelona which shows 

self-organisation structure. 
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Fig. 5. Fractal building in Venice [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  A tenement house in the historical part of Barcelona, Spain: the 

elevation's photograph from the 90-s (left part ); the geometric synthesis shows 

the original architecture design (middle part) [20]. 

 

In the Middle East, fractal patterns have been adopted widely in designing 

stucco, a typically Persian art form for the decoration of dome interiors. In 

Figure 7, the pattern in the dome interior has four attractors surrounding the 

main one at the center (Sarhangi).  
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Fig. 7. Stucco dome interior in a private house in Kashan [21]. 

 

In Asia, architectures with fractal structures have also been found in Humayun’s 

Mausoleum, Shiva Shrine in India and the Sacred Stupa Pha That Luang in 

Laos. Fractals have been used to study Hindu temples. In China, some mosques 

in the west were more likely to incorporate such domes which are fractals.  One 

important feature in Chinese architecture is its emphasis on symmetry which 

connotes a sense of grandeur [22]. 

 

Besides geographical localities, in recent times, the concept of fractals has been 

extended in many well known architectures including Frank Lloyd Wright’s 

'Robie House', 'Fallingwater', 'Palmer house' and 'Marion County Civic', which 

demonstrate that fractals have universal appeal and are visually satisfying 

because they are able to provide a sense of scale at different levels. Wright is 

one of the most representatives of organic architects. His designs grew out of 

the environment with regards to purpose, material and construction [10]. 

Fractals have inspired many great modern designers such as Zaha Hadid, Daniel 

Liebeskind, Frank Gehry and others with many notable fractal architectures 

[20]. Indeed, according to Ibrahim et al, architects and designers started to adopt 

fractals as a design form and tool in 1980th [10]. Yessios et al. was among the 

first utilising fractals and fractal geometry design in architecture [23]. They 

developed a computer program to aid architecture using fractal generators. In 

1990
th
, Durmisevic and Ciftcioglu applied fractal tree as an indicator of a road 

infrastructure in the architecture design and urban planning [24]. 

 

Wen et al. established the fractal dimension relations matrix table analysis to 

classify architecture design style patterns for the masterpieces of three modern 
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architecture masters: Frank Lioyd Wright, Le Corbusier and Mies van der Rohe 

[25]. Figure 8 shows the results. It can be seen that the temporal trends of 

individuals vary. The fractal dimensions of Frank Lioyd Wright are average 

with low beginning in the early 1900
th
 and end in the mid 1930

th
. The trend of 

Le Corbusier goes downside with gentle slope from mid 1900
th
 to mid 1950

th
. 

For the period shown in the grape, the trend of Mies van der Rohe has the same 

trend as that of Frank Lioyd Wright from the early 1900
th
 to the mid 1930

th
. The 

average trend of these three masters goes down in general starting from 1930
th
. 

 

 
Fig. 8. Fractal dimensions for the masterpieces of three modern architects. 

 

 

4. Conclusions 
This paper has illustratively reviewed the fundamental concepts and properties 

of fractal geometry theory essential to architecture design, as well as the current 

state of its applications. Fractal geometry has important implications for 

buildings. The representative review shows that architecture design is not made 

to be isolated but to anticipate changes in the environment. Accumulation of 

technological modernisations, destroying, adapting and many changes have 

caused the design temporal and spatial diversity and complex. More 

specifically, sustainable development in a building can be looked upon as 

adaptability and flexibility over time when it comes to responding to changing 

environment. Chaos and many other nonlinear theories have explained that 

extremely deterministic and linear processes are very fragile in maintaining 

stability over a wide range of conditions, whereas chaotic and fractal systems 

can function effectively over a wide range of different conditions, thereby 

offering adaptability and flexibility. In this context, fractal geometry theory 

offers prescriptive for architecture design. This paper provides a bridge between 

building engineering and architecture and fractal geometry theory. 



Lu et al. 322 

 

References 
1. B. Mandelbrot. Fractals, Form, Chance and dimension, Freeman, San Francisco, 

1977. 

2. B.Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman and Company, 1982. 

3. P.A. Burrough. Fractal dimensions of landscapes and other environmental data. Nature 
294: 240–242, 1981. 

4. K. Weierstrass, On continuous functions of a real argument that do not have a well-

defined differential quotient, in G. Edgar, ed Classics on Fractals, Addison-Wesley, 

Reading, Massachusetts, 3-9, 1993. 
5. H. von Koch. On a continuous curve without tangents constructible from elementary 

geometry, in G. Edgar, ed Classics on Fractals, Addison-Wesley, Reading, 

Massachusetts, 25-45, 1993. 

6. G. Cantor. On the Power of Perfect Sets of Points. in G. Edgar, ed Classics on 
Fractals, Addison-Wesley, Reading, Massachusetts, 11-23, 1993. 

7. M. Barnsley. Fractals Everywhere. Academic Press, 1988. 

8. H.O. Peitgen.1988. Fantastic Deterministic Fractals, in: H.O. Peitgen, D. Saupe. The 

Science of Fractal Images, 202, Springer, New York, 1988. 
9. J.E. Hutchinson. Fractals and self similarity. Indiana Univ. Math. J. 30: 713–747, 

1981. 

10. C. Bovill. Fractal Geometry in Architecture and Design, Birkhauser, Boston, 1996. 

11. M. Ebrahimi, E.R. Vrscay. Self-similarity in imaging, 20 years after "Fractals 
Everywhere", http://ticsp.cs.tut.fi/images/3/3f/Cr1023-lausanne.pdf. 

12. H.T. Chang. Arbitrary affine transformation and their composition effects for two-

dimensional fractal sets. Image and Vision Computing 22: 1117-1127, 2004. 

13. H. Hamda, F. Jouve, E. Lutton, M. Schoenauer, M. Sebag, Compact unstructured 
representations for evolutionary topological optimum design. Appl Intell 16: 139-

155, 2002. 

14. M. Batty, P. Longley. Fractal Cities, London: Academic Press, 1994.  

15. K. Trivedi. Hindu temples: models of a fractal universe. The Visual Computer 5: 243-
258, 1989.  

16. N. Sala. The presence of the Self-similarity in Architecture: some examples. 

Emergent Nature - Patterns, Growth and Scaling in the Sciences, World Scientific 

273-282, 2002.  
17. C.T. Brown, W.R.T. Witschey. The fractal geometry of ancient Maya settlement. 

Journal of Archaeological Science 30: 1619-1632, 2003.  

18. N. Sala. Fractal models in architecture: a case of study. 

http://math.unipa.it/~grim/Jsalaworkshop.PDF.  
19. W.E. Lorenz. Fractals and Fractal Architecture, Mater Thesis, Vienna, 2003.  

20. P. Rubinowicz. Chaos and geometric order in architecture and design. Journal for 

Geometry and Graphics 4: 197-207, 2000.  

21. http://en.wikipedia.org/wiki/Islamic_architecture. 
22. J.S. Cowen. Muslims in China: The mosque. Saudi Aramco World. Retrieved 2006-

04-08, 30-35, 1985. 

23. C.I. Yessios. A fractal studio. ACADIA ’87 Workshop Proceedings, 1987.  

24. S. Durmisevic, O. Ciftcioglu. Fractals in architectural design. Mathematics and 
Design. Javier Barrallo the university of the Basque Country, 1988.  

25. K-C. Wen, Y-N. Kao. An analytic study of architectural design style by fractal 

dimension method, 22nd International Symposium on Automation and Robotics in 

Construction ISARC 2005, Italy, 2005, 
http://www.iaarc.org/publications/fulltext/isarc2005-63wen.pdf 

http://ticsp.cs.tut.fi/images/3/3f/Cr1023-lausanne.pdf
http://en.wikipedia.org/wiki/Islamic_architecture


 

 
Chaotic Modeling and Simulation (CMSIM)  2: 323-335, 2012 

 

 
 

_________________ 

Received:  18 July 2011 / Accepted 30 March 2012  

© 2012 CMSIM                                                                                          ISSN 2241-0503                                                     

          

A Sub Microscopic Description of the Formation of 

Crop Circles 
 

Volodymyr Krasnoholovets
1 
and Ivan Gandzha

2 

 
Indra Scientific, Square de Solbosch 26, Brussels, B-1050, Brussels, Belgium  

(E-mail: 1 v_kras@yahoo.com,  2 gandzha@iop.kiev.ua) 

 
Abstract: We describe a sub microscopic mechanism that is responsible for the 

appearance of crop circles on the surface of the Earth. It is shown that the inner reason 
for the mechanism is associated with intra-terrestrial processes occurring in the outer 

core and the mantle of the terrestrial globe. We assume that magnetostriction phenomena 

should take place at the boundary between the liquid and the solid nickel-iron layers of 

the terrestrial globe. Our previous studies showed that at the magnetostriction a flow of 
inertons takes out of the striction material (inertons are carriers of the field of inertia, 

they represent a substructure of the matter waves, or the particle's psi-wave function; they 

transfer mass properties of elementary particles and are able to influence massive objects 

changing their inner state and behaviour). At the macroscopic striction in the interior of 
the Earth, pulses of inerton fields are irradiated, and through non-homogeneous channels 

of the globe's mantle and crust they reach the surface of the Earth. Due to the interaction 

with walls of these channels, fronts of inerton flows come to the surface as fringe images. 

These inerton flows affect local plants and bend them, which results in the formation of 
the so-called crop circles. It is argued that the appearance of crop circles under the 

radiation of inertons has something in common with the mechanism of formation of 

images in a kaleidoscope, which happens under the illumination of photons.   

Keywords: Crop circles, Inertons, Mantle and Crustle channels, Magnetostriction of 
rocks.  

 

 
1    Introduction 

Crop circles attract attention of many researchers. Studies (see, e.g. Refs. 1-3) 

show that in these circles stalks are bent up to ninety degrees without being 

broken and something softened the plant tissue at the moment of 

flattening. Something stretches stalks from the inside; sometimes this effect is 

so powerful that the node looks as exploded from the inside out. In many places 

crop formation is accompanied with a high degree of magnetic susceptibility, 

which is caused by adherent coatings of stalks with the commingled iron oxides, 

hematite (Fe203) and magnetite (Fe304) fused into a heterogeneous mass [2].  
Researchers [2-4] hypothesized that crop formations involve organised ion 

plasma vortices, which deliver lower atmosphere energy components of 

mailto:v_kras@yahoo.com
mailto:gandzha@iop.kiev.ua
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sufficient magnitude to produce bending of stalks, the formation of expulsion 

cavities in plant stems and significant changes in seedling development.  

It should be noted that an idea of the origin of crop circles associated with the 

atmosphere energy and/or UFO is generally accepted.  

On the other hand, researchers who study geophysical processes and the 

earthquakes note about possible regional semi-global magnetic fields that might 

be generated by vortex-like cells of thermal-magmatic energy, rising and falling 

in the earth's mantle [5]. Another important factor is magnetostriction of the 

crust – the alteration of the direction of magnetization of rocks by directed stress 

[6,7]. 

Moreover, recent study [8] has suggested a possible mechanism of earthquake 

triggering due to magnetostriction of rocks in the crust. The phenomenon of 

magnetostriction in geophysics is stipulated by mechanical deformations of 

magnetic minerals accompanied by changes of their remanent or induced 

magnetization. These deformations are specified by magnetostriction constants, 

which are proportional coefficients between magnetization changes and 

mechanical deformations. A real value of the magnetostriction constant of the 

crust is estimated as about 10
-5

 ppm/nT, which is a little larger than for pure 

iron. Yamazaki’s calculation [8] shows that effects connected to the 

magnetostriction of rocks in the crust can produce forces nearly 100 Pa/year and 

even these comparatively small stress changes can trigger earthquakes.  

Of course, weaker deformations associated with magnetostriction of rocks also 

take place. These are the magnetostriction deformations that we put in the 

foundation of the present study of field circles. 
 

 

2    Preliminaries 

Our theoretical and experimental studies have shown that the phenomenon of 

magnetostriction is accompanied with the emission of inerton fields from the 

magnetostrictive material studied. What is the inerton field?  

Bounias and one of the authors [9-12] proposed a detailed mathematical theory 

of the constitution of the real physical space. In line with this theory, real space 

is constrained to be a mathematical lattice of closely packed topological balls 

with approximately the Planck size, 



hG /c
3 10

-35
 m. It was proven that such 

a lattice is a fractal lattice and that it also manifests tessellation properties. It has 

been called a tessel-lattice. In the tessel-lattice volumetric fractalities of cells are 

associated with the physical concept of mass. A particle represents a 

volumetrically deformed cell of the tessel-lattice. The motion of such a particle 

generates elementary excitations of the tessel-lattice around the particle. These 

excitations, which move as a cloud around the particle, represent the particle’s 

force of inertia. That is why they were called inertons [13,14]. The 

corresponding submicroscopic mechanics developed in the real space can easily 

be connected to conventional orthodox quantum mechanics constructed in an 

abstract phase space. Submicroscopic mechanics associates the particle’s cloud 

of inertons with the quantum mechanical wave 



 -function of this particle. Thus, 
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the developing concept turns back a physical sense to the wave 



 -function: this 

function represents the field of inertia of the particle under consideration. 

Carriers of the field of inertia are inertons. A free inerton, which is released 

from the particle’s cloud of inertons, possesses a velocity that exceeds the 

velocity of light  [15].  

In condensed media entities vibrating at the equilibrium positions periodically 

irradiate and absorb their clouds of inertons back [16]; owing to such a 

behaviour the mass of entities varies. This means that under special conditions 

the matter may irradiate a portion of its inertons. Lost inertons then can be 

absorbed by the other system, which has to result in changes of physical 

properties of the system.  

One of such experiments was carried out in work [17]. Continuous-wave laser 

illumination of ferroelectric crystal of LiNbO3 resulted in the production of a 

long-living stable electron droplet with a size of about 100 μm, which freely 

moved with a velocity of about 0.5 cm/s in the air near the surface of the crystal 

experiencing the Earth's gravitational field. The role of the restraining force of 

electrons in the droplet was attributed to the inerton field, a substructure of the 

particles’ matter waves, which was expelled from the surface of crystal of 

LiNbO3 together with photoelectrons by a laser beam. Properties of electrons 

after absorption of inertons changed very remarkably – they became heavy 

electrons whose mass at least million of times exceeded the rest mass of free 

electrons. Only those heavy electrons could elastically withstand their Coulomb 

repulsion associated with the electrical charge, which, of course, is impossible 

in the case of free electrons. 

We have shown [16] that in the chemical industry inerton fields are able to play 

the role of a field catalyst or, in other words, inerton fields can serve to control 

the speed of chemical reactions. In the reactive chamber we generated inerton 

fields by using magnetostriction agents: owing to the striction the agents non-

adiabatically contract, which is culminated in the irradiation of sub matter, i.e. 

inertons, from the agents. Then under the inerton radiation, the formation of a 

new chemical occurred in several seconds, though usually these chemical 

reactions last hours.  

Therefore, these results allow us to involve inerton fields, which originate from 

the ground, in a study of the formation of crop circles. 

The thickness of the crust is about 20 km. The mantle extends to a depth above 

3000 km. The mantle is made of a thick solid rocky substance. Due to 

dynamical processes in the interior of the Earth, magnetostrictive rocks contract 

with a coefficient of about 10
-5 

[8], which is a trigger mechanism for the 

appearance of a flow of inerton radiation. This flow of inertons shoots up from a 

depth by coming through the mantle and crust channel. Such channels are usual 

terrestrial materials with some non-homogenous inclusions down to tens or 

hundreds of kilometers from the surface of the terrestrial globe (compare with 

bio-energy channels in our body: the crude morphological structure is the same, 

but the fine morphological structure is different, which allows these bio-energy 

channels to display a higher conductivity). 



V. Krasnoholovets and I. Gandzha 326 

A mantle-crust channel can be modeled as a cylindrical tube, which has a cross-

section area equal to A, along which a flow of inertons travels out from the 

interior of the globe. The inner surface of the channel has to reflect inerton 

radiation, at least partly, so that the flow of inertons will continue to follow 

along the channel to its output, i.e. the surface of the Earth. 

 

3 Elastic rod bending model 
 

Let us evaluate conditions under which the stalks of herbaceous plants will bend 

affected by mantle insertions.  

A stalk of a plant can be modeled for the first approximation by an elastic rod 

(Fig. 1). We suppose that it is deformed by an external force distributed 

uniformly over the rod length. This external force is a force caused by a flow of 

inertons going from the ground due to a weak collision of the mantle and crust 

rocks as described above. The rod profile in the projections to the horizontal and 

vertical axes is described as follows [18]. 
 

 x 

 y 

  

  

 fy 

 x 

 y 

  

  

 fx 

                           
Fig. 1. Elastic rod model. 

 

I.  Vertical force yf  (Fig. 1a) 



x 
2IE

fy
1 cos l  cos  cos l ,   



y 
IE

2 fy

cos d

cos  cos l0



 .    (1) 

Here 4/4RI   is the rod’s moment of inertia, 



R  is the rod’s radius, and 



E  is 

the Young’s modulus of the rod’s material. The length of the rod is explicitly 

given as 

                          



l 
IE

2 fy

d

cos  cos l0

 l

 .                                                  (2) 

At the maximum bending we have 2/max   l , so that 

                           



l 
IE

2 fy

d

cos0

 / 2

 
IE

fy
K(1/2) ,                                      (3) 

where 



K(1/2) 1.854  is the complete elliptic integral of the first kind. Hence, 

we come to an expression for the force required to bend the rod by a 



 /2 angle: 
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

fy 
IE

l 2
K 2 (1/2)  3.44

IE

l 2
.                                            (4) 

II. Horizontal force 



fx  (Fig. 1b) 

    








0
sinsin

sin

2
lx

d

f

IE
x ,        sinsinsin

2
 ll

xf

IE
y          (5) 

The length of the rod is explicitly given as  

                                    



l 
IE

2 fx

d

sin l  sin0

 l

 .                                          (6) 

In this case the maximum bending angle should be smaller than 



 /2 (no such a 

force exists that can bend the rod by this angle). So, we select the maximum 

bending angle at 3/ l  and write the corresponding relationship between 

the rod’s length and the acting force: 

                                      



l 
IE

2 fx
2.61   or  



fx  3.41
IE

l 2
,                                (7) 

which is nearly the same as in the previous case (4). 

Now let us evaluate the value of the breaking force



fbreak  fx  fy . We have to 

substitute numerical values 



l  0.5 m, 



R 1.5103 m for the rod and the value 

of elasticity (Young’s) modulus 



E  to expressions (4) or (7). The value of 



E  has 

been measured for many different grasses, see, e.g., Refs. 19-23. According to 

these data, 



E  varies approximately from (0.8 to about 



1)109 kg/(ms
2
). For 

instance, in the case of wheat we can take 



E  3109  kg/(ms
2
), which gives for 

the horizontal breaking force (7) 

                                     



fbreak  fx  3.41
IEYoung

l 2
 0.163 N.                             (8) 

Besides, the authors [19-23] emphasize that for grassy stalks in addition to the 

elasticity modulus one has to take into account the bending stress, the yield 

strength (tensile strength) and the shearing stress. These parameters range from 



7106 to about 



50106 kg/(ms
2
) and, hence, significantly decrease the real 

value of 



f , which is capable to bend stalks. For example, putting for 



E  the 

value of the maximal tensile stress 



50106 kg/(ms
2
) we obtain for the bending 

non-breaking force  

                                    



fbend  fx  3.41
IE tens

l 2
 0.0027  N.                              (9) 

The gravity force acting on the rod is 

                                   



fgrav mg  Vg  R
2l g  0.033 N.                       (10) 

where 



  is the rod’s material density about 



 103
 kg/m

3
, 



m and 



V  are its 

mass and volume, and 



g  9.8 m/s
2
 is the acceleration due to gravity. 

Thus we may conclude that any extraneous force F applied to a grassy stalk will 

be able to fold the stalk to the ground if the value of the force satisfies 

inequalities 

                                    



fbend  F  fbreak                                                           (11) 
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4 Motion of the rotating central field 

 
The inner surface of a mantle-crust channel can be described by a retaining 

potential 



U , which is holding a flow of inertons spreading along the channel 

from an underground source. Let 



  be the mass of an effective batch of 

terrestrian inertons from this source, which interact with a grassy stalk. The 

planar motion of such a batch of inertons in the central field is described by the 

Lagrangian 

                                       ),(
2

222 


 rUrrL                                   (12) 

which is here written in polar coordinates 



r  and 



 ; dot standing for the 

derivative with respect to time. To model a spreading inerton field, the potential 

should include a dependence on the angular velocity, 



U(r, Ý ) , which means 

that we involve the proper rotation of the Earth relative to the flow of inertons. 

For instance, the potential can be chosen in the form of the sum of two 

potentials:  

                                       


  22

22
),( rrrU  .                                     (13) 

In the right hand side of expression (12) the first term is a typical central-force 

harmonic potential, which describes an elastic behaviour of the batch of inertons 

in the channel and the surrounding space; the second term includes a 

dependence on the azimuthal velocity, which means that it depicts the rotation-

field potential. The introduction of this potential allows us to simulate more 

correctly the reflection of inertons from the walls of the mantle channel, which 

of course only conditionally can be considered round in cross-section. 

The equations of motion are then written as  

                          0









ii q

L

q

L

dt

d


,   



i 1, 2, q1  , q2                  (14) 

or in the explicit form  

                                02  







  rrrr ,                                        (15) 

                                0
2

2 












  rr .                                             (16)                                       

These equations can be integrated explicitly or solved numerically at the given 

initial conditions 



r(0) , )0(r , 



 (0) , )0( , and the trajectory of motion can be 

plotted in rectangular coordinates 



{r cos , r sin}. The second equation 

represents the conservation of the angular momentum M: 

    0
2

2 




















 r

dt

d
  or   const

2
-2 













 rM .        (17) 
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Figures 2 and 5 show two possible trajectories at particular values of the 

parameters. The radius of the inner circle is governed by the parameter 



  . 

 

 

 

 

 

 

 

 

 

Fig. 2. Trajectories of the motion of inertons in the rotating central field. 

Parameters for the left figure:



  1 s
–2

, 



   0.5 s
–1

; 



r(0) 10 m, 

0)0( r , 



 (0)  0, 01.0)0(   s
–1

.  

Parameters of the right figure: 1=  s
–2

, 



   0.1 s
–1

; 



r(0) 10 m, 

0)0( r , 



 (0)  0, 01.0)0(   s
–1

. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Velocity 
222||  rrr   of the batch of inertons versus time for the 

case of the trajectory shown in Fig. 2 (left). The max. velocity is  



max 10  m/s. 

 

 

 

 

 

 

 

 

 

 

 

Fig, 4.  Acceleration 
222 )2()(||   rrrrr  of the batch of 

inertons versus time for the case of the trajectory shown in Fig. 2 (left). The 

maximal acceleration is 



amax 10  m/s
2
. 



V. Krasnoholovets and I. Gandzha 330 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Trajectory of the motion of inertons in the rotating central field.  

Parameters for the right figure: 



  1 s
–2

, 



   0.5 s
–1

; 



r(0) 10 m, 

0)0( r , 



 (0)  0, 1)0(   s
-1

. Parameters for the left figure: 



  1 s
–2

, 



   2  s
–1

; 



r(0) 10 m, 0)0( r , 



 (0)  0, 1)0(   s
–1

. 

   

 

 

 

 

 

 

 

 

 

 

Fig. 6. Velocity 
222||  rrr  of the batch of inertons versus time for the 

case of the trajectory shown in Fig. 5 (left). The max. velocity is 



max 12 m/s. 

 

 
 

 

 

 

 

 

 

 

 

Fig. 7. Acceleration 
222 )2()(||   rrrrr   of the batch of 

inertons 

versus time for the case of the trajectory shown in Fig. 5 (left). The maximal 

acceleration is 



amax 15 m/s
2
. 
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In the case of the Newton-type potential, expression (13) changes to  

                                     


  2

2
),( r

r
rU  .                                         (18) 

Then the equations of motion for the Lagrangian (14) become  

                                    0
2

2  







  r

r
rr ,                                   (19) 

                                    0
2

2  







  r

r
rr .                                   (20)                  

the solution to these equations is shown in Fig. 8. 

 

 

 

 

 

 

 

 

 
 

 

Fig. 8. Trajectory of the motion of inertons in the rotating central field with 

parameters 



 / 1 m
3 

s
–2

, 



   0.1 s
–1

; 



r(0) 10 m, 0)0( r , 



 (0)  0,  

01.0)0(   s
-1

. 

In Fig. 9 we show the solution to the equations of motion of a batch of inertons 

for the case of simplified potential (18), namely, when it is represented only by 

the Newton-type potential 



U(r)  /r . 
Figures 4 to 7 give an estimate for the acceleration a  of the batch of inertons: 



a 10 to 15 m/s
2
. 

 

 

 

 

 

 
 

 

 

Fig. 9. Elliptic trajectory of the motion of inertons in the Newton-type potential 

with parameters 



 / 1 m
3
s

–2
, 



   0  s
–1

; 



r(0) 10 m, 0)0( r , 



 (0)  0, 01.0)0(   s
-1

. 
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Figures 2, 4, 8 and 9 depict possible patterns of crop circles generated by flows 

of the mantle-crust inertons. 

Let us estimate now the intensity of inerton radiation needed to form a crop 

circle of total area 



A 100 m
2
. Let rocksM  be the mass of the mantle-crust 

rocks that generate inertons owing to their magnetostriction activity. We have to 

take into account the magnetostriction coefficient



C , which describes an 

extension strain of rocks. In view of the fact of that low frequencies should 

accompany geophysical dynamical processes, we can assume that the striction 

activity of a local group of rocks occurs at a low frequency   (i.e. rocks collide 



N  times per a time 



t  of radiation of inertons). Having these parameters, we 

can evaluate a flow of mass 



  that is shot in the form of inerton radiation at 

the striction of rocks:



  NCM rocks.  

If we put 



M ~ 107 kg, 



C ~ 105 , and 



N  5 we obtain 



  500 kg.  This mass 



  is distributed along the area of 



A  in the form of a flow of the inerton field. 

Let each square metre be the ground for the growth of 1000 stalks. Then 



105 

stalks can grow in the area of 



A 100 m
2
. This means that each stalk is able to 

catch an additional mass 



   /105



 5 g from the underground inerton flow; 

this value is of the order of the mass of a stalk itself. 

Knowing the mass 



  5103  kg of the batch of inertons which interacts with 

a stalk and the acceleration of this inerton batch 



a 10 to 



15 m/s
2
, we can rate 

the force of inertons that bends and breaks up stalks in the large area 



A : 



F  a  0.05 to 



0.075 N. This estimation exceeds not only the threshold 

bending force



fbend  (9), but also the gravity force 



fgrav  (10). At the same time the 

inerton force F does not break physically the stalk, because the value of F still 

satisfies inequalities (11). Therefore, the model developed in this work is 

plausible.  

A flow of mass, which is coming as a pulse of inertons from the interior of the 

Earth to its surface, partly compensates the gravitational acceleration at the 

Earth surface 



g GMEarth /REarth

2  9.81ms
-1

. This statement can be verified in 

places where crop circles appear most frequently.  

 

5 Kaleidoscope model 

 
This kaleidoscope model gives a static description of inerton structures. We 

assume that a bunch of inertons depicted in the centre of Fig. 10 is reflected 

from the walls, whose geometry was selected rectangular in this particular 

example. Multiple reflections from the walls produce the pattern shown in 

Fig. 10. This model can be assumed as an analogy of geometrical optics with 

light reflecting from the mirrors. Uniting the rotating central field model 

described in the previous section and the kaleidoscope model can generate yet 

more complex patterns. 
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                               Fig. 10. Kaleidoscope mode 

 

 

6 Conclusions 
 

In this study we have shown a radically new approach to the conception and 

description of crop circles. The theory developed is multi-aspect and based on 

first submicroscopic principles of fundamental physics. The theory sheds light 

also on fine processes occurring in the crust and the mantle of the terrestrial 

globe. 

The investigation will allow following researchers to improve the mathematical 

model of the description of shapes of crop circles, to correctly concentrate on 

biological changes in plants taken from crop circles, to reach more progress in 

understanding a subtle dynamics of the earth crust, and to contemplate a more 

delicate approach to the development of new methods of earthquake prediction. 
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Abstract: The problem of construction of the deterministic dynamical system from 

output signals (reconstruction) is very important. Two reconstruction methods have been 

used and compared. First one is the method of successive differentiation and the second 

is based on delay coordinates. It was firstly suggested to choose time delay parameter 
from the stable region of a divergence of the reconstructed system. Results show that 

both methods can capture regular and chaotic signals from reconstructed systems of the 

third order with nonlinear terms up to sixth order. Types of signals were examined with 

spectral methods, construction of phase portraits and Lyapunov exponents. 
Keywords: Reconstruction, Dynamical system, Chaotic regime, Successive 

differentiation, Delay time. 

 
1    Introduction 

The problem of reconstruction of deterministic dynamical system from output 

signals is of great importance in studying of properties of experimental signals 

such as acoustic signals, ECG, EEG and so on. Reconstructed dynamical system 

may add a significant qualitative information to chaotic data analysis. Stability 

conditions, bifurcation curves, all types of steady – state regimes could be 

studied for solutions of a reconstructed system. Two reconstruction methods 

have been developed by Crutchfield and McNamara [1] and used for variety of 

signals later [2-4]. The first method is based on suggestion that the signal can be 

presented by a function that has at least three derivatives, so this is method of 

successive differentiation. Applying this method the dynamical system has a 

following form [1-4]: 

 

21 xx   

32 xx   

),,( 32133 xxxFx   
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where ),,( 3213 xxxF  is a nonlinear function. The second method of 

reconstruction is based on delay coordinates. We need to reconstruct the 

dynamical system from the time series of some state variable )(tx  with the 

fixed sampling step dt . We have series of )( kdtxsk  , k=0,1,2,…,N, using 

value of time delay ndt  (which is chosen to yield optimal reconstruction 

[1]) we construct the dynamical system in the form [1-4]: 

 

),,( 32111 xxxFx   

),,( 32122 xxxFx   

),,( 32133 xxxFx   

 

where )()(1 txtx  ; )()(2  txtx ; )2()(3  txtx , ),,( 321 xxxFi  

are nonlinear functions. 

 

2    Construction of Dynamical Systems from Output Signals of 

Pendulum System 

Reconstruction methods are applied to the signals of a deterministic dynamical 

system of pendulum oscillations which may have regular and chaotic regimes 

[5]: 

 

)(
8

1
1.0 3

22

2

13211 yyyyyyy   

1)(
8

1
1.0 3

11

2

23122  yyyyyyy  

Fyyy  323 61.05.0  

 

Nonlinear functions ),,( 321 xxxFi  in the first and second systems  have the 

following form: 

 





3

1,,,,,

3

1,

3

1
321 ...),,(

ijknmo
ijknmoomnkji

ji
ijji

i
ii xxxxxxaxxaxaaxxxF  

 

with nonlinear terms up to third order for the regular signals and up to the six 

order for the chaotic. 

The traditional way to obtain time delay parameter ndt  for the second 

method of reconstruction is to use time interval when the autocorrelation 

function is equal to zero [2-4]. For such chosen   the divergence of a 
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reconstructed system may not be negative. So that we introduce other way to 

choose  . Real system is nonconservative and, the divergence of systems 

should be negative too. For example, for the original pendulum system  div  is 

equal to -0.81. In Figure 1 the dependence of reconstructed systems divergence 

on n  in the steady – state regimes is shown. We choose n  for time delay   

from the stable region of div .  

 

 
a)  

 
b) 

Fig. 1. The dependence of reconstructed systems divergence on n  for  regular 

initial signal 257.0F  (case a) and chaotic 114.0F  (case b). 

 
For every value of the bifurcation parameter F  from the interval 

3.01.0  F  the reconstructed systems were built and the output signals 

were determined. And then the largest Lyapunov exponents [6] were calculated. 

For that purpose we use the fifth – order Runge – Kuttas method with the 

precision of )10( 7O . Initial conditions were selected in the vicinity of the 

original signal, and for the steady – state regime signals we choose 

,218N 004.0dt . 

The dependence of the largest Lyapunov exponent of the pendulum system  on 

values of the bifurcation parameter F  is shown in Figure 2.a. The dependences 

of the largest Lyapunov exponent on  F  for the first and the second 

reconstructed dynamical systems are shown in Figure 2.b – c correspondingly. 

 

 
a) 

 
b) 

 
c) 

Fig. 2.The largest Lyapunov exponent of the pendulum system (case a) and of 

the reconstructed systems  (cases b and c). 

 

, 
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We may see similarity of both graphs to the dependence for the original system 

in Figure 2.a with the exception of the region  18.015.0  F  where the 

transition to chaos occurs. 

 

2    Construction Systems from Regular Output Signal 

As was shown in the book [5] the solution of the pendulum system would be 

regular if bifurcation parameter is F=0.257. We used this value and solved the 

system in order to get the output signal. Then we reconstruct the system using 

the two methods. 

For the second method we reconstruct the system using small initial value for 

the delay parameter and build the dependence of the divergence on value n  and 

choose n  from the stable interval of the  delay parameter (Figure 1.a, n=240). 

As the result the system get the form with nonlinear terms only to the third order 

of nonlinearity. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

Fig. 3.  The portrait of initial pendulum system (F=0.257), case a , the portraits 

of the reconstructed systems, cases b–c, their time realizations, cases d–f, and 

power spectrums, cases g–i. 

 
Projections of the limit cycle with two loops on the plane are shown in Figure 3. 

a–c for the solution of the original system (Figure 3.a) and the reconstructed 
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first and second dynamical systems   (Figure 3.b–c). Since for reconstruction we 

use only the first variable signal phase portrait projections on the plane with the 

second variable only qualitatively are look like the original limit cycle with two 

loops. Time realizations of the first variable and their power spectrums are 

presented in Figure 3.d–i. Figure 3.d and Figure 3.g describes the solution of the 

original system, and Figure 3.e–f and Figure 3.h– i gives the information about 

solutions of the reconstructed dynamical systems. 

Since power spectrum indicates the power contained at each frequency, the peak 

heights corresponds to the squared wave amplitudes (i.e. the wave energy) at the 

corresponding frequencies. The first method of reconstruction gives the solution 

which the power spectrum for the regular signals coincides with the output 

signal power spectrum up to 96% for the first three peaks. The second method 

gives the precision up to 98%. Also the second method determines the 

maximum Lyapunov exponent more precisely for chaotic regimes (with a 

precision to
310( O ) )  than the first method. 

 

3. Construction Systems from Chaotic Output Signal 

Now we use such parameter F for the pendulum original system when this 

system has the chaotic solution, namely F=0.114. Then we reconstruct the 

system using the two methods of reconstruction with nonlinear function 

),,( 321 xxxFi   with nonlinear terms up to the sixth order. For the second 

method we reconstruct the system using small initial value for the delay 

parameter and build the dependence of the divergence on value n  and choose 

n  from the stable interval of the  delay parameter  ( Figure 1.b, n=240). 

Projections of the chaotic attractor of the initial system and of the reconstructed 

systems are shown in Figure 4.a–c. As could be seen from Figure 4 the both 

methods qualitatively good approximate chaotic attractor of  the original system. 

Time realizations of the chaotic attractors after finished transient regimes are 

also similar and given in Figure 4.d–f. Power spectrums for the original signal 

and for the signals from the reconstructed systems are shown in Figure 4.g– i 

and may be approximated by the same decay function fS 5.875.6  . 

 

 
a) 

 
b) 

 
c)  
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d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

Fig. 4.  The portrait of initial system (case a) (F=0.114),  the portraits of the 

reconstructed systems  (cases b –c), their time realizations (d –f) and power 

spectrums (g–i). 

 
3    Construction System from Synthetic ECG Signal 

As practical application of the considered methods the signal of a dynamical 

model for generating synthetic electrocardiogram signals [9] was used. This 

signal is regular and outwardly looks like the electrocardiogram of healthy man. 

Using the method of delay the system of eighth order was built. In Figure 5 

temporal realization is represented by synthetic electrocardiogram. In Figure 6 

temporal realization of the first coordinate of  the solution of the reconstructed 

system is represented. As is obvious from graphs both signals are regular and 

have an identical period of oscillations. 

 

 

Fig. 5. Synthetic electrocardiogram signal. 
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Fig. 6. Signal generated by reconstructed system. 

 

4    Conclusions 

 

Results show that both methods can capture regular and chaotic signals from 

reconstructed systems of the third order with nonlinear terms up to sixth order. 

Types of signals were examined with spectral methods, construction of phase 

portraits and Lyapunov exponents.  The first method gives the solution which 

the power spectrum for the regular signals coincides with the output signal 

spectrum up to 96 % for the first three peaks. The second method gives a 

mistake around 2 %. And the second method determines the maximum 

Lyapunov exponent more precisely for chaotic regimes (with a precision 

to
310( O ) ) than the first method. 

Real systems are nonconservative and, a divergence of systems should be 

negative. It was suggested for the first time that the delay parameter for the 

second reconstruction method must be chosen from the stable region of the 

divergence behaviour of the reconstructed system. 

The both methods qualitatively good approximate the phase portrait of chaotic 

attractor of the original system. Moreover, time realizations of the chaotic 

attractors after finished transient regimes are quiet similar. And what is more 

important, power spectrums for the original signal and for the signals from the 

reconstructed systems may be approximated by the same decay function 

fS 5.875.6  . Calculations also show that more precisely the value of 

bifurcation parameter for chaotic regimes gives the second method of 

reconstruction.   

 

References 

1. J. P. Crutchfield, B. S. McNamara. Equations of Motion from a Data Series, Complex 
Systems, vol. 1, 417-452, 1987. 

2. N. B. Janson, A. N. Pavlov, T. Kapitaniak, V. S. Anishshenko. Reconstruction of the 

dynamical systems from the short signals, Letters into JTP, vol. 25, no. 11, 7-13, 
1999. 

3. V. S. Anishshenko. Acquaintance with nonlinear dynamic,. Institute of Computer 

Science, Moscow-Izhevsk, 2002. 

4. S. P. Kouznetsov. Dynamic chaos,  Physmatlit, Moscow, 2001. 



E. D. Pechuk and T. S. Krasnopolskaya 344 

5. T. S. Krasnopolskaya, A. Yu. Shvets. Regular and chaotic dynamics of the systems 
with limited excitation,. Institute of Computer Science, Moscow-Izhevsk, 2008. 

6. G. Benettin, L. Galgani, J. M. Strelcyn. Kolmogorov entropy and numerical 

experiments, Phys. Rev., vol. 14,  2338-2345, 1976. 

7. M. B. Kennel, R. Brown and H. D. I. Abarbanel. Determining embedding dimension 

for phase-space reconstruction using a geometrical construction  Phys. Rev. A., vol. 

45, no. 6,  3403-3408, 1992. 

8. V. S. Anishshenko, A. P. Pavlov. Global reconstruction in application to multichannel 
communication Phys. Rev. E., vol. 57, no. 2, 2455-2458, 1998. 

9. P. E. McSharry, G. D. Clifford, L. Tarassenko, L. A. Smith. A dynamical model for 

generating synthetic electrocardiogram signals, IEEE Transactions on biomedical 

engineering, vol. 50, no. 3, 289-294, 2003.  

 



Chaotic Modeling and Simulation (CMSIM) 2: 345–354, 2012

On the Computation of the Kantorovich
Distance for Images

Constantinos Alexopoulos1 and Vassileios Drakopoulos2

1 University of Athens, Panepistimioupolis, 15784 Athens, Greece
(E-mail: calexop@di.uoa.gr)

2 University of Athens, Panepistimioupolis, 15784 Athens, Greece
(E-mail: vasilios@di.uoa.gr)

Abstract. We consider the theory and applications of the Kantorovich metric in
fractal image compression. After surveying the most important approaches for its
computation, we highlight its usefulness as a mathematical tool for comparing two
images and improve its performance by means of more appropriate data structures.
Keywords: Fractals, Hutchinson metric, Image comparison, Kantorovich metric.

1 Introduction

In many fields of computer science like pattern recognition and image process-
ing, it is important to have an efficient way to compare geometric objects. The
natural approach to this problem is to define a metric in the space of the ge-
ometric objects and use this metric to compute the distance between them.
Considering digitized images as geometric objects, we can use that metric to
compare them.

The Kantorovich (or Hutchinson) metric, a.k.a. Wasserstein (or Vaser-
shtein), earth mover’s or match metric, takes into account the spatial struc-
ture of the compared images and, hence, corresponds more closely than other
metrics to our notion of the visual differences between two images. John E.
Hutchinson[6] used the Kantorovich distance to measure the distance between
self-similar probability measures obtained as limiting distributions for a fairly
simple type of Markov chains induced by affine, contractive mappings. He used
the Kantorovich metric to prove an existence and uniqueness theorem of such
limit measures.

The Kantorovich metric is also used by Michael F. Barnsley[2] and co-
workers to approach the convergence of iterated function systems, which were
introduced by Hutchinson. In trying to solve the so-called “inverse problem”
or “image encoding problem”, i.e. find an IFS that generates a predetermined
image, it is natural to use this metric as an objective function to be minimised.
Moreover, this metric appears to be a good indicator of the perceived difference
between two images.
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Considering digitized images as a set of pixels, the problem of computing the
Kantorovich distance between them is equivalent to the formulation of a linear
programming problem called the balanced transportation problem. According to
Michael Werman et al.[9] the computational complexity of standard algorithms
for transportation problems are of order O(N3), where N denotes the total
number of pixels in the compared images. An algorithm for the computation
of the Hutchinson metric in the case of finite one-dimensional sequences is
presented in [3].

Thomas Kaijser[7] presented a variation of the primal-dual algorithm for
computing the Kantorovich distance function. To decrease the computational
complexity for updating the values of the dual variables for both transmitting
and receiving images, he always increases them by a constant value of 1. Un-
fortunately, this is applicable, only if the underlying pixel distance value is the
L1-metric. Moreover, he developed two methods for fast determination of new
admissible arcs, one for the L1-metric and one for the L2-metric. Kaijser’s
method was implemented by Niclas Wadströmer[8] in the context of his PhD
thesis, but the data structures used to implement the above mentioned method
as well as the way that the labelling procedure was implemented are not so
clear.

Another work on the computation of the Kantorovich distance is the one
of Drakopoulos V. et al.[5]. In this work the problem of computing the Kan-
torovich distance is transformed into a linear programming problem which is
solved using the simplex method. To decrease the computational complexity
of the method, they developed an approximation algorithm for “large images”.
Yuxin Deng et al.[4] give a brief survey of the applications of the Kantorovich
distance in probabilistic concurrency, image retrieval, data mining and bioin-
formatics.

The main purpose of the present paper is to improve the algorithm presented
by Thomas Kaijser for computing the Kantorovich distance function by means
of more appropriate data structures. The metric we are using as the underlying
distance-function between pixels is the L1-metric. Using kd-trees we don’t have
to use different methods, but only to change the metric for the construction of
the appropriate kd-tree.

2 Problem Formulation

We are interested in computing the Kantorovich distance between grey-scale
images. There are three types of image models: Measure spaces, pixelated
data and functions. Using this approach, we consider an image as a measure
space. Therefore, by an image P with support K we mean an integer-valued
nonnegative function p(i, j) defined on K, i.e. P = {p(i, j) : (i, j) ∈ K}. We
define as a Borel measure on the space of grey-scale images the pixel value
p(i, j), where i and j are the Cartesian coordinates of the pixel.

For a compact metric space (X, d), let P1 and P2 be two Borel probability
measures on X and define Θ(P1, P2) as the set of all probability measures P
on X ×X with fixed marginals P1(·) = P (· ×X) and P2(·) = P (X × ·). Next,
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let

Lip(X) = {f :X → R
∣∣| f(x)− f(y) |≤ d(x, y),∀x, y ∈ X}

and define the distance between P1 and P2 as

Bd(P1, P2) = sup

{∣∣∣∣∫
X

f(x)P1(dx)−
∫
X

f(x)P2(dx)

∣∣∣∣ , f ∈ Lip(X)

}
.

The images considered are sets of finite collection of pixels, so they constitute
compact metric spaces.

Let K1 and K2 be two images, Sn, 1 ≤ n ≤ N be the pixels of K1 and Rm,
1 ≤ m ≤M the pixels of K2. Using the terminology of Kaijser we call K1 the
transmitting image and K2 the receiving image; Sn, 1 ≤ n ≤ N denote sources
whereas Rm, 1 ≤ m ≤M denote sinks or destinations. By a flow we mean the
amount of goods sent from the source Sn to the sink Rm denoted by x(n,m)
whereas c(n,m), 1 ≤ n ≤ N, 1 ≤ m ≤M denote the cost of transferring goods
from Sn to Rm. In our case the cost corresponds to the distance between Sn

and Rm. If a(n) denote the amount of goods available in a source and b(n) the
amount of goods needed in a sink, the Kantorovich distance between K1 and
K2 can be formulated as a balanced transportation problem as follows:

Minimize

N∑
n=1

M∑
m=1

c(n,m) · x(n,m)

subject to x(n,m) ≥ 0, 1 ≤ n ≤ N, 1 ≤ m ≤M ,

M∑
m=1

x(n,m) = a(n), 1 ≤ n ≤ N (1)

N∑
n=1

x(n,m) = b(m), 1 ≤ m ≤M (2)

and
N∑

n=1

a(n) =

M∑
m=1

b(m).

The distance can be any of the following distances: L1-metric or L2-metric. For
each source and each sink we define two quantities α(n) and β(m) respectively,
called dual variables. If

c(n,m)− α(n)− β(m) ≥ 0, 1 ≤ n ≤ N, 1 ≤ m ≤M,

we call the set of dual variables feasible. A pair of indices (n,m), where n is
an index of a source Sn and m is an index of a sink Rm, is called an arc. If an
arc (n,m) satisfies the condition

d(n,m)− α(n)− β(m) = 0, (3)
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where d(n,m) is the underlying distance-function between the pixels Sn and
Rm, it is called an admissible arc; otherwise it is called nonadmissible. We say
that a flow is optimal if Equations (2) and (3) hold.

The dual version of the transportation problem, i.e. the dual formulation
of the Kantorovich distance, is

dK(P,Q) = Max

{
N∑

n=1

α(n) · a(n) +

M∑
m=1

β(m) · b(m)

}
(4)

when the set of dual variables is feasible.

3 The proposed algorithm

Our algorithm is based on the well known primal-dual algorithm which solves
the balanced transportation problem on the plane. We make several enhance-
ments, however, that improve the efficiency of the algorithm. Our improve-
ments are based on the data structures used to store image data and on the
fact that the transportation cost is the distance between the pixels. The latter
allows us to use some spatial data structures which facilitate the computations
and minimise the complexity of the problem. Before describing our method in
detail, we give the main steps of the primal-dual algorithm:

1. Determine an initial value of the dual variables, find the corresponding
set of admissible arcs and their flow.

2. Check if the current admissible flow is maximal. If it is go to (4), else go
to (3).

3. Update the admissible flow and go to (2).
4. Check if the current maximal flow is optimal. If it is go to (7), else go

to (5).
5. Update the dual variables.
6. Find the new admissible arcs and go to (2).
7. Stop.
Let us define as total transporting grey mass the summation of the grey value

of all pixels in the transporting image. Similarly, we define as total receiving
grey mass the summation of the grey value of all pixels in the receiving image.
In order to convert the Kantorovich distance problem between images to a
balanced transportation problem on the plane, both transporting and receiving
total grey values must be equal. In general, these two amounts are different
and in order to make them equal we change both masses accordingly applying
the following formula on every single pixel value of both images:

pnew(n) = p(n) · L̂(K2), L̂(K2) =
[ M∑
m=1

q(m)
]
/GCD(L,Q),

qnew(m) = q(m) · L̂(K1), L̂(K1) =
[ N∑
n=1

p(n)
]
/GCD(L,Q),
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where p(n) and q(m) are the pixel values of the transmitting and receiving

images respectively, L =
∑N

n=1 p(n), Q =
∑M

m=1 q(m) and GCD(L,Q) is the
greatest common divisor of L and Q. In the following we shall describe our
algorithm as well as the data structures we use to facilitate our computations
and image storage.

3.1 Dual variables and the flow of the current admissible arcs

After having made the total grey masses of both images equal we have to ini-
tialise the dual variables. We set as initial values α(n) = min{d(n,m), 1 ≤
m ≤ M}, i ≤ n ≤ N and β(m) = 0, 1 ≤ m ≤ M. From the above equa-
tions we observe that the initial values of the dual variables α(n) associated
with the transmitting image pixels are the distances of their nearest neighbour
pixels in the receiving image. In order to compute this quantity we create a
kd-tree structure using the coordinates of the receiving image pixels and we
search for the nearest neighbour of every single transmitting pixel. So, if n is a
transmitting pixel and m one of its nearest neighbours in the receiving image,
then (n,m) is an admissible arc. Therefore, the initial flow along this arc is
x(n,m) = min{p(n), q(m)}, whereas the new pixel values are p(n) − x(n,m)
and q(m)− x(n,m).

3.2 Increasing the flow along the current set of admissible arcs

We call surplus source a transmitting pixel with p(n) > 0; otherwise, it is
called a zero source. A receiving pixel having q(m) > 0 is called a deficient
sink ; otherwise, it is called zero sink. We define as augmenting path a set of
admissible arcs connecting sources and sinks starting from a surplus source
and ending with a deficient sink running through zero sinks and sources in-
terchangeably. Moreover, the flow along admissible arcs connecting zero sinks
with zero sources must be positive. In this step we use a labelling procedure to
determine augmenting paths. It is clear that we can have flow increment only
along augmenting paths. The labelling procedure is described as follows.

Start by labelling all surplus sources and then label all sinks that are con-
nected to those sources with admissible arcs. Then, using the last labelled
sinks, label all sources that are not labelled yet and are connected to those
sinks with admissible arcs of positive flow. Repeat the above procedure un-
til either a deficient sink is labelled or no more nodes can be labelled. If a
deficient sink is labelled, then proceed to flow augmentation along the path
that has been found. If no such path is found, the current admissible flow is
maximal. For faster labelling procedure, we don’t use any extra data structure.
We reorder the pixels of both the transmitting and the receiving image in the
initial data structure depending on whether they are labelled or unlabelled. To
speed up the reordering process, we store the pixel data in doubly linked lists
which need O(1) to move the nodes along the list.

http://www.cs.umd.edu/∼mount/ANN/
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Let θ1 = min{x(m,n)} be the minimum value of the positive flows belonging
to the augmenting path connecting a labelled source and a label sink directed
from sink to source. We define by

θ = min
{
a(n)−

M∑
j=1

x(n, j), b(m)−
N∑
i=1

x(i,m), θ1

}
.

Then, we can increase the flow along the path by setting the value of the
starting source pixel to p(n) − θ, the value of the ending sink to q(m) − θ, by
increasing the flows directed from source to sink by θ and by decreasing the
flows from sink to source by the same amount. A drawback of this labelling
procedure is that, after increasing the flow along an augmenting path, we may
obtain cycles. In order to avoid them, we change the way we apply the labelling
procedure by using only positive admissible arcs during the whole procedure. In
that way, however, we cannot find all the augmenting paths. So, we use a flow
tuning procedure which finds all possible augmenting paths for the current set
of admissible arcs without having to store and use all the zero flow admissible
arcs.

3.3 Flow tuning procedure

We define as surplus flow tree a set of paths starting from a surplus source and
ending to zero sinks. A zero flow tree is a flow tree with a zero source as starting
node. The main purpose of the flow tuning procedure is to find admissible
arcs that connect zero sources belonging to surplus flow trees and unlabelled
deficient sinks. To do that, a kd-tree is constructed using the coordinates of
the unlabelled deficient sinks. Then, using the kd-tree structure for each zero
source belonging to a surplus flow tree, we locate all the deficient unlabelled
sinks that lay within a distance α(n) from itself. After that, a new augmenting
path has been located and the flow is augmented as described in the previous
subsection. According to the definition of the augmenting path, there is no
reason to search for arcs that connect zero sources that belong to zero flow
trees with unlabelled zero sinks. In such a way we decrease the number of
sinks as well as the number of considered sources. The first one leads to a faster
construction of the kd-tree whereas the second one minimises the number of
input points.

3.4 Dual variable update and the new set of admissible arcs

When no more augmenting paths can be located for the current set of admissible
arcs, we proceed to the dual variable update procedure. The main reason for
updating the dual variables associated with both sources and sinks is to create
new admissible arcs in order to achieve the maximal and also the optimal flow.
According to Kaijser[7], if the underlying metric is the L1-metric, the dual
variable can be changed by δ = 1. In order to preserve the current flow along
the current set of admissible arcs, the dual variables are changed as follows:

αnew(n) = αold(n) + δ, n ∈M1, αnew(n) = αold(n), n ∈ U1,



Chaotic Modeling and Simulation (CMSIM) 2: 345–354, 2012 351

βnew(m) = βold(m)− δ, m ∈M2, βnew(m) = βold(m), m ∈ U2,

where M1 and M2 denote the sets of indices of labelled sources and sinks,
respectively, whereas U1 and U2 denote the sets of indices of unlabelled sources
and sinks, respectively. To improve the dual variable update, we define a new
variable ∆ as the running total of the dual variable changes as the algorithm
evolves; see also [1]. We apply the above mentioned dual variable change routine
using ∆ instead of δ. Because of the way we change the dual variables, new
positive flow admissible arcs are created between the labelled surplus sources
and the unlabelled deficient sinks. To find out the new set of admissible arcs,
a kd-tree is constructed using the coordinates of the unlabelled deficient sinks.
Then, for each surplus source, we locate all the deficient sinks that lay within
a distance of α(n) + ∆ from it. After finding out the new set of positive flow
admissible arcs, the algorithm is applied again until no more surplus nodes
exist.

4 Results

We now present typical results from the application of our algorithm to real
images, aiming to demonstrate its applicability to the demanding problems
inherent in the image compression area and its performance. The original
images used as our reference point in the experiments presented here are the
256 × 256 × 8 bpp Lena and Barbara images shown in Figure 1. We examine

Fig. 1. The original images of Lena (left) and Barbara (right) used in our experiments
(256 × 256 × 8 bpp).

for each original image how close it is to a filtered or compressed replica of it.
In other words we seek to measure the difference (i.e. the error) between two
images by computing the Kantorovich distance between the original image and
each of the associated filtered ones.

The compression schemes used in our simulations for the image of Lena
include a wavelet scheme (Figure 2(a)), which represents a generic and efficient
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(a) (b)

(c)

Fig. 2. 256× 256× 8 bpp test images used in our experiments ((a)wavelet, (b) JPEG
and (c) fractal 8:1 compression are used).

solution to the perfect inversion problem, a Joint Photographic Experts Group
(JPEG) codec in its Corel 7 implementation (Figure 2(b)) and a fractal scheme
of 8:1 compression ratio (Figure 2(c)). Figure 3 shows compressed images of

µ, µ1 µ, µ2 µ, µ3 ν, ν1 ν, ν2 µ, ν

dK 2,789,456 8,562,357 4,532,730 3,125,789 8,998,678 15,853,930
tK 26:06 40:12 39:10 29:30 42:56 1:01:46

Table 1. The Kantorovich distance dK between the real-world images and the com-
putation time in hour:min:sec format.

Barbara at a ratio of 64:1 using (9,7) DWT combined with RLE and JPEG
coding respectively. The correspondence between the images of Lena and the
indices is the following: µ = original image, µ1 = wavelet compression, µ2 =
JPEG compression and µ3 = 8:1 fractal compression. The correspondence
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(a) (b)

Fig. 3. 256 × 256 × 8 bpp test images used in our experiments ((a) EZW Shapiro
(9,7) and (b) JPEG compression are used).

between the images of Barbara and the indices is the following: ν = original
image, ν1 = 64:1 compression and ν2 = JPEG compression. Time results are
given in CPU minutes on a CoreTM 2 Duo PC with a 2.13 GHz CPU clock, 4
GB RAM and running Windows 7 Ultimate. Looking at Table 1 from left to
right we can see, which of the images are closer to the originals. The runtime
of our algorithm is better than the one presented in [7].

5 Conclusions

The theory and applications of the Kantorovich metric were considered. A
model based on the primal-dual algorithm was formulated and developed. The
results support the well known fact that the Kantorovich metric unveils the
imperfections of apparently similar images.
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Abstract: The standard cosmic expansion model, in which gravity acts to decelerate the 

expansion, has its problems.  This paper explores an alternative model, which has a 

content-driven mechanism, and in which gravity does not play a role in the overall 

expansion.  Cosmic expansion was simulated with a three-step iterative algorithm, three 
fundamental parameters, and Planck-scale initial conditions.  Model characteristics 

include self-regulated expansion, causal mechanisms for the Big Bang and Inflation, non-

zero and non-fundamental time (t), parametric Ht (the product of t and the Hubble 

parameter (H)), a dynamic deceleration parameter (q), Ht lagging (1+q)-1, and attractors 
in the q-Ht phase diagram.  Simulation results support refinement of the standard model 

and open the door for similarly exploring and comparing other cosmic expansion models. 

Keywords: cosmology, modeling, simulation, complex systems  
 

1    Introduction 

Proponents of the most generally accepted cosmic expansion model (the 
standard model) posit that gravity has acted to decelerate the expansion since 
the Universe burst forth from a singularity at time zero (Shu 1982).  The 
expansion metric is the scale factor (R), which has units of length.  The metric 
for the deceleration is the dimensionless deceleration parameter (q≡−a∙ä/ȧ

2
, 

where a=R/Rnow).   
The standard model has its issues, including singularity-generated infinities at 
time zero, its false premise (Gimenez 2009) that gravity plays a role in the 
overall expansion, and its lack of causal mechanisms for the Big Bang and 
Inflation.  Also, accelerated expansion, as indicated by supernovae observations 
(Riess et al. 1998, Perlmutter et al. 1999), cannot be found in the standard 
model.  Saul Perlmutter (2003), referring to fine tuning coincidences and the 
mysterious substances of dark energy and dark matter, writes that it seems likely 
that we are missing some fundamental physics and one is tempted to speculate 
that these ingredients are add-ons, like the Ptolemaic epicycles, to preserve an 
incomplete theory.   
This paper explores a content-driven approach to cosmic expansion and argues 
that indications of current acceleration are in error.  An iterative algorithm, 
which focuses on Mach’s Principle, the past lightcone, and an hypothesis that 
the increasing content on our past lightcone provides the causal mechanism for 
cosmic expansion, is constructed to numerically simulate cosmic expansion.  
The Big Bang is simulated at Planck time and Inflation is found in the Matter 
Era. 
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2    The Model and Simulations 

2.1 Ansatz 

The guiding principles in this effort to simulate cosmic expansion were to keep 

the algorithm simple and use only assumptions and mechanisms that reflect 

fundamental realities.  This was done in part by using natural c=1 units and 

adhering to Mach’s Principle and Einstein’s Locality Principle, which in turn 

placed the focus on local time and the past lightcone. 

Einstein coined the term Mach’s Principle (MP) and, although he attempted to 

incorporate MP into General Relativity (GR), his attempt is believed by some 

theorists to have failed.  This lack of a consensus is due in part to the lack of a 

widely accepted definition for MP.  As used here, MP is a take on Mach’s 

reference to the ‘fixed stars’: The content on our past lightcone defines our 

inertial reference frame, and that content is finite and increasing with time. 

Einstein wrote ‘Space without material object is inconceivable’ (Jammer 1953), 

and Gottfried Leibniz before him wrote ‘Where there is no matter, there is no 

space’ (Harrison 2000).  With MP and the past lightcone in mind, this space-

content connection is extrapolated into an hypothesis that cosmic expansion is 

connected to the increasing amount of content (Γ) on our past lightcone, 

yielding R=R0∙Γ
ε
, where ε is an expansion exponent. 

2.2 Algorithm.   

The algorithm for content-driven expansion (figure 1) is iterative and discreet 

and does not require Nature to understand complex math or perform massive 

computations.  Time (t), which was neither in the iterative loop nor one of the 

three fundamental parameters, was progressed using ∆t=R/c, where R is the 

cosmic scale factor and c is the speed of light. 

 

where:

n

R

Γ

ε

Nonfundamental calculations

@ n = 0

R = Planck length

Γ = 1

ε = 1

≡ iteration number

≡ scale factor

≡ contents factor

≡ expansion exponent

= tn-1 + Rn/c

= Ṙn/Rn = ȧn/an

=  ̶ an∙ӓn/ȧn
2

Rn = R0Γn
ε

n = n + 1

Γn = Γn-1 + f (Rn-1) t

H

q

a

≡ cosmic time

≡ Hubble parameter

≡ deceleration parameter

≡ R/Rnow

ε = f (R, Γ)

tn

Hn

qn

where:

 

Figure 1.  Iterative expansion algorithm.  The three fundamental parameters (R, 

Γ, and ε) are in the three-step iterative loop.  With R0 set to Planck length, 

t0=Planck time, Ṙ0=c, H0=1/t0, Ht0=1, ä0=0, and q0=0. 
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2.3 Progressing time with ∆t=R/c 

R/c is the time for light to traverse the distance R.  With Rnow=~20Mly, ∆tnow 

(today’s tick of the clock) is ~20My (∆t=R/c).  Midway through the 

development of the simulation, ∆t=R/c was replaced when a more supportable 

method was found in ∆t=∆R/R/H, which follows from H≡Ṙ/R.  Surprisingly, 

replacing ∆t=R/c with ∆t=∆R/R/H had no impact on the simulation, and the 

simpler ∆t=R/c was reinstated. 

For an object with velocity (v), relavistic ∆t=R∙(1–(v/c)
2
)
0.5

/c would be more 

accurate.  If v for the Solar System were 630km∙s
-1

 (Jones 2004) relative to the 

microwave background radiation, using the relavistic ∆t in place of ∆t=R/c 

would not have significantly altered the simulation’s results. 

2.4 Expansion exponent 

To calculate ε, the local ε (εlocal) was first progressed from 1 to infinity using: 

εlocal(R)=10^((ln(R/R0))
3
/(17000+(ln(R/R0))

2.95
) 

A content-allocated average of past values of εlocal was then calculated using: 

εn=(εn-1∙Γn-1+εlocal)/Γn 

2.5 Asymptotic q∞ and Ht∞ 

Theory-connected asymptotic q∞ and Ht∞ were in sync with GR (figure 2).  At 

radiation-dominated Planck time, q∞=1 and Ht∞=½.  For matter-dominated 

expansion, q∞=½ and Ht∞=⅔.  In the distant future, q∞ approached 0 and Ht∞ 

approached 1 (vacuum-dominated). 
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Figure 2.  q(t), Ht(t), q∞(t), and Ht∞(t).  Negative q defines the Matter Era.  ε=2 

delineates the Radiation-Matter Transition and Matter-Vacuum Transition. 
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2.6 Dynamic q and Ht 

Distinct from theory-connected q∞ and Ht∞, q and Ht projected a dynamic 

expansion (figure 2).  From the non-zero Planck-scale beginning of time, q 

cycles from 0 to more than 5 to –0.34 to +1.9 and back to 0, and Ht cycles from 

1 to 0.437 to 1.45 to 0.39 and back to 1.  In all cases, Htmax lagged qmin and Htmin 

lagged qmax.  In contrast to past and future expansion, in the current epoch –

defined here as the time since Decoupling at redshift z=1090.88 (Hinshaw et al. 

2009) – the expansion was effectively ‘coasting’ with q=~0 and Ht=~1. 

2.7 Inflation, the Matter Era, and era transitions 

The Matter Era was initially defined as beginning with Ht∞=0.583 (midway 

between 1/2 and 2/3) and ending with Ht∞=0.833 (midway between 2/3 and 1).  

When a definitive time was found for ε=2 (associated with the Matter Era’s 

Ht∞=2/3), a line of demarcation between the Radiation-Matter Transition and 

the Matter-Vacuum Transition was established, and the three eras were 

abandoned.  Later came the finding that when q was negative, Ht∞ rose from 

0.562 to 0.881 – roughly the same values previously used to define the Matter 

Era.  Linking the Matter Era to Inflation, the three eras were reinstated. 

2.8 Time of Decoupling 

The simulation found the time of Decoupling (tD) to be 12.4My by setting 

redshift (z) to zero at tnow=14.48Gy and using zD=1090.88 (Hinshaw et al. 2009) 

and zD+1=Rnow/RD, where zD and RD are the redshift and scale factor at  

Decoupling.  12.4My is in relative agreement with a coasting model’s tD=13My 

(Gimenez 2009).  The current literature typically places tD=0.377My (Hinshaw 

et al. 2009), which appears to be based on zD+1=(tnow/tD)
Ht

, tnow=13.72Gy, and 

Ht=2/3.  Hinshaw’s Hnow=70.5km∙s
-1

∙Mpc
-1

 (1/13.87Gy) and tnow=13.72Gy, 

however, produce Htnow=0.9892, which is inconsistent with Ht=2/3. 

2.9 q-Ht phase diagram 

Dynamic q-Ht fluctuations appeared in the q-Ht phase diagram (figure 3) as 

large lobes that roughly took on the shape of the attractor rail – a line of 

attractors that q-Ht would gravitate to if ε were constant.  Paralleling the finding 

that Htmax lagged qmin and Htmin lagged qmax, with the q-Ht trace orbiting 

clockwise around a moving attractor on the attractor rail, Ht lagged (1+q)
-1

.  

Four exceptions to the Ht-Lag rule occurred when Lag=0. 

Lag was found to be β∙t
2
∙d

2
Ht/dt

2
, with Lagnow and LagD near zero and virtually 

unchanged (0.000177 versus 0.000165), t
2
∙d

2
Ht/dt

2
 changed only modestly 

(0.00042 versus 0.00036), and βnow=0.421 and βD=0.458.  As evidenced by the 

large lobes in the Radiation and Vacuum eras, early-Radiation and late-Vacuum 

Lag is more dynamic. 

2.10 Age of the Universe 

The Simon-Verde-Jimenez (SVJ) data points (Simon et al. 2005) were used to 

establish the age of the Universe (tnow).  While tnow=13.72Gy (Hinshaw et al. 

2009) is more widely accepted, tnow=14.48Gy is a better fit with the SVJ data 

points (figure 4).  1/Hnow=14.63Gy (from tnow=14.48Gy and Htnow=0.9899) is 

within the literature’s range of 13.4Gy (Riess et al. 2005) to 15.7Gy (Sandage et 

al. 2006).  As with calculating tD, z was calculated here using z=Rnow/R–1. 
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Figure 3.  q-Ht phase diagram.  
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2.11 Age-Redshift Test 

The simulation passes the age-redshift test (figure 5) with a 0.80Gy formation 

time (tform) for the worst case APM 08279+5255 at z=3.91.  For tnow=13.7Gy, 

tform=0.66Gy. 
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Figure 5.  t(z) with age(z) for three old celestial objects. 

2.12 tL, t, tnow, z, and H 

During work on figure 5, the following relationships were uncovered between 

time (t), current age of the Universe (tnow), Hubble parameter (H), and redshift 

(z) and between lookback time (tL), current age of the Universe (tnow), and the 

Hubble parameter (H), time (t), and redshift (z). 

(t/tnow)
Ht

 = 1/(1+z) 

(tL/tnow)
Ht

 = z/(1+z)  

A search of the literature has not found anything resembling these two 

equations. 

 

3    Discussions 

3.1  No current acceleration 

This effort to numerically simulate cosmic expansion began with the belief that 

any indication of a current accelerated expansion (qnow<0) was in error.  The 

Cosmos was not expanding out of control, and a Big Rip was not forecast.  We 

believed in self-regulating expansion.  Not too surprisingly, we found just that.   
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The results of this simulation indicate that qnow=+0.0104.  If current evidence of 

a negative qnow were to be confirmed, the results of this simulation would be 

refuted.  It is highly doubtful, however, that qnow is negative, since the best 

estimates for Hnow and tnow place Htnow=0.9892 (Hinshaw et al. 2009).  If 

Lagnow=~0 (as indicated by this simulation) and Htnow=(1+qnow)
-1

, Htnow=0.9892 

would force qnow positive and a negative qnow would force Htnow greater than 

one.  If, instead, Hinshaw’s Htnow=0.9892 were coupled with  

qnow=–0.6 (Shapiro et al. 2005) and Lag=|Ht– (1+q)
-1

|, Lag would be greater 

than 1.5, which would be indicative of an implausibly wild dynamic that was 

not seen in this simulation (Lag never exceeded 0.011 in the current epoch).  

3.2  Refining values for H, t, q, tnow, z, and tL 

Errors in observational data – especially evident in deriving distances – have 

been the bane of astronomy since before the time of Hubble.  The SVJ data 

points (figure 4) demonstrate the significance of the error and how 

underestimated that error typically is.  As seen in section 3.1, with Lagnow=~0 in 

the current epoch (z=0 to z=1091), Ht=(1+q)
-1

 can be used to good 

approximation to refine values for H, t, and q.  Similarly, (t/tnow)
Ht

 = 1/(1+z) and 

(tL/tnow)
Ht

 = z/(1+z) can be used to refine values for t, tnow, H, z, and tL. 

3.3 Unexpected findings 

Aside from the above-mentioned bias towards a self-regulated expansion, the 

findings of this paper did not come from prescient expectations or deliberate 

attempts to address specific issues.  The findings came from the computer-

generated output of the simulation, where dynamic q and Ht – distinct from 

theory-connected q∞ and Ht∞ – emerged.  From these findings came answers to 

some significant questions that confront science today.  

3.4 Inflation 

Perhaps first amongst these questions concern Inflation.  During the 

simulation’s initial development, with an unchanging ε, there was no Inflation.  

Allowing ε to increase with time created a dynamic q that turned negative 

(Inflation) in the Matter Era.  The mechanism for both Inflation and the demise 

of Inflation was found in an ever-increasing ε.  Helping to further explain the 

dynamics of Inflation, a book-balancing deflationary Ht trough and peak q occur 

in the Vacuum Era.   One clear indicator that Inflation did occur is that 

Htnow>0.93 – without Inflation, Htnow would be less than Ht∞ (0.93).  

3.5 The inflaton 

Particle physics has no place for the inflaton and this simulation has no need for 

it.  Simplicity dictates that the inflaton does not exist.  

3.6 Before Planck time 

When cosmologists attempt to extrapolate cosmic expansion back to a time 

before Planck time, they see physics breaking down and singularities 

developing.  Both quantum mechanics (QM) and the results of this simulation 

would say that there is no time before Planck time.  Given our QM-based 

Ansatz (R0=Planck length and t0=Planck time), the simulation’s consistency 

with QM is more input than output.  
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3.7 Nonfundamental time 

This simulation does not treat time as a fundamental parameter.  Like the t0 

consistency with QM discussed above, the nonfundamental nature of time is 

more input than output.  The robustness of the simulation’s results without a 

fundamental time, however, attests to the nonfundamental stature of time.  

3.8 Entropy and the arrow of time 

The low-to-high direction for both entropy and time would imply a connection.  

∆t=R/c says that the tick of the cosmic clock is proportional to R.  Given that R 

and c are both positive, ∆t=R/c does not allow for the reversibility of time.  

Entropy, in contrast, while generally having the same unidirectional nature as 

time, is related to information and thus Γ.  The connection between entropy and 

the arrow of time is thus the connection between Γ and R. 
 

4    Conclusions 

Using a content-driven iterative algorithm that had three fundamental 

parameters and a three-step iterative loop, complexity arose from simplicity.  

The algorithm generated a forward-progressing, multifaceted representation of 

cosmic expansion that is self-consistent, concordant with observation, and 

consistent with SR, QM, and GR.   

Dynamic q and Ht emerge, a book-balancing payback for Inflation is found late 

in the Vacuum Era, a causal mechanism is found for the Big Bang and Inflation, 

and a discrete and self-regulated expansion is seen.  The expansion’s 

discreteness resonates with black-hole thermodynamics, string theory, and spin 

networks.  The expansion’s emerging complexity and self-regulation hint at 

self-organization. 

With the model’s unmatched simplicity, depth and breadth of findings, and 

resolution of cosmological issues, the simulation of content-driven expansion 

supports refinement of the standard model and opens the door for exploring and 

comparing other cosmic expansion models. 
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Abstract. Coherence resonance consists in the increase of regularity of an output
signal of a nonlinear device for non-zero intensity of input noise. This phenomenon
occurs, e.g., in stochastic systems with delayed feedback in which external noise am-
plifies the periodic component of the output signal with the period equal to the
delay time. In this contribution it is shown that in chaotic systems with delayed
feedback deterministic (noise-free) coherence resonance can occur, which consists in
the maximization of the periodic component of the output signal in the absence of
stochastic noise, due to the changes in the internal chaotic dynamics of the system
as the control parameter is varied. This phenomenon is observed in systems with
on-off intermittency and attractor bubbling, including generic maps and systems of
diffusively coupled chaotic oscillators at the edge of synchronization. The occurrence
of deterministic coherence resonance for the optimum value of the control parame-
ter (e.g., of the coupling strength between synchronized oscillators) is characterized
by the appearance of a series of maxima at the multiples of the delay time in the
probability distribution of the laminar phase lengths, superimposed on the power-law
trend typical of on-off intermittency, and by the presence of a strong maximum in
the power spectrum density of the output signal.
Keywords: on-off intermittency, coherence resonance, delayed feedback.

1 Introduction

On-off intermittency (OOI) is a sort of extreme bursting which occurs in sys-
tems posessing a chaotic attractor within an invariant manifold whose dimen-
sion is less than that of the phase space [1,2]. As a control parameter crosses a
certain threshold this attractor undergoes a supercritical blowout bifurcation
[3] and loses transverse stability, and a new attractor is formed which encom-
passes that contained within the invariant manifold. Just above the blowout
the phase trajectory stays for long times close to the invariant manifold and
occasionally departs from it; if the distance from the invariant manifold is an
observable, this results in a sequence of laminar phases and bursts. The dis-
tribution of laminar phase lengths τ obeys a power scaling law P (τ) ∝ τ−3/2

[1]. In the presence of additive noise chaotic bursting occurs below the blowout
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bifurcation threshold; this phenomenon is known as attractor bubbling [2,4].
OOI and attractor bubbling were observed in systems as diverse as model maps
with time-dependent control parameter [1], chaotic synchronization [5], spin-
wave chaos [6], microscopic models of financial markets [7], etc.

The role of delayed feedback is important in many systems, e.g. optical res-
onators, chemical reactions and physiology [8] or chaos control [9,10]. In this
paper the influence of delayed feedback on OOI is studied using generic one-
dimensional maps with a time-dependent control parameter and synchronized
oscillators. It is shown that addition of delayed feedback changes the threshold
for the blowout bifurcation and can influence the character of the intermit-
tent bursting: For optimum choice of the control parameter a strong periodic
component in the time series above the blowout occurs, with the period equal
to the delay time. This is an example of coherence resonance (CR) [11-18],
a phenomenon related to the well-known stochastic resonance (SR) [19]. CR
manifests itself as the peak of regularity of the output signal of certain non-
linear stochastic systems for optimum intensity of the input noise and without
any external periodic stimulation. In particular, CR was observed in systems
with delayed fedback, including bistable [16] and excitable [17] ones and sim-
ple threshold crossing detectors [18]. Since in the models under consideration
the role of external noise is played by the internal chaotic dynamics within
the invariant manifold, the observed phenomenon is deterministic CR [20], a
counterpart of the noise-free (deterministic) SR [21].

2 Modeling with a Logistic Map with a time-dependent
control parameter and delayed feedback

As a basic model let us consider the logistic map with the time-dependent
control parameter and delayed feedback

yn+1 = (1−K) aζnyn (1− yn) +Kyn−k, (1)

where 0 < K < 1 is the amplitude of the feedback term and ζn ∈ (0, 1) denotes
any chaotic process constrained to the unit interval. The map in Eq. (1) has
the invariant manifold yn = 0 with the chaotic attractor (ζn ∈ (0, 1), yn = 0)
within it. For a > ac the variable yn exhibits intermittent bursts, where ac is
the blowout bifurcation threshold dependent on ζn. For K = 0 Eq. (1) is the
generic model for OOI [1]. The qualitative properties of OOI are independent
of the details of the dynamics within the invariant manifold provided that the
correlation time of the process ζn is negligible in comparison with the mean
time between bursts, which is true just above the threshold for the blowout
bifurcation; hence, ζn can be approximated by white noise ξn uniformly dis-
tributed on (0, 1) [1]. It should be also noted that Eq. (1) with the control
parameter constant in time, i.e., with ζn ≡ 1, (the logistic map with delayed
feedback) can serve as a model for chaos control [10].

For yn ≈ 0 the dynamics transverse to the invariant manifold is well ap-
proximated by a linearization of Eq. (1),

yn+1 ≈ (1−K) aζnyn +Kyn−k. (2)
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Introducing new variables in the direction transverse to the invariant manifold,

y
(1)
n = yn, y

(2)
n = yn−k, . . ., y

(j)
n = yn−k+j−2, . . ., y

(k+1)
n = yn−1 [10] Eq. (2) can

be written as a linear transformation

yn+1 = M̂nyn, (3)

where yn =
(
y
(1)
n , y

(2)
n , . . . , y

(k+1)
n

)T
(thus, yn = 0 is the invariant manifold),

and

M̂n =


(1−K) aζn K 0 0 . . . 0

0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 0

 . (4)

The transverse stability of the attractor within the invariant manifold is con-
trolled by the transverse Lyapunov exponent λT [1-3],

λT = lim
N→∞

1

N
ln

∣∣∣∣∣∣M̂N−1 . . . M̂2M̂1y0

∣∣∣∣∣∣
||y0||

, (5)

where y0 is an arbitray initial vector transverse to the invariant manifold (in
simulations, y0 is assumed as a random vector of unit length). The exponent
λT increases with a from negative to positive values and crosses zero at the
threshold for the blowout bifurcation a = ac, corresponding to the onset of
OOI.

The dependence of ac on K for the map (1) with ζn = ξn and various k is
shown in Fig. 1(a). The value of ac weakly depends on k and monotonically
decreases to ac = 2.0 for K → 1. Typical time series yn for a just above ac is
shown in Fig. 1(b). For increasing K the character of the time series changes
from intermittent bursts with high amplitude typical of OOI to frequent bursts
with small amplitude. There is also a gap between the minimum value of yn
and the invariant manifold yn = 0. Thus the effect of the delayed feedback on
the generic model for OOI resembles that of additive noise which prevents the
phase trajectory from approaching closely the invariant manifold and lowers
the threshold for the occurrence of bursting, leading to attractor bubbling
[2,4]. This is not surprising since the additive noise enters Eq. (1) in the same
way as the feedback term; moreover, especially for long k, due to decreasing
correlation, the feedback term can be treated as a sort of deterministic noise.

For K > 0 the distribution of laminar phase lengths P (τ) for a just above
ac exhibits a series of maxima at the values of τ equal to k and its multiples
(Fig. 1(c)) superimposed on a power-law trend typical of OOI. Let us define
the output signal as Zn = 0 if yn is in the laminar phase and Zn = 1 if yn
is in the burst phase (such discretization is typical in the study of systems
with SR). Then, a broad peak centered at the frequency 2π/k appears in the
power spectrum density (PSD) of Zn (Fig. 1(d)). Both absolute and relative
(with respect to the mean value of the PSD on the interval (π/k, 3π/k)) height
of this peak exhibit maximum as functions of a (Fig. 1(e)); these quantities
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Fig. 1. For the map given by Eq. (1) with ζn = ξn: (a) intermittency threshold ac
vs. K for various k (see legend); (b) time series yn(t) for k = 20, K = 0.2, a = 2.2
(just above ac), the initial condition is y0 ∈ (0, 1), where y0 is a random number, and
y−1 = y−2 = . . . y−k+1 = 0; (c) histogram of the number of laminar phases N(τ) of
duration τ for k = 20, K = 0.3, a = 2.1, yn was assumed to be in the burst phase
(Zn = 1) if yn > 0.01, vertical lines are drawn at multiples of k; (d) PSD from the
time series Zn for k = 64, K = 0.3, a = 2.1; (e) SPA (dots) and 250 SNR (circles) vs.
a for k = 64, K = 0.3.

correspond to the spectral power amplification (SPA) and signal-to-noise ratio
(SNR) used in the studies of SR, respectively. The height of these maxima
increases, their width decreases and their location approaches a = ac as K → 1
since then the feedback term becomes dominant in Eq. (1) and the signal Zn

is almost periodic for a just above ac.

These results show that CR occurs in the map (1) as the control parameter
is increased above the threshold for the blowout bifurcation. In fact, systems
with OOI resemble excitable ones, in particular just above the intermittency
threshold when the bursts are short in comparison with the quiescent laminar
phases. Thus, CR in the map (1) resembles that observed in excitable sys-
tems and threshold-crossing detectors with delayed feedback and external noise
[17,18], e.g., the multiple maxima in the histogram of laminar phase lengths in
Fig. 1(c) correspond to those found in the histograms of inter-spike intervals in
excitable systems with CR [12]. However, CR in the map (1) appears due to
changes of the internal dynamics within the invariant manifold as the control



Chaotic Modeling and Simulation (CMSIM) 2: 363–369, 2012 367

parameter is varied rather than under the influence of external noise. Thus,
this phenomenon belongs to the class of deterministic CR as in Ref. [20].

3 Modeling with a system of two diffusively coupled
chaotic Rössler oscillators

Similar phenomena were observed in a system of two diffusively coupled chaotic
Rössler oscillators,

ẋ1 = − (y1 + z1)

ẏ1 = x1 + ay1 + k (y2 − y1) +Ks(τ)

ż1 = b+ z1 (x1 − c)
ẋ2 = − (y2 + z2)

ẏ2 = x2 + ay2 + k (y1 − y2)−Ks(τ)

ż2 = (b+ δb) + z2 (x2 − c) , (6)

where a = 0.2, b = 0.2, c = 11, k is the strength of the diffusive coupling,
s(τ) = y2(t− τ)− y1(t− τ) = ∆y (t− τ) provides delayed feedback with delay
τ and amplitude K, and small δb 6= 0 can be added to model the mismatch of
parameters in an experimental system. For K = 0 and δb = 0 the oscillators
are identically synchronized for k > kc ≈ 0.12 and there is a chaotic attractor
within the invariant synchronization manifold x1 = x2, y1 = y2, z1 = z2. For
k < kc synchronization is lost (i.e., the invariant manifold loses transverse
stability) and ∆y(t) = y2(t) − y1(t) exhibits chaotic bursts typical of OOI;
thus, k is the control parameter for the supercritical blowout bifurcation. For
δb 6= 0 bursts occur already for k > kc due to attractor bubbling. Similarily,
the delayed feedback Ks(τ) with K > 0 also forces the trajectory to leave the
invariant mainfold, as in Eq. (1), and causes the onset of intermittent bursts
for k > kc.

Typical time series ∆y(t) exhibiting OOI are shown in Fig. 2(a). If, again,
the output signal is defined as Z(t) = 0 if ∆y(t) is in the laminar phase and
Z(t) = 1 if ∆y(t) is in the burst phase, a broad peak centered at the frequency
2π/τ appears in the PSD of Z(t) for a range of k below and just above kc
(Fig. 2(b)). The height of this peak (SPA) exhibits maximum as a function
of k, both for δb = 0 and δb > 0 (Fig. 2(c)); in the latter case only the range
of the control parameter where the bursts are observed is slightly broadened
toward higher values. This demonstrates that deterministic CR occurs in the
system given by Eq. (6) and the output signal exhibits maximum regularity for
optimum value of the parameter k which controls the internal dynamics within
the invariant synchronization manifold. The maximum of the SNR vs. k is not
clearly visible (Fig. 2(d)): evaluating PSD from much longer time series would
probably lead to smoother curves of the SNR. Hence, the results of numerical
simulations suggest that deterministic CR can be observed experimantally in
systems of coupled chaotic oscillators at the edge of identical synchronization.
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Fig. 2. For the system of diffusively coupled Rössler oscillators given by Eq. (6) with
τ = 512, K = 0.05, (a) time series ∆y(t) for k = 0.12, δb = 10−4; (b) PSD from
the time series Z(t) for k = 0.12, δb = 10−4, ∆y(t) was assumed to be in the burst
phase (Z(t) = 1) if ∆y(t) > 0.1; (c) SPA and (d) SNR vs. k for δb = 0 (circles) and
δb = 10−4 (dots)

4 Summary

To summarize, the influence of delayed feedback on OOI was studied using
generic maps with the time-dependent control parameter and synchronized
chaotic oscillators. It was found that delayed feedback can decrease the thresh-
old for the blowout bifurcation. Deterministic CR was observed in systems
under consideration, characterized by the appearance of a series of maxima at
the multiples of the delay time in the probability distribution of the laminar
phase lengths, superimposed on the power-law trend typical of OOI, and by
the presence of a strong periodic component in the intermittent time series,
with period equal to the delay time. The strength of this component exhibits
maximum as the control parameter is varied, due to the changes of the internal
dynamics of the system within the invariant manifold.
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Abstract: Biological systems are characterized by their potential for dynamic adaptation. 

Such systems, whose properties depend on their initial conditions and response over 

time, are expected to manifest non-linear behaviour. In a previous work we examined the 

oscillatory pattern exhibited by leukemic cells under in vitro growth conditions, where 
the system was simulating the dynamics of growth with disease progression. Our 

question in a previous study evolved around the nature of the dynamics of a cell 

population that grows, or even struggles to grow, under treatment with chemotherapeutic 

agents. We mentioned several tools that could become useful in answering that question, 
as for example the in vitro models which provide information over the spatio-temporal 

nature of such dynamics, but in vivo models could prove useful too. 

In the present work we have studied the non-linear effects that arise from cell 

population dynamics during chemotherapy. The study was performed not only in the 
sense of cell populations per se but also as an attempt of identifying sub-populations of 

cells, such as apoptotic cells and cells distributed within the cell cycle. The temporal 

transition from one state to the next was revealed to follow non-linear dynamics. We 

have managed to approximate the non-linear factor that influences these temporal space 
transitions. Such approaches could become very useful in understanding the nature of 

cell proliferation and the role that certain chemotherapeutic drugs play in cell growth, 

with emphasis given on the underlying drug resistance and cell differentiation 

mechanisms. Further on, we have attempted to approach this problem by using 
experimental data using the case of glucocorticoids. Glucocorticoids are considered to be 

indispensable agents in the treatment of hematologic malignancies. A critical established 

glucocorticoid action is the apoptotic effect that they exert on leukemic cells. However, 

little is known about the molecular response of malignant cells on glucocorticoid 
exposure. Even less is known about the cell proliferation dynamics governing leukemic 

cells under glucocorticoid influence. Dynamic parameters of the cell population state, 

like growth rate or its time derivative, are largely overlooked in cell population studies. 

In the present work a quantitative mathematical and modeling approach is endeavored 
regarding growth and metabolic dynamics. Cell populations and metabolic factors, such 
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as glucose, lactate and lactate dehydrogenase (LDH) are measured. Growth and 
metabolic features are assumed to be of nonlinear nature. A model-based prediction of 

glucocorticoid effects is derived by applying a non-linear fitting approximation to the 

measured parameters. 
To the best of our knowledge there are not many studies dealing with this topic, which 

makes it even more interesting. 

 

Keywords: Proliferation, oscillations, non-linearity, CCRF-CEM, glucocorticoids. 

 
1 Introduction 

Population dynamics have been the subject of study among various groups. It 

has already been shown that even cells that grow under normal conditions can 

manifest proliferation dynamics of non-linear nature [1, 2]. In addition, other 

groups have demonstrated that this non-linear behavior can also exist under the 

influence of drugs [3], or similarly, under the influence of environmental 

factors. Any new knowledge on the mechanisms underlying cell proliferation is 

of major importance, and even the smallest of indications towards a certain 

direction could enable us to further discover differences in the mechanisms 

distinguishing between health and disease. This issue is especially important in 

tumors, the incidence of which is approaching that of an epidemic. In the 

present study we focused on the dynamics that were revealed through an in vitro 

cell system, and particularly on the dynamics manifested under the influence of 

a certain type of chemotherapeutic drug, such as glucocorticoids. 

Glucocorticoids (GC) are among the most important alternatives in the 

treatment of leukemia. Resistance to glucocorticoids represents a crucial 

parameter in the prognosis of leukemia [4-6], whereas it has been shown that 

GC-resistant T-cell leukemia cells manifest a biphasic mechanism of action or 

imply an inherent resistance mechanism of action to glucocorticoids [7]. New 

questions arise regarding the nature of the dynamics of a cell population under 

the influence of a drug. If certain physical measures, such as proliferation, are 

observed on the phenotypic level, how are they translated on the molecular / 

genomic level? For example, if a cell population increases its rate of 

proliferation, does it mean that the genes required for this effect transcribe faster 

than usual? An interesting report by Mar et al. (2009) suggested that gene 

expression takes place in quanta, i.e. that it happens discretely and not 

continuously [8, 9]. Also, in two other reports it was suggested that gene 

expression follows oscillatory patterns, which makes things even more 

complicated with regards to the proliferation rate, be it growth acceleration or 

deceleration [10, 11]. This means that cells cannot simply transit from one state 

to another in terms of growth rate. Should the hypothesis of oscillatory 

modulation of gene expression, which implies non-linearity, stand correct, then 

a much more complicated regulatory pattern is required by a cell so as to change 

its state, as a function of environmental stimuli. The present work provides 

evidence supporting this view, with respect to glucocorticoids. The answer on 

whether cells possess inherent mechanisms inducing GC tolerance or whether 

they develop resistance as a response to treatment remains elusive. In other 
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words, do cells evolve to a certain phenotype or they already possess traits such 

as drug resistance?  

The same applies for critical aspects of the metabolism of cancer cells and in 

particular, leukemic cells. Already in 1924, Warburg et al. observed that a shift 

occurred in tumors from oxidative phosphorylation to aerobic glycolysis, known 

as the Warburg effect [12]. It is known, that metabolites, or metabolic 

molecules, do not only participate in metabolic processes related solely with 

energy production and thermodynamical conservation of the cell, but also 

mediate numerous signal transduction related functions. 

We did not give emphasis on the molecular profile of proliferating cells but 

rather on cell populations as they are measured during glucocorticoid treatment, 

in a spatio-temporal manner. Previous works have dealt with this issue, giving 

emphasis on the glucocorticoid receptor and the pharmacokinetics of 

glucocorticoids (methylprednisolone) [13, 14]. 

The present work uses numerical analysis methods along with fitting and 

modeling approximations in order to establish a mathematical model for the 

analysis and prediction of the effects of glucocorticoids on T-leukemic cells. 

Also, we attempted to demonstrate the non-linear nature of the present 

biological system using experimental data from both proliferation measures and 

metabolic factor measurements, complementary to the theoretical aspects. We 

have also, tried to measure and calculate physical constants, such as, growth and 

consumption rate and its time derivative (the analogues of velocity and 

acceleration) of the observed processes, if such exist. Overall, the significance 

of the present work relies on the effort to set up a mathematical framework for 

the prediction of glucocorticoid effects on leukemic cells and its connection to 

non-linear phenomena. To the best of our knowledge, there are no previous 

reports on modeling the effects of glucocorticoids on leukemic systems. 

2 Materials and Methods 

Cell Culture and Prednisolone Treatments 

The CCRF-CEM (ALL) cell line was obtained from the European Collection of 

Cell Cultures (ECACC) and was used as the model cell line. The T-

Lymphoblastic Leukemia CCRF-CEM cells were grown in RPMI-1640 medium 

supplemented with 2mM L-Glutamine and Streptomycin/Penicillin 100 U/ml 

(Gibco, Carlsbad, CA), 20% FBS (Gibco, Carlsbad, CA) at 37
o
C, 5% CO2 and 

~100% humidity. Cells were allowed to grow to ~900-1.500×10
3
 cells/ul for 

CCRF-CEM. The following concentrations of prednisolone (Pharmacia, Boston, 

MA) were used: 0μM (control), 10nM, 100nM, 1uM, 10μM, 100uM and 700μM 

[7]. 

Cell Population Measurements 

Cell population counts were determined with the use of a NIHON KOHDEN 

CellTaq-α hematology analyzer. Cells were counted at the -24 h time point as 

well as at 0 h, 4 h, 24 h, 48 h, 72 h after having been let to grow under normal 



G. I. Lambrou et al. 374 

conditions. For this purpose, 200 μl of cell suspensions were obtained from each 

flask and counted directly with the analyzer [7]. 

Biochemical Measurements 

Supernatants from the cell culture were taken every 24h and kept at -80
o
C 

thereafter until further processing. In brief, 1ml of cell culture media was 

centrifuged at 1200 rpm for 10min and the supernatant was removed and kept 

for further processing. Samples were then measured with a Siemens biochemical 

analyzer Advia 1800. The factors measured were Glucose (mg/dlt), Lactic Acid 

(mg/dlt), Lactate Dehydrogenase (LDH, IU/lt) and Alkaline Phosphatase (ALP, 

IU/lt). 

Flow Cytometric Measurements 

Flow cytometry was performed on a Beckman Coulter flow cytometer 

FlowCount XL. Cytotoxicity measurements were performed as previously 

described [7]. All experiments were performed in triplicate. The reported data 

constitute the average of three independent experiments. 

Data Analysis 

Flow cytometry and cell cycle data (cell cycle data not shown) were analyzed 

with WinMDI software version 2.8 (The Scripps Institute, Flow Cytometry Core 

Facility) and Cylchred version 1.0.2 (Cardiff University, Wales) which is based 

on the algorithms proposed by Watson et al. and Ormerod et al [15-17]. Raw 

data from cytometric studies were pre-processed in Microsoft Excel® and 

further data processing was performed with the Matlab® Computing 

environment (The Mathworks Inc.). 

 

3 Mathematical Formulations 

Generalized Cell Population Dynamics under Drug Influence 

In order to establish a modeling approach to the phenomenon described above, 

we discriminated between different cell populations. That is, if at time t a cell 

population is considered to be N, then this is a mixture of cells in various stages. 

More specifically, we have discriminated between the cell cycle phases and cell 

death. The cell cycle is the path through which cells manifest proliferation. The 

identification of cells in specific cell cycle phases is of critical importance, since 

it will determine cellular proliferation, cessation or cell death. Also, in various 

systems the detection of cells at specific cell cycle points, denotes a mechanism 

of reaction to an environmental stimulus, as for example in the present case is 

the glucocorticoid. In Figure 1, we present the model diagrammatically. 

The three phases of the cell cycle are represented. G1,t, G1,t+1, G1,t+n is the 

number of cells in G1 phase at time t, t+1 and t+n respectively, St, St+1, St+n is 

the number of cells in S phase at time t, t+1, t+n, respectively, G2,t is the 

number of cells in G2 phase at time t, t+1, t+n, respectively and CDt, CDt+1, 

CDt+n is the number of dead cells at time t, t+1, t+n, respectively. The arrows 
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connecting the different cell states, denote the possibilities that a cell has to 

transit from one state to another. So, for example, a cell in G1 phase has three 

possibilities: to remain in the G1 phase, to transit to the S phase or to become 

apoptotic, such as cell death (CD). This means that it is impossible for the cell to 

go from the G1 phase to G2 phase. A very important factor shown in Figure 1, is 

the Kfactor,t, which denotes the rate of transition from one cell state to another. 

Hence, the factor k will take the following subscripts: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G1,t→ G1,t+1: k1, G1,t→ St+1: k2, G1,t→ CDt+1: k3, 

St→ St+1: k4, St→ G2,t+1: k5, St→ CDt+1: k6 

G2,t→ G2,t+1: k7, G2,t→ G1,t+1: k8, G2,t→ CDt+1: k9 

CDt→ CDt+1: k10 

The following equations describe the transitions from one state to the next:
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Where, N denotes the respective cell population at time t. These equations could 

be formulated in more generalized form since each population at time t+1 

consists of two other populations at time t. Hence, the generalized form would 

be: , 1 , ,x y zp t p t y p t zN N k N k  
            

 

In other words, our model shows that the next state is defined by the previous 

one. Each cell subpopulation consists of parts of the other subpopulations. 

Fig. 1. A schematic representation of the model 

approach for cell population showing transitions 

between cell cycle phases and cell death. 
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These equations appear to be of linear form and are simple to solve. Yet, the 

factor k is a non-linear factor, which can be determined only experimentally. It 

is dependent upon environmental factors f(environmental), such as nutrient 

availability and space, and in the present case is a function of glucocorticoid 

concentration f(Cp). We have reported this previously, that cell populations 

defined experimentally, could be described with Fourier series, with respect to 

the transition factor k [12]. 

The generalized form of the series we have used for our approach was given by: 

0 1 2( , ) cos( ) sin( )f x y a a xy a xy    

Hence, the factor k for each transition, meaning from one cell state to the next 

would be given by the following system of equations: 
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We could write this system of equations in a more generalized form, which 

would be: 

, ,0 1 , , 1 2 , , 1cos( ) sin( )
y z x y z xp t p t p t p tk a a N N a N N   

, [Eq. 1]
 

Where k is the transition factor, a0,1,2 are constants, Np1,t and Np2,t+1 are the 

populations implicated in the transition at time t and t+1 respectively. 

Substituting the equation describing the generalized k with the equation of the 

generalized Np,t+1 we obtain: 

, [Eq. 2] 

This equation describes the transition of a cell population from one state to the 

next but it cannot be solved analytically. Solutions can only be found 

numerically, since future populations (Nx) depend on the previous ones and on 

the fraction of other future cell populations (Ny,z).  
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Metabolism Dynamics under Drug Influence 

Besides the generalized population model, we also attempted to model the 

glucocorticoid effects, as far as metabolic factors are concerned. A 

mathematical model was set that enabled numerical solutions for the study of 

their effects. As described previously in the previous section, the model 

presumes that the fraction of cells linked to a certain phenotypic effect can be 

derived from the previous total cell population so, let Ne,t+1 be the cell 

population under a certain effect. This effect can be, for the present analysis, 

either viability or cell death. Therefore, the total population estimate under the 

impact of a given effect will be given by: 

TABLE I 
SYMBOLS AND UNITS FOR VARIABLES 

Symbol Quantity Units 

Nt Total cell population at time t  cells/ul ∙103 

Ne Cell population under an effect, e can 

take the following values: 

v: viable 

n: necrotic 

a: apoptotic 

ea: early apoptotic 

ta: total apoptotic 

td: total cell death 

cells/ul ∙103 

NG1 Cell population in G1 phase of the cell 

cycle  

cells/ul ∙103 

NS Cell population in S phase of the cell 

cycle 

cells/ul ∙103 

NG2 Cell population in G2 phase of the cell 

cycle 

cells/ul ∙103 

k The factor by which total population 

proliferates from time t to time t+1. 

 

Ke,t The factor by which cell population 

under a certain effect proliferates from 

time t to time t+1. e takes values as 

mentioned above in the same table 

 

CG Glucose concentration mg/dlt 

CLA Lactic Acid concentration mg/dlt 

CALP Alkaline Phosphatase concentration IU/lt 

CLDH Lactate Dehydrogenase IU/lt 

km The factor by which metabolic factors 

are produced or consumed. from time t 

to time t+1. m can take the following 

values: 

 

 G: Glucose  

 LA: Lactic Acid  

 ALP: Alkaline Phosphatase  

 LDH: Lactate Dehydrogenase  

um Reaction rate (reaction kinetics) M/sec 
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,( 1) , ,e t e t e tN k N   , (1) where 
,e tk is a generalized nonlinear coefficient of the 

effect e  in the population 
,e tN at this instance. 

At the same time, apart from cell proliferation, we have to account for metabolic 

factors that change over time and probably influence the course of proliferation. 

In the case of metabolic factors, the rate of change in concentration is defined as 

the rate of the respective reaction which is: 

m
m

dC
u

dt
  [Eq. 3]. However, in the present case two of the substances 

measured are glucose and lactic acid. It is known that glucose is transformed 

into two lactic acid molecules based on the reaction: 

C6H12O6→2CH3CHOHCOOH. This is due to the formation of two molecules of 

pyruvate from the anaerobic catabolism of glucose and the subsequent 

formation of two molecules of lactate in the cytosol. However, this reaction 

represents a lump reaction, namely one that represents the algebraic sum of 

many reactions. With many intermediates in between and therefore kinetic rules 

such as Michaelis-Menten or Le Chatelier’s/Van’t Hoff cannot be directly 

applied to these data. However, under the assumption that there is not 

significant biochemical cross-talk of these intermediates with other external 

metabolic pools, the lumping of the reactions to a single one, is plausible as is 

the case of lactate production through the catalysis of pyruvate. The substrates 

of this reaction were measured. LDH concentration can be accounted only from 

cells that were lysed and not from the total population. Although the LDH 

concentration can be numerically calculated, it would still not be a reliable 

numerical approximation. Therefore, we used the same principle as in the case 

of cell population. The concentration C of a metabolite or substance at time t+1 

can be written as: 

,( 1) , ,m t m t m tC k C   , [Eq. 4]. Applying mass balance equations [18] for the 

metabolic pools with respect to time we have, 
, ,

m
m t m t

dC
k C

dt
   where ,m tk  is 

a generalized coefficient of the net effect observed in the pool ,m tC  at time t. 

This resembles a modification of the Lotka-Voltera-Kolmogorov equations 

which were initially used for the description of reaction dynamics and further 

expanded to population dynamics [19, 20]. The Lotka-Voltera functions were 

derived from the Verhulst logistic equation [21]. Though succinct this 

mathematical formulation introduces through the use of factor ,m tk , non- 

linearity. Coefficient ,m tk  bears a critical biological significance in the model. 

Presuming that the effects in this study are directly linked to glucocorticoid 

exposure, k=f(Cp), where p stands for prednisolone, the glucocorticoid used in 

the present study, the effects observed depend solely on the drug’s 

concentration. In order to approximate the values, i.e. numerically solve our 
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functions, we have used phase-space maps of the measured data. Symbols and 

definitions are given in Table I. 

4 Results 

The major challenge of computational and systems biology is to make 

contributions to the description of population and reaction dynamics [22]. This 

is applied to both systems under no external influences but also to systems under 

the influence of external stimuli, such as pharmacological interventions (as in 

the present case) or environmental stresses. In the case of the cell system studied 

in the present work, the most interesting observation was that the system was 

resistant to GCs and therefore our attempt was in fact to model dynamics of 

cellular growth and metabolism in resistant cases. Future research directions 

could point towards describing drug effects as a function of time or 

concentration and towards predicting the outcome of certain treatments or even 

towards improving the state of treatment in such a way, that it would be more 

effective. We suggest that the transition of the cell system that we have studied 

from one state to the next, follows complicated dynamics, manifesting in almost 

all cases oscillatory behaviour. The use of mathematical and modelling tools for 

the discovery of such mechanisms is a unique method for understanding 

complicated biological systems. Many research efforts are dedicated to the 

improvement of the existing or to the development of new pharmaceuticals. In 

Figure 2, experimental measurements are presented as an effort to calculate the 

rate of population change for the total population and data were fitted with 

Fourier series. 

 

Modelling approaches could assist in such efforts as they would provide with a 

more in-depth understanding of biological systems. The general idea is to be 

able to predict the future states of a system, based on the present ones. This is 

proved to be a difficult task, since biological systems follow nonlinear 

Fig. 2. Simulating the factor k in relation to time (A) and glucocorticoid concentration (B) 

showed that both could be fitted with Fourier series. In (A) the x-axis corresponds to 

experimental values from time point measurements of cell numbers, while each curve 

corresponds to the respective k factor of each glucocorticoid concentration. Similarly, in (B) the 

x-axis corresponds to the glucocorticoid concentrations and each curve corresponds to the time 

points measured. 

B A 
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behaviour and, unlike physical systems, there are only a few generalizations that 

can be formulated. In Figure 3, we have performed numerical approximations of 

the function (Eq. 2) in order to represent this schematically. The function 

appeared to give interesting dynamics, as it manifested a saddle point. Also, 

these phenomena were time dependent, as clearly seen on the experimental 

level. Thus, by differentiating with respect to time we could obtain a possible 

role of the temporal factor in this system. Similarly, we have made numerical 

approximations in order to design the dynamics of the first derivative for both 

variables, that is Np,y and Np,z. The result is presented in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Using a numerical 

approximation of the function 

describing the population 

transitions manifested interesting 

dynamics as they formed a saddle. 

 

Fig. 4. Numerical representation of the first partial derivative with respect 

to Np,y (upper left and right) and with respect to Np,z (lower left and right). 
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Accordingly, as far as metabolic data are concerned, the determination of the 

factor k was implemented with numerical approximations. We have assumed 

again that k is a nonlinear factor. The first aim was to determine the dynamics of 

the factor k i.e. how it changes as a function of concentration. In order to do this, 

we used the simplified model presented in Figure 5. Glucose measurements 

were taken from cell culture supernatants (CG). We assumed that glucose 

entering the cell was transformed as a total into ATPs and pyruvate. Since cells 

presumably follow a lactic acid fermentation cycle, pyruvate should be 

transformed into lactate through LDH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, the enzyme LDH (Lactate Dehydrogenase) was measured as a 

function of the total population of necrotic cells (CLDH). It is important to note 

that LDH is released from the cells only if cell lysis takes place, thus allowing 

the contents of the cytosol to be released in the extracellular medium. 

At the same time the measured lactate (CLA) was considered to be diffused from 

both living and apoptotic cells and also released from necrotic cells due to cell 

membrane lysis. Finally, we accounted for three possible cell fates: progression 

of proliferation (Nv), necrosis (Nn) and apoptosis (Nta). One of the first 

correlations calculated was that of the measured LDH and the respective number 

of necrotic cells. We would be expected to observe a positive correlation 

between the two factors. We have previously reported that LDH concentration 

and necrotic cell population indeed showed a positive correlation in two 

particular cases: untreated cells and cells treated with a large dose of 

prednisolone (700uM) [23]. This effect can be interpreted as follows: all other 

glucocorticoid concentrations beside necrotic cell death, also lead to the rupture 

of the cell membrane and cell lysis. Interestingly, the largest concentration that 

would be expected to have a lytic effect due to the overdose per se, showed a 

negative correlation, exactly matching that of cells with no glucocorticoid 

treatment. As mentioned earlier, we have attempted to impute numerically the 

factor k by plotting conditions at time t+1 vs. conditions at time t. In other 

Fig. 5. A simple model of cell fate and measurements of metabolic 

factors.  
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words we have attempted to model the total cell population over time as a 

function of the drugs concentrations. As it is shown in Figure 6 it appeared that 

cells followed complicated dynamics under the influence of the glucocorticoids 

even when the cell populations are separated into viable, necrotic and apoptotic. 

The manifested oscillatory behaviour indicates that cells proliferate with 

nonlinear dynamics, and despite the very few data points, their behaviour could 

still be revealed. In addition, the plotting of the phase-space of metabolic factors 

shows that the transition from one state to the other also follows oscillations 

(Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Discussion 

Fig. 6. Phase-space analysis of the different 

populations manifested complex dynamics 

with respect to time. In particular, viable 

cells (A), apoptotic cells (B) and necrotic 

cells (C) manifested oscillatory behavior as 

far as the k factor is concerned as modelled 

with Fourier series. 

Fig. 7. Fitting of glucose concentration CG,t 

vs. CG,t+1 (A), lactate CLA,t vs. CLA,t+1 (B) and 

CLDH,t vs. CLDH, t+1 (C). The factor k 

manifested again complicated dynamics 

resembling oscillatory behavior.  
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In the present work we attempted to identify non-linear factors of cell 

proliferation under the influence of chemotherapeutics, and more specifically 

under the influence of the glucocorticoid prednisolone. We attempted to 

establish an initial theoretical framework for the analysis of such phenomena 

and for future considerations. Cell growth appeared to be of a non-linear 

character. This knowledge could be proved useful in the treatment of tumors, 

since understanding the biology of proliferation would lead us to a better 

understanding of cellular resistance to chemotherapeutics. Biological systems 

are extremely complicated and they manifest, without doubt, non-linear/chaotic 

phenomena. Therefore, as we have mentioned in previous works, we believe 

that the maturity of biological sciences would come through integration with 

other disciplines, such as mathematics and physics, and the ability to give 

generalized models for these phenomena. Such an example is the understanding 

of cell proliferation in which we attempted to contribute with hints. 

We also attempted to create a modelling framework, along with its 

mathematical formulation, for describing the dynamics of leukemic cells under 

the influence of glucocorticoids. We used two factors in our analysis: cell 

populations, including changes in viability and cell death, and metabolic factors. 

Approximations of experimental data of course require large datasets, in order 

to have a more precise view of the fitted phenomena. However, we must 

mention that obtaining large amounts of data from biological systems can 

sometimes be proved to be a tedious task. This is owed to the fact that cells in 

culture preserve a proliferation potential and if they remain in culture for a long 

period of time, the observed results should be accounted for additional effects 

besides the one under investigation. In the present analysis, the Jacobian matrix 

J determines the transition dynamics of the system from one state to the next. In 

a previous work the use of Jacobian matrices was used for the determination of 

the possible dynamics of a system at a metabolic state [22]. There is a great 

amount of mathematical formulations concerning biological systems dating 

back in the early 19
th
 century but the whole idea of integrating biological 

systems with analytical or stochastic formulations is still in its infancy [13, 19-

21]. Therefore, such approaches could prove very useful in gaining more insight 

into the proliferation dynamics of cell populations and the dynamics emerging 

under the influence of external stimuli such as chemotherapeutics. 
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APPENDIX 

The functions that have been used for the fitting of the data and the 

mathematical formulations were the following: Quadratic: 

 a) 2y ax bx c    

b) Cubic: 3 2y ax bx cx d     

c) polynomial of n
th
 , m

th
 degree: 

1 1

1 1 1 1 0 0( , ) ...n m n m

n m n mf x y a x b y a x b y a xb y a b 

      d) d) 1
st
  order 

Fourier Series:  1 1 0cos( ) sin( )a xw b xw a   

e) 2
nd

 order Fourier Series: 

2 1 2 1 0cos(2 ) cos( ) sin(2 ) sin( )a xw a xw b xw b xw a    ff) Lotka-Voltera 

equations: ( )

( )

dx
x y

dt

dy
y x

dt

 

 

 

  

 

g) Kolmogorov variation of Lotka-Voltera functions 

0 1 2

0 1 2

( , )

( , )

( , )

( , )

dx
f x y x

dt

dy
g x y y

dt

f x y A A x A y

g x y B B x B y





  

    
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Abstract: The dynamics of oscillations in chemical reactions has stimulated a wide 

research interest and produced thousands of studies on about 70 known chemical 
oscillators, notably over the past 50 years. Oscillating chemical reactions find many 

applications in Physics, Biology, Geology, Physiology and Medicine. 

The dynamics of the bromate-sulfite-perchloric acid (BSH) reaction is investigated in a 

continuous-flow stirred tank reactor (CSTR), with Mn2+ as a proton-consuming (or 
negative feedback) species.  This reaction is known to exhibit periodic oscillations in 

[H+], and it thus belongs to a sub-category of chemical oscillators, called pH oscillators.  

The reaction is carried out at 45C, and a flow rate of 1.59 mL/min. The oscillations are 

monitored in the [Mn2+]-[BrO3
] phase space, wherein a bifurcation diagram is 

constructed to delineate the regions of the various behavior regimes. Under our 

prevailing conditions, a shorter period and higher amplitude of oscillation than those 

reported in the Literature were obtained. A decrease in the period of oscillations from 40 

minutes to 10 minutes in our system under newly imposed [BrO3
]0 conditions renders 

the system more feasible and practical for study. A variation in the flow rate and 
residence time was also conducted. Decreasing the flow rate from 1.59 mL/min to 1.35 

mL/min caused a doubling of the period of oscillations. Yet, over the entire spanned 

range, no chaotic behavior was observed.  

Keywords: Chemical oscillations, BSH reaction, Period doubling, Chaos monitoring, pH 
oscillations 

.  

  
 

1   Introduction 

 
Oscillating reactions [1] have garnished the chemical literature with rich 

dynamical behavior encompassing temporal concentration oscillations, and 

notably fascinating visual spatio-temporal structures. A large number of 

oscillating reactions is known nowadays, such as the Bray-Liebhafsky (H2O2- 

IO3

 system) [2], Briggs-Rauscher [3], CIMA (chlorite-iodide-malonic acid) [4] 

and the Belousov-Zhabotinskii (BZ) [5-7] reactions. Of particular interest to us 

here, is a subclass of oscillating reactions where the oscillating species is the 

hydrogen ion (H
+
), thus known as pH oscillators [8-10]. The first pH-regulated 

oscillator was reported by M. Orban, and I. Epstein [11], in the reaction of 

sulfide ion with hydrogen peroxide. The latter was shown to yield both periodic 

mailto:rsultan@aub.edu.lb
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oscillations and bi-stability in the H
+
 potential/pH, in addition to the bi-stability 

and periodic oscillations in the potentials of Pt redox and sulfide ion-selective 

electrodes. Afterwards, the field of pH oscillations started growing rapidly 

spanning reactions with sulfur- or nitrogen- containing species or the 

ferrocyanide ion as reductants, and basically IO3

, IO4


, BrO3


, and H2O2 as 

oxidants. In constructing a pH-oscillator, the reductant is normally a species that 

is able to be oxidized to another species that produces H
+
, often 

autocatalytically, or to another species that consumes H
+
 by some oxidant. 

Furthermore, the proper combination of two reductants in a pH-oscillator is 

often a necessity to control high or low pH states. Several pH-oscillators have 

been characterized mechanistically [12-14]. The most systematically studied 

pH-oscillators include the reaction of iodate with sulfite and ferrocyanide
 

[10,12],  and its bromate [14] analogue. Essentially, designing a pH oscillator is 

based on having two main composite pathways, the positive feedback pathway 

that produces H
+
, and a negative feedback pathway that removes H

+
 from the 

system.  

In this paper we study the bromate-sulfite-perchloric acid (BSH) reaction in a 

CSTR, and monitor oscillations while varying two main concentration 

parameters: [BrO3

]0 and [Mn

2+
]0  (one at a time), maintaining all other 

parameters constant, and then construct the corresponding bifurcation diagrams. 

The overall reaction in acidic medium is as follows: 

 BrO3

  +  3 HSO3


       3 SO4

2
  +   Br

 
 +  3 H

+
    (1) 

The waveform of the temporal pH oscillations for various values of [BrO3

]0 at 

fixed [Mn
2+

]0, [SO3
2

]0 and [H
+
]0 shows large-amplitude pH oscillations of 

typically 4.5 pH units (range 2.8-7.3), as obtained in earlier studies [8]. Whereas 

the period of oscillations remains constant (39 min) while [BrO3

]0 is being 

varied, it was found to decrease with gradual increase in the concentration of 

negative feedback species [Mn
2+

]0. The reaction was also studied at different 

flow rates, and the possibility of detecting a chaotic behavior was explored. 

 

2   Experimental Procedure 

Reagent-grade chemicals Na2SO3, HClO4, MnSO4.H2O and NaBrO3 were used 

for the daily preparation of the needed solutions. A CSTR configuration was set 

as described by Okazaki and Hanazaki
 
[15].  A water-jacketed quartz-glass 

beaker (double-walled) was employed as the reactor. Four stock solutions 

placed in three different beakers (one containing both SO3
2

 and H
+
, another 

Mn
2+

 and the third one BrO3

) were brought into the reactor through glass 

capillary tubes connected by bendable Teflon tubes using regulated peristaltic 

pumps. SO3
2

and H
+
 were placed in one reservoir because their concentrations 

were held constant throughout the different runs, while Mn
2+

 and BrO3

 were 

being varied. The flow rate of all the pumps was controlled by the voltage 

generated using a National Instruments toolkit interface with the Labview 

software.  The pumps were connected to separate channels. The flow rate of 

each pump was then calibrated separately, as a function of the voltage. A 

schematic representation of the setup is shown in Fig. 1.   



Chaotic Modeling and Simulation (CMSIM)  2: 387-394, 2012 389 

 

Figure 1: Experimental setup showing the CSTR, the reagent sources (flasks) and the 

corresponding pumps. Flask A: Mn2+; Flask B: BrO3
; Flask C; H+ and SO3

2.  

The reaction mixture was vigorously stirred by a Teflon coated magnetic stirrer 

bar. As soon as the volume of the mixture reaches 9.0 mL, aspiration from the 

top of the reactor is operated in a way to maintain this volume constant 

throughout the remainder of the experiment. A thermostat bath providing water 

circulation to the reactor was used to maintain the reaction temperature at 45.0 ± 

0.1 ºC. The pH of the mixture was monitored by continuous measurement using 

a calibrated glass/combination electrode, vertically inserted in the reaction 

mixture and connected to the NI interface. A thermocouple was also connected 

to monitor the temperature of the reactor. The sampling rate was 2 Hz, which 

yields a rate of 2 pH readings/sec. 

 
3   Results and Discussion 
 

Within the settings and configuration of our CSTR, we use a range of bromate 

concentrations notably higher than the one used by Okazaki et al. [8], but we 

keep the concentrations of the other species essentially similar, i.e. [Mn
2+

]0 = 9.0 

mM, [SO3
2

]0 = 118 mM and [H
+
]0 = 16.5 mM. The inlet flow rate is regulated 

at kin = 1.59 mL/ min. This corresponds to a residence time of 5.66 min for a 

fixed CSTR volume of 9.00 mL ( inCSTRres kVt /.  ). Note that in our 

experiments, the outlet flow rate kout   is threefold larger, that is, kout = 4.77 

mL/min, since the solutions in the three reservoirs are pumped in separately, 

while they are drained out of the reactor at once.  

We explored the range [BrO3

]0 = 250 to 1500 mM, with [Mn

2+
]0, [SO3

2
]0 and 

[H
+
]0 held constant as specified above, and according to Ref. [8]. Some of these 

concentrations exhibited oscillations and others did not. Over the [BrO3

]0 range 

90 – 300 mM, no oscillations were observed within the frame of our 

experimental CSTR settings. We jumped to higher [BrO3

]0, starting particularly 

with [BrO3

]0 = 590 mM. The first important result is the large-amplitude 

oscillations ranging from pHlo = 2.00 to pHhi = 7.46, with a pH amplitude 5.46.  
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This value exceeds the amplitude reported by Okazaki et al. [8] (4.5 pH units) 

by about 1 pH unit (0.96). In addition, the period is 10.9 min, compared to 39.1  

a   b  

c  d  

e  f  

g  h  

i  j  

Figure 2: Oscillations obtained in the BSH reaction with [Mn2+]0 = 9.0 mM used a 

negative feedback; [H+]0 = 16.5 mM, [SO3
2]0 = 118 mM, with [BrO3

]0 = (a) 350, (b) 
385, (c) 450, (d) 560, (e) 590, (f) 620, (g) 730, (h) 800, (i) 1000, and (j)1500 mM.  

min. reported by Okazaki et al. [8]. So we continue to vary [BrO3

]0 throughout 

the rest of the study, i.e. explore the region 300-590 mM and then above 590 

mM (the first [BrO3

]0 with satisfactory oscillations). The obtained behavior for 

some relevant chosen BrO3

 concentrations is displayed in Fig. 2. This wide 

range of BrO3

 concentrations enables us to construct a bifurcation diagram in 

the pH  [BrO3

]0 space, delineating the various regions with different 
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characteristic behaviors. Such a bifurcation diagram is depicted in Fig. 3. It 

highlights the high steady state region (SSH), low steady state region (SSL) and 

the oscillatory regime (OR). At low [BrO3

]0 values, only SSH is stable. 

 
Figure 3: Bifurcation diagram in the Mn2+- BrO3

- SO3
2-H+ system with [Mn2+]0 = 9.0 

mM. One (steady-state) or two (oscillatory region) pH values are plotted for each 

[BrO3
]0 run. The framed labels read as follows: SSH (Steady-State High); OR 

(Oscillatory Region); SSL (Steady-State Low). 

 

Upon increasing [BrO3

]0 through the concentration 385 mM (among our tested 

values), the system experiences a transition (bifurcation) to an onset of 

oscillations (OR region). At [BrO3

]0 ≥ 1000 mM, as shown in Fig. 2 (frames i 

and j), the system is stable in the low pH regime. This is illustrated in the 

bifurcation diagram, and appears in the region labeled SSL (low pH steady 

state).  

The variation of the amplitude and period of oscillation with the initial bromate 

concentration [BrO3

]0 is shown in Fig. 4. We can see that the amplitude, and 

period of oscillations (beyond 450 mM) remain essentially constant (the range 

in Figure 4.a spans only about 0.5 pH unit). 

 

a  b  

Figure 4: a. Variation of the amplitude of pH oscillations with bromate concentration 

[BrO3
]0. b. Variation of the period of oscillations with bromate concentration [BrO3

]0. 

 

Among all the experiments done, [BrO3

]0 = 590 mM  is selected for the 

variation of flow rate, achieved by changing the voltages on the pumps.  
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Upon decreasing the flow rate to 1.35 mL/min, the period increased to 26.4 min, 

almost twice the value measured for kin = 1.59 mL/min, as clearly shown in Fig. 

5.  

 

 
Figure 5: Effect of decreasing the flow rate from 1.59 to 1.35 mL/min for constant 

[BrO3
]0 = 590 mM. The figure shows the pH oscillation at two different flow rates. a. 

[BrO3
]0 = 590 mM, with k = 1.59 mL/min. b. [BrO3

]0 = 590 mM, with k = 1.35 
mL/min. 

 

This can be considered as a period-doubling effect. Since the route to chaos 

starts with period-doubling and then followed by further increase (period-

quadrupling etc.), we tried decreasing the flow rate further. We carried out runs 

at flow rates 1.260, 0.686 and 0.502 mL/min. No further ascent in the period of 

oscillation was obtained. As a second alternative, instead of decreasing the flow 

rate, we increased kin to 1.89, 2.64 and 3.26 mL/min respectively. However none 

of the runs exhibited any noticeable change of interest, in particular the 

anticipated chaos.  

We now vary [Mn
2+

]0, keeping the other concentrations constant. The results are 

displayed in Fig. 6.  

a  b  
Figure 6: BSH runs at fixed [BrO3

]0 = 590 mM, [H+] = 16.5 mM, [SO3
2-] = 118 mM, but 

with [Mn2+] =  9.0 (a), and 13.0 mM (b). The period of oscillations decreases here from 

10.9 to 8.7 min. 
 

Upon increasing [Mn
2+

]0 from 7.2 to 9.0 to 13.0 mM, the period decreased from 

11.76 min to 10.86 min to 8.66 minutes respectively. In the absence of [Mn
2+

]0, 

no oscillations were found indicating that Mn
2+

 plays an important role in the 

reaction mechanism, under the prevailing experimental conditions. It is worth 

noting that here again, the variation of [Mn
2+

]0 did not show any transition to 

chaotic behavior. Another interesting observation is that the duration of the low-

pH stage decreases from 5.2 to 2.7 min. as [Mn
2+

]0  increases from 9.0 mM to 

13.0 mM respectively, while that of the high pH stage remains constant (5.7 

min.) as seen in Fig. 6. The latter trend agrees with the results of Okazaki et al. 

[8]. At very low [Mn
2+

]0, Mn
2+

 becomes insufficient for consuming protons, and 
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thus the low pH regime lasts gradually longer, until the transition to high pH is 

suppressed (oscillations cease). According to Okazaki et al. [8], among the 

stable Mn
2+

 species in the pH range 3-4 (Mn(OH)
2+

, Mn(OH)2
2+

, and 

MnO(OH)
+
), MnO(OH)

+
 plays the most important role, and undergoes the 

reaction: 

MnO(OH)
+
  +  2 HSO3


 + 2 H

+ 
   Mn

2+
  +  HS2O6


   +   2 H2O     (2) 

 

MnO(OH)
+
 is readily produced from Mn

2+
 according to: 

 

 3 Mn
2+

 +  BrO3

 + 3 H2O       3 MnO(OH)

+
  +  Br


  +   3 H

+ 
     (3) 

 

The predominance of MnO(OH)
+
, coupled to the dependence on [BrO3


]0 , 

suggest that reaction (2) is the relevant process for the negative feedback 

scheme, contributed by the presence of Mn
2+

. Finally, it is quite interesting to 

realize that the [BrO3

]0 = 590 mM/[Mn

2+
]0 = 9.0 mM conditions produce 

oscillations with essentially equal durations of low and high pH stages (5.2 and 

5.7 min. respectively). 

It was further suggested [8] that the employment of two negative feedback 

species could produce chaotic pH-oscillations. To test this possibility, Mn
2+

 was 

combined with MnO4

, another known negative feedback species.  

 
Figure 7: BSH run with two negative feedback species. [Mn2+] = 9.0 mM and [MnO4

] = 

1.5 mM, with [BrO3
] = 590 mM. 

 

The result is shown in Fig. 7, without any noticeable sign of chaos. So with all 

those explored possibilities (variation in flow rate, [Mn
2+

]0 or use of two 

negative feedback species), no chaotic oscillations were observed. 

 

4   Conclusions 

 
The [BrO3


]0 regime used here resulted in a larger amplitude and a shorter 

period than the values obtained in Ref. [8]. Furthermore, the system exhibited a 

period-doubling upon only one variation of flow rate. However, as discussed 

earlier, this system did not display any chaotic behavior in the whole range of 

BrO3

 and Mn

2+ 
concentrations explored, flow rate domains, or through the use 

of two negative feedback species. A bifurcation diagram was constructed, 

delineating the steady-state and oscillatory regimes. 



F. Zaknoun et al. 394 

Other suggested attempts to reach chaos in future studies on this system are, to 

name but a few, changing parameters such as the stirring rate and the 

temperature of the CSTR, in addition to variations in [SO3
2

] and [H
+
]. 
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Abstract: Tsallis q-extension of statistics and fractal generalization of dynamics are two 

faces of the same physical reality, as well as the Kernel modern complexity theory. The 

fractal generalization dynamics is based at the multiscale – multifractal characters of 

complex dynamics in the physical space-time and the complex system’s dynamical 

phase space. Tsallis q-triplet of non-extensive statistics can be used for the experiment 

test of q-statistic as well as of the fractal dynamics. In this study we present indicative 

experimental verifications of Tsallis theory in various complex systems such as solar 

plasmas, (planetic magnetospheres, cosmic stars and cosmic rays), atmospheric 

dynamics, seismogenesis and brain dynamics. 

Keywords: Tsallis non-extensive statistics, Non-equilibrium phase transition, 

intermittent turbulence, Self Organized Criticality, Low Dimensional Chaos, 

Magnetosphere, Superstorm.  

 

 

1. Introduction 
 

Physical theory today has been led into admirable experience and knowledge. 

Namely, at all levels of physical reality a global ordering principle is operating. 

Prigogine [1], Nicolis [2], Davies [3], El Naschie [4], Iovane [5], Nottale [6], 

Castro [7]. All classical physical theory dominates the Demokritean and 

Euclidean reductionistic point of view. That is, cosmos is created from 

elementary particles which obey to the fundamental laws, space consists of 

points and time from moments points or moments have zero measure. In 

Einstein’s relativistic physical theory Democritean (elementary material 

particles) and Euclidian (points, space, point view) are joined into a unified 

physical entity that of the space time manifold. Here, geometry explains physics 

since the forces-fields are identified with the curvature of the space-time 

manifold. Although Einstein showed, with a rare genius way, the unity of 

universe through a mathematization and geometrization modification of the 
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cosmos subject-matter, however he didn’t escape from the reductionistic and 

deterministic point of view [8]. According to this concept, the observed and 

macroscopic reality is illusion as the only existed reality is the fundamental 

geometrical and objective reality of the space-time manifold in general. This is 

the Democritian, Parmenidian, Euclidian, Spinozian point of view. 

 

The overthrow of the dogmatic determinism and reductionism in science started 

to be realized after the novel concept of Heisenberg according to which the 

physical magnitude properties are not objective and divided realities but 

operators as the dynamical states are infinite dimensional vectors. This new 

concept of Heisenberg led to a new theoretical status corresponding to a 

microscopical complexity point view of cosmos. Neuman inspired from 

Heisenberg’s novel theory introduced non-commutatively in geometry, 

according to which Space does not consist of points but from “states”. In 

addition, superstring theory forced physicists to introduce non-commutatively 

at the Planck scale of space-time, confirming Neuman’s as well as Heisenberg’s 

intuition. This, of course, was the initiation of an avalanche of serious of 

changes in the fundamentals of physical theory, corresponding to new 

theoretical concepts as: poly-dimensional and p-adic physics, scale relativity 

fractal dynamics and fractal space-time etc El Naschie [4], Khrenminov [9], 

Nottale [6], Castro [7], Kroger [10], Pezzaglia [11], Tarasov [12], El-Naboulsis 

[13], Gresson [14], Goldfain [15]. 

 

Prigogine [1] and Nicolis [2] were the principal leaders of an outstanding 

transition to the new epistemological ideas in the macroscopical level. Far from 

equilibrium they discover an admirable operation of the physical-chemical 

systems. That is, the discovered the possibility of long range spatiotemporal 

correlations development when the system lives far from equilibrium. Thus, 

Prigogine and Nicolis opened a new road towards to the understanding of 

random fields and statistics, which lead to a non-Gaussian reality. This behavior 

of nature is called Self-Organization. Prigogine’s and Nicoli’s self-organized 

concepts inspired one of the writers of this paper to introduce the self 

organization theory as basic tool to interpret the dynamics of the space plasmas 

dynamics [16] as well as seismogenesis [17] as a result of the self organization 

of Earth’s manage-crust system. However Lorenz[18] had discovered the 

Lorenz’s attractor as the weather’s self organization process while other 

scientists had observed the self organization of fluids (e.g. dripping faucet 

model) or else, verifying the Feinebaum [19] mathematical scenarios to 

complexity includes in nonlinear maps or Ordinary Differential Equations – 

Partial Differential Equations [20]. However, scientists still now prefers to 

follow the classical theory, namely that macro-cosmos is just the result of 

fundamental laws which can be traced only at the microscopical level. 

Therefore, while the supporter of classical reductionistic theory considers the 

chaos and the self organization macroscopic characteristics that they ought to 

be the result of the fundamental Lagrangian or the fundamental Hamiltonian of 
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nature, there is an ongoing a different perception. Namely, that macroscopic 

chaos and complexity not only cannot be explained by the hypothetical 

microscopic simplicity but they are present also in the microscopic reality.  

 

Therefore, scientists like Nelson [21], Hooft [22], Parisi [23], Beck [24] and 

others used the complexity concept for the explanation of the microscopic 

“simplicity”, introducing theories like stochastic quantum field theory or 

chaotic field theory. This new perception started to appear already through the 

Wilsonian theories of renormalization which showed the multiscale cooperation 

of the physical reality [25]. At the same time, the multiscale cooperativity goes 

with the self similarity characters of nature that allows the renormalization 

process. This leads to the utilization of fractal geometry into the unification of 

physical theories, as the fractal geometries are characterized by the scaling 

property which includes the multiscale and self similar character. Scientists like 

Ord [26], El Naschie [4], Nottale [6] and others, will introduce the idea of 

fractal geometry into the geometry of space-time, negating the notion of 

differentiability of physical variables. The fractal geometry is connected to non-

commutative geometry since at fractal objects the principle of self similarity 

negates the notion of the simple geometrical point just like the idea of 

differentiability. Therefore, the fractal geometry of space-time is leading to the 

fractal extension of dynamics exploiting the fractal calculus (fractal integrals- 

fractal derivatives) [27]. Also, the fractal structure of space-time has 

intrinsically a stochastic character since a presupposition for determinism is 

differentiability [6, 14]. Thus, in this way, statistics are unified with dynamics 

automatically, while the notion of probability obtains a physical substance, 

characterized as dynamical probabilism. The ontological character of 

probabilism can be the base for the scientific interpretation of self-organization 

and ordering principles just as Prigogine [1] had imagined, following 

Heisenberg’s concept. From this point of view, we could say that contemporary 

physical theory returns to the Aristotetiles point of view as Aristotelianism 

includes the Newtonian and Democritian mechanistical determinism as one 

component of the organism like behavior of Nature [28]. 

 

Modern evolution of physical theory as it was described previously is 

highlighted in Tsallis q-statistics generalization of the Boltzmann-Gibbs 

statistics which includes the classical (Gaussian) statistics, as the q=1 limit of 

thermodynamical equilibrium. Far from equilibrium, the statistics of the 

dynamics follows the q-Gaussian generalization of the B-G statistics or other 

more generalized statistics. At the same time, Tsallis q-extension of statistics 

can be produced by the fractal generalization of dynamics. The traditional 

scientific point of view is the priority of dynamics over statistics. That is 

dynamics creates statistics. However for complex system their holistic 

behaviour does not permit easily such a simplification and division of dynamics 

and statistics. Tsallis q − statistics and fractal or strange kinetics are two faces 

of the same complex and holistic (non-reductionist) reality. 
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Moreover, the Tsallis statistical theory including the Tsallis extension of 

entropy to what is known as q-entropy [29], the fractal generalization of 

dynamics [6, 7] and the scale extension of relativity theory C [6, 7] are the 

cornerstones of modern physical theory related with nonlinearity and non-

integrability as well as with the non-equilibrium ordering and self organization. 

In the following, in section (2) we present the theoretical concepts of q-statistics 

and fractal dynamics, while in section (3) we present indicative experimental 

verification of the Tsallis statistical theory. Finally in section (4) we present 

estimations of q-statistics index for various kinds of complex systems and in 

section (5) we summarize and discuss the results of this study. 

 

2. Theoretical Concepts 

 

2.1 Complexity Theory and the Cosmic Ordering Principle 
 

The conceptual novelty of complexity theory embraces all of the physical 

reality from equilibrium to non-equilibrium states. This is noticed by Castro [7] 

as follows: “…it is reasonable to suggest that there must be a deeper 

organizing principle, from small to large scales, operating in nature which 

might be based in the theories of complexity, non-linear dynamics and 

information theory which dimensions, energy and information are intricately 

connected.” [7]. Tsallis non-extensive statistical theory [29] can be used for a 

comprehensive description of space plasma dynamics, as recently we became 

aware of the drastic change of fundamental physical theory concerning physical 

systems far from equilibrium. 

The dynamics of complex systems is one of the most interesting and persisting 

modern physical problems including the hierarchy of complex and self-

organized phenomena such as: intermittent turbulence, fractal structures, long 

range correlations, far from equilibrium phase transitions, anomalous diffusion 

– dissipation and strange kinetics, reduction of dimensionality etc [30-37]. 

More than other scientists, Prigogine, as he was deeply inspired by the arrow of 

time and the chemical complexity, supported the marginal point of view that the 

dynamical determinism of physical reality is produced by an underlying 

ordering process of entirely holistic and probabilistic character at every 

physical level. If we accept this extreme scientific concept, then we must accept 

also for complex systems the new point of view, that the classical kinetic is 

inefficient to describe sufficiently the emerging complex character as the 

system lives far from equilibrium. However resent evolution of the physical 

theory centered on non-linearity and fractality shows that the Prigogine point of 

view was so that much extreme as it was considered at the beginning. 

   After all, Tsallis q − extension of statistics [29] and the fractal extension for 

dynamics of complex systems as it has been developed by Notalle [6], El 

Naschie [4], Castro [7], Tarasov [12], Zaslavsky [38], Milovanov [32], El 

Nabulsi [13], Cresson [14], Coldfain [15], Chen [39], and others scientists, they 

are the double face of a unified novel theoretical framework, and they constitute 
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the appropriate base for the modern study of non-equilibrium dynamics as the 

q-statistics is related at its foundation to the underlying fractal dynamics of the 

non-equilibrium states. 

 

For complex systems near equilibrium the underlying dynamics and the 

statistics are Gaussian as it is caused by a normal Langevin type stochastic 

process with a white noise Gaussian component. The normal Langevin 

stochastic equation corresponds to the probabilistic description of dynamics by 

the well-known normal Fokker – Planck equation. For Gaussian processes only 

the moments-cumulants of first and second order are non-zero, while the central 

limit theorem inhibits the development of long range correlations and 

macroscopic self-organization, as any kind of fluctuation quenches out 

exponentially to the normal distribution. Also at equilibrium, the dynamical 

attractive phase space is practically infinite dimensional as the system state 

evolves in all dimensions according to the famous ergodic theorem of 

Boltzmann – Gibbs statistics. However, in Tsallis q − statistics even for the 

case of 1q = (corresponding to Gaussian process) the non-extensive character 

permits the development of long range correlations produced by equilibrium 

phase transition multi-scale processes according to the Wilson RGT [40]. From 

this point of view, the classical mechanics (particles and fields), including also 

general relativity theory, as well as the quantum mechanics – quantum field 

theories, all of them are nothing else than a near thermodynamical equilibrium 

approximation of a wider theory of physical reality, characterized as complexity 

theory. This theory can be related with a globally acting ordering process which 

produces the q − statistics and the fractal extension of dynamics classical or 

quantum. 

   Generally, the experimental observation of a complex system presupposes 

non-equilibrium process of the physical system which is subjected to 

observation, even if the system lives thermodynamically near to equilibrium 

states. Also experimental observation includes discovery and ascertainment of 

correlations in space and time, as the spatio-temporal correlations are related or 

they are caused by from the statistical mean values fluctuations. The theoretical 

interpretation prediction of observations as spatial and temporal correlations – 

fluctuations is based on statistical theory which relates the microscopic 

underling dynamics with the macroscopic observations indentified to statistical 

moments and cumulants. Moreover, it is known that statistical moments and 

cumulants are related to the underlying dynamics by the derivatives of the 

partition function ( Z ) to the external source variables ( J ) [41]. 

   From this point of view, the main problem of complexity theory is how to 

extend the knowledge from thermodynamical equilibrium states to the far from 

equilibrium physical states. The non-extensive q − statistics introduced by 

Tsallis [29] as the extension of Boltzmann – Gibbs equilibrium statistical theory 

is the appropriate base for the non-equilibrium extension of complexity theory. 

The far from equilibrium q − statistics can produce the q -partition function 
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( qZ ) and the corresponding q − moments and cumulants, in correspondence 

with Boltzmann – Gibbs statistical interpretation of thermodynamics. 

   The miraculous consistency of physical processes at all levels of physical 

reality, from the macroscopic to the microscopic level, as well as the 

inefficiency of existing theories to produce or to predict the harmony and 

hierarchy of structures inside structures from the macroscopic or the 

microscopic level of cosmos. This completely supports or justifies such new 

concepts as that indicated by Castro [7]: “of a global ordering principle or that 

indicated by Prigogine, about the becoming before being at every level of 

physical reality.” The problem however with such beautiful concepts is how to 

transform them into an experimentally testified scientific theory. 

 

The Feynman path integral formulation of quantum theory after the 

introduction of imaginary time transformation by the Wick rotation indicates 

the inner relation of quantum dynamics and statistical mechanics [42, 43]. In 

this direction it was developed the stochastic and chaotic quantization theory 

[22-24, 44], which opened the road for the introduction of the macroscopic 

complexity and self-organization in the region of fundamental quantum field 

physical theory. The unified character of macroscopic and microscopic 

complexity is moreover verified by the fact that the n − point Green functions 

produced by the generating functional ( )W J of QFT after the Wick rotation 

can be transformed to n − point correlation functions produced by the partition 

function ( )Z J of the statistical theory. This indicates in reality the self-

organization process underlying the creation and interaction of elementary 

particles, similarly to the development of correlations in complex systems and 

classical random fields Parisi [23]. For this reason lattice theory describes 

simultaneously microscopic and macroscopic complexity [40, 42]. 

   In this way, instead of explaining the macroscopic complexity by a 

fundamental physical theory such as QFT, Superstring theory, M-theory or any 

other kind of  fundamental theory we become witnesses of the opposite fact, 

according to what Prigogine was imagining. That is, macroscopic self-

organization process and macroscopic complexity install their kingdom in the 

heart of reductionism and fundamentalism of physical theory. The 

Renormalizable field theories with the strong vehicle of Feynman diagrams that 

were used for the description of high energy interactions or the statistical theory 

of critical phenomena and the nonlinear dynamics of plasmas [45] lose their 

efficiency when the complexity of the process scales up [40]. 

   Many scientist as Chang [31], Zelenyi [30], Milovanov [32], Ruzmaikin [33], 

Abramenko [36], Lui[46], Pavlos[37], in their studies indicate the statistical 

non-extensivity as well as the multi-scale, multi-fractal and anomalous – 

intermittent character of fields and particles in the space plasmas and other 

complex systems far from equilibrium. These results verify the concept that 

space plasmas and other complex systems dynamics are part of the more 

general theory of fractal dynamics which has been developed rapidly the last 
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years. Fractal dynamics are the modern fractal extension of physical theory in 

every level. On the other side the fractional generalization of modern physical 

theory is based on fractional calculus: fractional derivatives or integrals or 

fractional calculus of scalar or vector fields and fractional functional calculus 

[12, 39]. It is very impressive the efficiency of fractional calculus to describe 

complex and far from equilibrium systems which display scale-invariant 

properties, turbulent dissipation and long range correlations with memory 

preservation, while these characteristics cannot be illustrated by using 

traditional analytic and differentiable functions, as well as, ordinary differential 

operators. Fractional calculus permits the fractal generalization of Lagrange – 

Hamilton theory of Maxwell equations and Magnetohydrodynamics, the Fokker 

– Planck equation Liouville theory and BBGKI hierarchy, or the fractal 

generalization of QFT and path integration theory [12-15, 39]. 

   According to the fractal generalization of dynamics and statistics we conserve 

the continuity of functions but abolish their differentiable character based on 

the fractal calculus which is the non-differentiable generalization of 

differentiable calculus. At the same time the deeper physical meaning of fractal 

calculus is the unification of microscopic and macroscopic dynamical theory at 

the base of the space – time fractality [4, 6, 39, 47-49]. Also the space-time is 

related to the fractality – multi-fractality of the dynamical phase – space, whish 

can be manifested as non-equilibrium complexity and self-organization. 

Moreover fractal dynamics leads to a global generalization of physical theory as 

it can be related with the infinite dimension Cantor space, as the microscopic 

essence of physical space – time, the non-commutative geometry and non-

commutative Clifford manifolds and Clifford algebra, or the p-adic physics [4, 

7, 13, 50, 51]. According to these new concepts introduced the last two decades 

at every level of physical reality we can describe in physics complex structure 

which cannot be reduced to underlying simple fundamental entities or 

underlying simple fundamental laws. Also, the non-commutative character of 

physical theory and geometry indicates [51, 52] that the scientific observation is 

nothing more than the observation of undivided complex structures in every 

level. Cantor was the founder of the fractal physics creating fractal sets by 

contraction of the homogenous real number set, while on the other side the set 

of real numbers can be understood as the result of the observational coarse 

graining [27, 50, 53]. From a philosophical point of view the mathematical 

forms are nothing else than self-organized complex structures of the mind-

brain, in self-consistency with all the physical reality. On the other side, the 

generalization of Relativity theory to scale relativity by Nottale [6] or Castro 

[7] indicates the unification of microscopic and macroscopic dynamics through 

the fractal generalization of dynamics.    

   After all, we conjecture that the macroscopic self-organization related with 

the novel theory of complex dynamics, as they can be observed at far from 

equilibrium dynamical physical states, are the macroscopic emergence result of 

the microscopic complexity which can be enlarged as the system arrives at 

bifurcation or far from equilibrium critical points. That is, far from equilibrium 

the observed physical self-organization manifests the globally active ordering 
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principle to be in priority from local interactions processes. We could 

conjecture that is not far from truth the concept that local interactions 

themselves are nothing else than local manifestation of the holistically active 

ordering principle. That is what until now is known as fundamental lows is the 

equilibrium manifestation or approximation of the new and globally active 

ordering principle. This concept can be related with the fractal generalization of 

dynamics which is indentified with the dynamics of correlations supported by 

Prigogine [1], Nicolis [2] and Balescu [54], as the generalization of Newtonian 

theory. This conjecture concerning the fractal unification of macroscopic and 

microscopic dynamics at can be strongly supported by the Tsallis nonextensive 

q-statistics theory which is verified almost everywhere from the microscopic to 

the macroscopic level [7, 29]. From this point of view it is reasonable to 

support that the q-statistics and the fractal generalization of space plasma 

dynamics is the appropriate framework for the description of their non-

equilibrium complexity. 

 

2.2 Chaotic Dynamics and Statistics 
 

The macroscopic description of complex systems can be approximated by non-

linear partial differential equations of the general type: 

( , )
( , )

U x t
F u

t
λ

∂
=

∂

r r
rr r

    (1) 

where u  belongs to a infinite dimensional state (phase) space which is a 

Hilbert functional space. Among the various control parameters, the plasma 

Reynold number is the one which controls the quiet static or the turbulent 

plasma states. Generally the control parameters measure the distance from the 

thermodynamical equilibrium as well as the critical or bifurcation points of the 

system for given and fixed values, depending upon the global mathematical 

structure of the dynamics. As the system passes its bifurcation points a rich 

variety of spatio-temporal patterns with distinct topological and dynamical 

profiles can be emerged such as: limit cycles or torus, chaotic or strange 

attractors, turbulence, Vortices, percolation states and other kinds of complex 

spatiotemporal structures [31, 49, 55-63]. 

 

Generally chaotic solutions of the mathematical system (1) transform the 

deterministic form of equation (1) to a stochastic non-linear stochastic system: 

( , ) ( , )
u

u x t
t

λ δ
∂

= Φ +
∂

r
r rr r r

   (2) 

where ( , )x tδ
r r

corresponds to the random force fields produced by strong 

chaoticity [64, 65]. 

   The non-linear mathematical systems (1-2) include mathematical solutions 

which can represent plethora of non-equilibrium physical states included in 
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mechanical, electromagnetic or chemical and other physical systems which are 

study here. 

 

The random components ( ( , )x tδ
r

) are related to the BBGKY hierarchy: 

[ , ] , 1, 2,...,
q

q a q

f
H f S q N

t

∂
= + =

∂
   (3) 

where qf  is the q − particle distribution function, qH  is the q − th 

approximation of the Hamiltonian q − th correlations and qS  is the statistical 

term including correlations of higher than q-orders [45, 65]. 

 

The non-linear mathematical systems (1, 2) correspond to the new science 

known today as complexity science. This new science has a universal character, 

including an unsolved scientific and conceptual controversy which is 

continuously spreading in all directions of the physical reality and concerns the 

integrability or computability of the dynamics [66]. This universality is 

something supported by many scientists after the Poincare discovery of chaos 

and its non-integrability as is it shown in physical sciences by the work of 

Prigogine, Nicolis, Yankov and others [1, 2, 66] in reality. Non-linearity and 

chaos is the top of a hidden mountain including new physical and mathematical 

concepts such as fractal calculus, p-adic physical theory, non-commutative 

geometry, fuzzy anomalous topologies fractal space-time etc [4, 7, 12-15, 38, 

39, 50-52]. These new mathematical concepts obtain their physical power when 

the physical system lives far from equilibrium.  

 

After this and, by following the traditional point of view of physical science we 

arrive at the central conceptual problem of complexity science. That is, how is 

it possible that the local interactions in a spatially distributed physical system 

can cause long range correlations or how they can create complex 

spatiotemporal coherent patterns as the previous non-linear mathematical 

systems reveal, when they are solved arithmetically, or in situ observations 

reveal in space plasma systems. For non-equilibrium physical systems the 

above questions make us to ask how the development of complex structures and 

long range spatio-temporal correlations can be explained and described by local 

interactions of particles and fields. At a first glance the problem looks simple 

supposing that it can be explained by the self-consistent particle-fields classical 

interactions. However the existed rich phenomenology of complex non-

equilibrium phenomena reveals the non-classical and strange character of the 

universal non-equilibrium critical dynamics [31, 35]. 

In the following and for the better understanding of the new concepts we follow 

the road of non-equilibrium statistical theory [31, 36]  

The stochastic Langevin equations (11, 13, 17) can take the general form: 

( ) ( ) ( , )
( , )

i
i

i

u H
x x n x t

t u x t

δ
δ

∂
= −Γ +Γ

∂
r r r

r    (4) 
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where H is the Hamiltonian of the system, / iH uδ δ  its functional derivative, 

Γ  is a transport coefficient and in are the components of a Gaussian white 

noise: 

( , ) 0

( , ) ( ', ') 2 ( ) ( ') ( ')

i

i j ij

n x t

n x t n x t x x x t tδ δ δ
< >= 

< >= Γ − − 

r

r r r r r  (5) 

[31, 65, 67, 68]. The above stochastic Langevin Hamiltonian equation (18) can 

be related to a probabilistic Fokker – Planck equation [31]: 

 [ ]1
( )

( )

P
P x P

x t u u u

δ δ δ
δ δ δ

∂ Η = ⋅ + Γ Γ ∂  

r
r r r r   (6) 

where { }( )( , ) ,iP P u x t t=
r

 is the probability distribution function of the 

dynamical configuration { }( , )iu x t
r

of the system at time t . The solution of the 

Fokker – Planck equation can be obtained as a functional path integral in the 

state space { }( )iu x
r

: 

{ }( ) { }( )0 0( ) , exp( ) ( ) ,i iP u x t Q S P u x t∆ −∫
rr r

�   (7) 

where { }( )0 0( ) ,iP u x t
r

is the initial probability distribution function in the 

extended configuration state space and S i Ldt= ∫  is the stochastic action of 

the system obtained by the time integration of it’s stochastic Lagrangian (L) 

[31, 69]. The stationary solution of the Fokker – Planck equation corresponds to 

the statistical minimum of the action and corresponds to a Gaussian state: 

{ }( ) ( ) { }( )exp 1/i iP u u − Γ Η �    (8) 

The path integration in the configuration field state space corresponds to the 

integration of the path probability for all the possible paths which start at the 

configuration state 0( , )u x t
r r

of the system and arrive at the final configuration 

state ( , )u x t
r r

. Langevin and F-P equations of classical statistics include a 

hidden relation with Feynman path integral formulation of QM [23, 31, 42, 43]. 

The F-P equation can be transformed to a Schrödinger equation: 

  ( )0 0
ˆ ˆ ˆ, ( , )

d
i U t t H U t t

dt
= ⋅    (9) 

by an appropriate operator Hamiltonian extension 

( ) ( )ˆ ˆ( , ) ( , )H u x t H u x t⇒
r r

of the classical function ( )H where now the 

field ( )u is an operator distribution [31, 68]. From this point of view, the 

classical stochasticity of the macroscopic Langevin process can be considered 
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as caused by a macroscopic quandicity revealed by the complex system as the 

F-K probability distribution P  satisfies the quantum relation: 

  ( )0 0 0
ˆ, | , | ( , ) |P u t u t u U t t u=   (10)         

This generalization of classical stochastic process as a quantum process could 

explain the spontaneous development of long-range correlations at the 

macroscopic level as an enlargement of the quantum entanglement character at 

critical states of complex systems. This interpretation is in faithful agreement 

with the introduction of complexity in sub-quantum processes and the chaotic – 

stochastic quantization of field theory [22-24, 44], as well as with scale 

relativity principles [6, 7, 49] and fractal extension of dynamics [4, 12, 13-15, 

39] or the older Prigogine self-organization theory [1]. Here, we can argue in 

addition to previous description that quantum mechanics is subject gradually to 

a fractal generalization [7, 12, 13-15]. The fractal generalization of QM-QFT 

drifts along also the tools of quantum theory into the correspondent 

generalization of RG theory or path integration and Feynman diagrams. This 

generalization implies also the generalization of statistical theory as the new 

road for the unification of macroscopic and microscopic complexity.           

 

If [ ]( , )P u x t
r r

is the probability of the entire field path in the field state space 

of the distributed system, then we can extend the theory of generating function 

of moments and cumulants for the probabilistic description of the paths [60, 

69]. The n-point field correlation functions (n-points moments) can be 

estimated by using the field path probability distribution and field path 

(functional) integration: 

( )1 1 2 2 1 1( , ) ( , )... ( , ) , ( , )... ( , )n n n nu x t u x t u x t uP u x t u x t u x t= ∆   ∫
r r r r r r r

  (11) 

For Gaussian random processes which happen to be near equilibrium the n − th 

point moments with 2n > are zero, correspond to Markov processes while far 

from equilibrium it is possible  non-Gaussian (with infinite nonzero moments) 

processes to be developed. According to Haken [69] the characteristic function 

(or generating function) of the probabilistic description of paths: 

  [ ] ( )1 1 2 2( , ) ( , ), ( , ),..., ( , )n nu x t u x t u x t u x t≡
r r r

  (12) 

is given by the relation: 

( )1 1 2 2

1

( ), ( ),..., ( ) exp ( , )
N

path n n i i i

i path

j t j t j t i j u x t
=

Φ = ∑ r
 (13) 

while the path cumulants 
1

( ... )
ss a aK t t are given by the relations: 

( )
1 11

1 1 2 2 ,... 1
1

( ), ( ),..., ( ) exp ( ... ) ...
! s ss

s
n

path n n s a a a aa a
s

i
j t j t j t K t t j j

s

∞

=
=

 
Φ = ⋅ 

 
∑ ∑ (14) 

and the n − point path moments are given by the functional derivatives: 
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{ }( )( ) { }1 1 2 2 1( , ), ( , ),..., ( , ) / ... 0n

n n i n iu x t u x t u x t j j j t jδ δ δ= Φ =
r r r

  (15) 

 For Gaussian stochastic field processes the cumulants except the first two 

vanish ( )3 4 ...0k k= = . For non-Gaussian processes it is possible to be 

developed long range correlations as the cummulants of higher than two order 

are non-zero [69]. This is the deeper meaning of non-equilibrium self-

organization and ordering of complex systems. The characteristic function of 

the dynamical stochastic field system is related to the partition functions of its 

statistical description, while the cumulant development and multipoint moments 

generation can be related with the BBGKY statistical hierarchy of the statistics 

as well as with the Feynman diagrams approximation of the stochastic field 

system [41, 70]. For dynamical systems near equilibrium only the second order 

cumulants is non-vanishing, while far from equilibrium field fluctuations with 

higher – order non-vanishing cumulants can be developed. 

Finally, we can understand how the non-linear dynamics correspond to self-

organized states as the high-order (infinite) non-vanishing cumulants can 

produce the non-integrability of the dynamics. From this point of view the 

linear or non-linear instabilities of classical kinetic theory are inefficient to 

produce the non-Gaussian, holistic (non-local) and self-organized complex 

character of non-equilibrium dynamics. That is, far from equilibrium complex 

states can be developed including long range correlations of field and particles 

with non-Gaussian distributions of their dynamic variables. As we show in the 

next section such states such states reveal the necessity of new theoretical tools 

for their understanding which are much different from the classical linear or 

non-linear approximation of kinetic theory. 

 

2.3 Strange attractors and Self-Organization 
 

When the dynamics is strongly nonlinear then for the far from equilibrium 

processes it is possible to be created strong self-organization and intensive 

reduction of dimensionality of the state space, by an attracting low dimensional 

set with parallel development of long range correlations in space and time. The 

attractor can be periodic (limit cycle, limit m-torus), simply chaotic (mono-

fractal) or strongly chaotic with multiscale and multifractal profile as well as 

attractors with weak chaotic profile known as SOC states. This spectrum of 

distinct dynamical profiles can be obtained as distinct critical points (critical 

states) of the nonlinear dynamics, after successive bifurcations as the control 

parameters change. The fixed points can be estimated by using a far from 

equilibrium renormalization process as it was indicated by Chang [31]. 

From this point of view phase transition processes can be developed by 

between different critical states, when the order parameters of the system are 

changing. The far from equilibrium development of chaotic (weak or strong) 

critical states include long range correlations and multiscale internal self 

organization. Now, these far from equilibrium self organized states, the 
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equilibrium BG statistics and BG entropy, are transformed and replaced by the 

Tsallis extension of q − statistics and Tsallis entropy. The extension of 

renormalization group theory and critical dynamics, under the q − extension of 

partition function, free energy and path integral approach has been also 

indicated [37, 70-72]. The multifractal structure of the chaotic attractors can be 

described by the generalized Rényi fractal dimensions: 

1

0

log
1

lim ,
1 log

N
q

i

i
q

p

D
q

λ

λ λ
=

→
=

−

∑
   (16) 

where 
( )i

ip αλ� is the local probability at the location ( i ) of the phase space, 

λ is the local size of phase space and ( )a i is the local fractal dimension of the 

dynamics. The Rényi q numbers (different from the q − index of Tsallis 

statistics) take values in the entire region ( ,−∞ +∞ ) of real numbers. The 

spectrum of distinct local fractal dimensions ( )iα is given by the estimation of 

the function ( )f α [73, 74] for which the following relations hold:  

( ')' ( ') '
q f

i
d p dp

αα α λ α−=∑ ∫   (17) 

min

( ) ( 1) ( )
a

q q Dq q fτ α α≡ − = −   (18) 

[ ( )]
( )

d q
a q

dq

τ
=    (19) 

( ) ( )f q qα α τ= − ,   (20) 

  

The physical meaning of these magnitudes included in relations (2.15-2.18) can 

be obtained if we identify the multifractal attractor as a thermodynamical 

object, where its temperature (T ), free energy ( F ), entropy ( S ) and internal 

energy (U ) are related to the properties of the multifractal attractor as follows: 

1
, ( ) ( 1)

, ( )

qq q q D F
T

U f S

τ

α α

⇒ = − ⇒ 

⇒ ⇒ 

  (21) 

This correspondence presents the relations (2.17 -2.19) as a thermodynamical 

Legendre transform [75]. When q increases to infinite ( +∞ ), which means, 

that we freeze the system ( ( ) 0qT =+∞ → ), then the trajectories (fluid lines) are 

closing on the attractor set, causing large probability values at regions of low 

fractal dimension, where minα α= and qD D−∞= . Oppositely, when 
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q decreases to infinite ( −∞ ), that is we warm up the system ( ( ) 0qT =−∞ → ) 

then the trajectories are spread out at regions of high fractal dimension 

( maxα α⇒ ). Also for 'q q> we have 'q qD D<  and ( )qD D D+∞ −∞⇒ for 

min max( )α α α⇒ correspondingly. However, the above description presents 

only a weak or limited analogy between multifractal and thermodynamical 

objects. The real thermodynamical character of the multifractal objects and 

multiscale dynamics was discovered after the definition by Tsallis [29] of the 

q − entropy related with the q − statistics as it was summarized previously in 

relations (2.1-2.13). 

 

2.4 Intermittent Turbulence 
 

According to previous description dissipative nonlinear dynamics can produce 

self-organization and long range correlations in space and time. In this case we 

can imagine the mirroring relationship between the phase space multifractal 

attractor and the corresponding multifractal turbulence dissipation process of 

the dynamical system in the physical space. Multifractality and multiscaling 

interaction, chaoticity and mixing or diffusion (normal or anomalous), all of 

them can be manifested in both the state (phase) space and the physical 

(natural) space as the mirroring of the same complex dynamics. We could say 

that turbulence is for complexity theory, what the blackbody radiation was for 

quantum theory, as all previous characteristics can be observed in turbulent 

states.  The theoretical description of turbulence in the physical space is based 

upon the concept of the invariance of the HD or MHD equations upon scaling 

transformations to the space-time variables ( ,X t
r

) and velocity (U
r

): 

' ,X Xλ=
uur uur

 
/3'U Uαλ=

ur ur

,
1 /3' at tλ −=   (22) 

and corresponding similar scaling relations for other physical variables [45, 76]. 

Under these scale transformations the dissipation rate of turbulent kinetic or 

dynamical field energy nΕ (averaged over a scale nl n nl Rο οδ δ= = ) rescales 

as nε : 

1

0 n 0(l \ )n l αε ε −
�    (23) 

Kolmogorov [77] assumes no intermittency as the locally averaged dissipation 

rate, in reality a random variable, is independent of the averaging domain. This 

means in the new terminology of Tsallis theory that Tsallis q -indices satisfy 

the relation 1q = for the turbulent dynamics in the three dimensional space. 

That is the multifractal (intermittency) character of the HD or the MHD 

dynamics consists in supposing that the scaling exponent α included in 

relations (2.20, 2.21) takes on different values at different interwoven fractal 

subsets of the d − dimensional physical space in which the dissipation field is 
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embedded. The exponent α and for values a d< is related with the degree of 

singularity in the field's gradient (
( )A x

x

∂
∂

) in the d − dimensional natural 

space [78]. The gradient singularities cause the anomalous diffusion in physical 

or in phase space of the dynamics. The total dissipation occurring in a 

d − dimensional space of size nl scales also with a global dimension qD for 

powers of different order q  as follows: 

( 1) ( )

n n n
qq Dq d q

n

n

l l l τε − =∑ �
   (24) 

Supposing that the local fractal dimension of the set ( )dn a which corresponds 

to the density of the scaling exponents in the region ( , dα α α+ ) is a function 

( )df a  according to the relation: 

( )
( ) ln dfdn da

αα −
�    (25) 

where d indicates the dimension of the embedding space, then we can conclude 

the Legendre transformation between the mass exponent ( )qτ and the 

multifractal spectrum ( )df a : 

( ) ( 1)( 1) 1

[( 1)( 1)]

d q

q

f a aq q D d d

d
a q D d

dq

= − − − + + − 

= − − + 


  (26) 

For linear intersections of the dissipation field, that is 1d = the Legendre 

transformation is given as follows: 

( ) ( ),f a aq qτ= −  [( 1) ] ( )q

d d
a q D q

dq dq
τ= − = ,  

( )df a
q

da
=    (27) 

The relations (24-27) describe the multifractal and multiscale turbulent process 

in the physical state. The relations (16-19) describe the multifractal and 

multiscale process on the attracting set of the phase space. From this physical 

point of view, we suppose the physical identification of the magnitudes 

, , ( )qD a f a and ( )qτ estimates in the physical and the corresponding phase 

space of the dynamics. By using experimental timeseries we can construct the 

function qD  of the generalized Rényi d − dimensional space dimensions, 

while the relations (26) allow the calculation of the fractal exponent ( a ) and 

the corresponding multifractal spectrum ( )df a . For homogeneous fractals of 

the turbulent dynamics the generalized dimension spectrum qD  is constant and 

equal to the fractal dimension, of the support [76]. Kolmogorov [79] supposed 

that qD does not depend on q as the dimension of the fractal support is 
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3qD = . In this case the multifractal spectrum consists of the single point 

( 1a = and (1) 3f = ). The singularities of degree ( a ) of the dissipated fields, 

fill the physical space of dimension d  with a fractal dimension ( )F a , while 

the probability ( )P a da , to find a point of singularity ( a ) is specified by the 

probability density
( )( ) lnd F aP a da −

� . The filling space fractal dimension 

( )F a is related with the multifractal spectrum 

function ( ) ( ) ( 1)df a F a d= − − , while according to the distribution function 

( )dis nεΠ of the energy transfer rate associated with the singularity a  it 

corresponds to the singularity probability as ( ) ( )dis n nd P a daε εΠ =  [78]. 

Moreover the partition function 
q

i

i

P∑ of the Rényi fractal dimensions 

estimated by the experimental timeseries includes information for the local and 

global dissipation process of the turbulent dynamics as well as for the local and 

global dynamics of the attractor set, as it is transformed to the partition function 
q

i q

i

P Z=∑ of the Tsallis q-statistic theory.  

 

2.5 Fractal generalization of dynamics 
 

 Fractal integrals and fractal derivatives are related with the fractal contraction 

transformation of phase space as well as contraction transformation of space 

time in analogy with the fractal contraction transformation of the Cantor set 

[27, 53]. Also, the fractal extension of dynamics includes an extension of non-

Gaussian scale invariance, related to the multiscale coupling and non-

equilibrium extension of the renormalization group theory [38]. Moreover 

Tarasov [12], Coldfain [15], Cresson [14], El-Nabulsi [13] and other scientists 

generalized the classical or quantum dynamics in a continuation of the original 

break through of El-Naschie [4], Nottale [6], Castro [7] and others concerning 

the fractal generalization of physical theory. 

According to Tarasov [12] the fundamental theorem of Riemann – Liouville 

fractional calculus is the generalization of the known integer integral – 

derivative theorem as follows: 

if                   
a( ) ( )xF x I f xα=             (28) 

then    
a ( ) ( )a xD F x f x=

 
            (29) 

where 
a

a xI is the fractional Riemann – Liouville according to: 

a

1 a

1 ( ') '
( )

(a) ( ')

x

a x
a

f x dx
I f x

x x −
≡

Γ −∫    (30) 
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and 
a

a xD is the Caputo fractional derivative according to: 

 

a

1 a-n

( ) ( )

1 ' ( )

( a) ( ')

n a n

a x a x x

x

n

a

D F x I D F x

dx dnF x

n x x dx

−

+

= =

=
Γ − −∫

  (31) 

for ( )f x a real valued function defined on a closed interval [ ],a b . 

In the next we summarize the basic concepts of the fractal generalization of 

dynamics as well as the fractal generalization of Liouville and MHD theory 

following Tarasov [12]. According to previous descriptions, the far from 

equilibrium dynamics includes fractal or multi-fractal distribution of fields and 

particles, as well as spatial fractal temporal distributions. This state can be 

described by the fractal generalization of classical theory: Lagrange and 

Hamilton equations of dynamics, Liouville theory, Fokker Planck equations and 

Bogoliubov hierarchy equations. In general, the fractal distribution of a 

physical quantity ( M ) obeys a power law relation: 

   0

0

D

D

R
M M

R

 
 
 

�       (32) 

where  ( DM ) is the fractal mass of the physical quantity ( M ) in a ball of 

radius ( R ) and ( D ) is the distribution fractal dimension. For a fractal 

distribution with local density ( )xρ
r

 the fractal generalization of Euclidean 

space integration reads as follows: 

( ) ( )D D

W

M W x dVρ= ∫    (33) 

where    ( )3 3,DdV C D x dV=
r

         (34) 

and    ( )
3

3

3

2 (3 / 2)
,

( / 2)

D
D

C D x x
D

−
−Γ

=
Γ

r r
                     (35) 

Similarly the fractal generalization of surface and line Euclidean integration is 

obtained by using the relations: 

  ( )2 2,ddS C d x dS=
r

   (36) 

( )
2

2

2

2
,

( / 2)

d
d

C d x x
d

−
−

=
Γ

r r
    (37) 

for the surface fractal integration and 

   1 1( , )dl C x dlγ γ=
r

   (38) 

   
( )

( )

1
1

1

2 1/ 2
( , )

/ 2
C x x

γ
γ

γ
γ

−
−Γ

=
Γ

r r
                  (39) 
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for the line fractal integration. By using the fractal generalization of integration 

and the corresponding generalized Gauss’s and Stoke’s theorems we can 

transform fractal integral laws to fractal and non-local differential laws [12] 

The fractional generalization of classical dynamics (Hamilton Lagrange and 

Liouville theory) can be obtained by the fractional generalization of phase 

space quantative description [12]. For this we use the fractional power of 

coordinates: 

    sgn( )
aaX x x=    (40) 

where sgn( )x is equal to +1 for 0x ≥ and equal to -1 for 0x < . 

The fractional measure a ( )M B of a n − dimension phase space region ( )B  is 

given by the equation: 

   a a( ) (a) ( , )
B

M B g d q pµ= ∫   (41) 

where a ( , )d q pµ is a phase space volume element: 

   

[ ]

a a

a 2
a (a)

K Kdq dp
dµ

Λ
= Π

Γ
   (42) 

where (a)g is a numerical multiplier and 
a a

K Kdq dpΛ  means the wedge 

product.  

 The fractional Hamilton’s approach can be obtained by the fractal 

generalization of the Hamilton action principle: 

   [ ]( , , )S pq H t p q dt= −∫   (43) 

The fractal Hamilton equations: 

   ( ) 1 a2

q

a

p

dq
a p D H

at

−  = Γ − 
 

  (44) 

a a

t qD p D H= −    (45) 

while the fractal generalization of the Lagrange’s action principle: 

    ( ), ,S L t q u dt= ∫   (46) 

Corresponds to the fractal Lagrange equations: 

   ( ) a a2 0a

q t U U q
D L a D D L

=
 −Γ − =  &

 (47) 

Similar fractal generalization can be obtained for dissipative or non-

Hamiltonian systems [12]. The fractal generalization of Liouville equation is 

given also as: 

   
N

N N

p
L p

t

∂
=

∂

%
%     (48) 
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where Np%  and NL are the fractal generalization of probability distribution 

function and the  Liouville operator correspondingly. The fractal generalization 

of Bogoliubov hierarchy can be obtained by using the fractal Liouville equation 

as well as the fractal Fokker Planck hydrodynamical  - magnetohydrodynamical 

approximations [12]. 

 The fractal generalization of classical dynamical theory for dissipative systems 

includes the non-Gaussian statistics as the fractal generalization of Boltzmann – 

Gibbs statistics. 

Finally the far from equilibrium statistical mechanics can be obtained by using 

the fractal extension of the path integral method. The fractional Green function 

of the dynamics is given by the fractal generalization of the path integral: 

 

( ) [ ]

{ }

a a a

a

, ; , ( ) exp ( )

exp ( )

f

i

x

f f i i

x

i
K x t x t D x S

h

i
S

hγ

τ γ

γ

 
  

 
  

∫

∑

�

�

     (49) 

where aK is the probability amplitude (fractal quantum mechanics) or the two 

point correlation function (statistical mechanics), [ ]a ( )D x τ means path 

integration on the sum { }γ of fractal paths and a ( )S γ is the fractal 

generalization of the action integral [13]: 

  [ ] ( )a a 1

a

1
( ), ( )

(a)

f

i

x

x

S L D q t dγγ τ τ τ τ−= −
Γ ∫  (50) 

     

 

2.6 The Highlights of Tsallis Theory 
  

 As we show in the next sections of this study, everywhere in space plasmas we 

can ascertain the presence of Tsallis statistics. This discovery is the 

continuation of a more general ascertainment of Tsallis q-extensive statistics 

from the macroscopic to the microscopic level [29]. 

  In our understanding the Tsallis theory, more than a generalization of 

thermodynamics for chaotic and complex systems, or a non-equilibrium 

generalization of B-G statistics, can be considered as a strong theoretical 

vehicle for the unification of macroscopic and microscopic physical 

complexity. From this point of view Tsallis statistical theory is the other side of 

the modern fractal generalization of dynamics while its essence is nothing else 

than the efficiency of self-organization and development of long range 

correlations of coherent structures in complex systems. 

 From a general philosophical aspect, the Tsallis q-extension of statistics can be 

identified with the activity of an ordering principle in physical reality, which 
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cannot be exhausted with the local interactions in the physical systems, as we 

noticed in previous sections.  

     

2.6.1 The non-extensive entropy ( qS ) 

 

It was for first time that Tsallis [1], inspired by multifractal analysis, conceived 

that the Boltzmann – Gibbs entropy: 

lnBG i iS K p p= − ∑ , 1,2,...,i N=   (51) 

is inefficient to describe all the complexity of non-linear dynamical systems. 

The Boltzmann – Gibbs statistical theory presupposes ergodicity of the 

underlying dynamics in the system phase space. The complexity of dynamics 

which is far beyond the simple ergodic complexity, it can be described by 

Tsallis non-extensive statistics, based on the extended concept of q − entropy: 

( )
1

1 / 1
N

q

q i

i

S k p q
=

 
= − − 

 
∑    (52) 

for discrete state space or  

[ ] ( )1 ( ) / 1
q

qS k p x dx q = − − ∫   (53) 

for continuous state space. 

For a system of particles and fields with short range correlations inside their 

immediate neighborhood, the Tsallis q − entropy qS  asymptotically leads to 

Boltzmann – Gibbs entropy ( BGS ) corresponding to the value of 1q = . For 

probabilistically dependent or correlated systems ,A B it can be proven that: 

( ) ( ) ( / ) (1 ) ( ) ( / )

( ) ( / ) (1 ) ( ) ( / )

q q q q q

q q q q

S A B S A S B A q S A S B A

S B S A B q S B S A B

+ = + + −

= + + −
    (54) 

Where { }( )( ) A

q q iS A S p≡ , { }( )( ) B

q iS B Sq p≡ , ( / )qS B A and 

( / )qS A B  are the conditional entropies of systems ,A B
 
[29]. When the 

systems are probabilistically independent, then relation (3.1.4) is transformed 

to: 

( ) ( ) ( ) (1 ) ( ) ( )q q q q qS A B S A S B q S A S B+ = + + −  (55) 

The dependent (independent) property corresponds to the relation: 

( )A B A B A B A B

ij i j ij i jp p p p p p+ +≠ =    (56) 

Comparing the Boltzmann – Gibbs ( BGS ) and Tsallis ( qS ) entropies, we 

conclude that for non-existence of correlations BGS  is extensive whereas qS  
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for 1q ≠ is non-extensive. In contrast, for global correlations, large regions of 

phase – space remain unoccupied. In this case qS  is non-extensive either 

1q = or 1q ≠ . 

 

2.6.2 The q − extension of statistics and Thermodynamics 
 

Non-linearity can manifest its rich complex dynamics as the system is removed 

far from equilibrium. The Tsallis q − extension of statistics is indicated by the 

non-linear differential equation / qdy dx y= . The solution of this equation 

includes the q − extension of exponential and logarithmic functions: 

[ ]1/(1 )
1 (1 )

qx

qe q x
−

= + −    (57) 

( ) ( )1ln 1 / 1q

q x x q−= − −   (58) 

and 
[ ( ) ] [ ( ') ]

( ) / 'q q q qf x F f x F

opt q qp x e dx e
β β− − − −= ∫  (59) 

for more general q − constraints of the forms ( ) qq
f x F= . In this way, 

Tsallis q − extension of statistical physics opened the road for the 

q − extension of thermodynamics and general critical dynamical theory as a 

non-linear system lives far from thermodynamical equilibrium. For the 

generalization of Boltzmann-Gibbs nonequilibrium statistics to Tsallis 

nonequilibrium q-statistics we follow Binney [41]. In the next we present q-

extended relations, which can describe the non-equilibrium fluctuations and 

n − point correlation function ( G ) can be obtained by using the Tsallis 

partition function qZ of the system as follows: 

1 2 n

1 2

1 2 i

1
( , ,..., ) , ,...,s

...
n

n

qn

q n i i
q

i i i

Z
G i i i s s

z j j j

∂
≡ =

∂ ⋅∂ ∂
 (60) 

Where { }is  are the dynamical variables and { }ij  their sources included in the 

effective – Lagrangian of the system. Correlation (Green) equations (62) 

describe discrete variables, the n − point correlations for continuous 

distribution of variables (random fields) are given by the functional derivatives 

of the functional partition as follows: 

1 2 1 2

1

1
( , ,..., ) ( ) ( )... ( ... ( )

( ) ( )

n

q n n qq
n

G x x x x x x Z J
Z J x J x

δ δ
ϕ ϕ ϕ

δ δ
≡ =

r r r r r r
r r

 

(61) 

where ( )xϕ
r

are random fields of the system variables and ( )j x
r

 their field 

sources. The connected n − point correlation functions 
n

iG are given by: 
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1 2

1

( , ,..., ) ... log ( )
( ) ( )

n

q n q

n

G x x x Z J
J x J x

δ δ
δ δ

≡
r r r

r r       (62) 

The connected n − point correlations correspond to correlations that are due to 

internal interactions defined as [41]: 

1 2 1 1( , ,..., ) ( )... ( ) ( )... ( )n

q n n nq q
G x x x x x x xϕ ϕ ϕ ϕ≡ −

r r r r r

    
(63) 

 

The probability of the microscopic dynamical configurations is given by the 

general relation: 

( ) confS
P conf e

β−=      (64) 

where 1/ ktβ =  and confS  is the action of the system, while the partition 

function Z of the system is given by the relation: 

confS

conf

Z e
β−= ∑     (65) 

 

The q − extension of the above statistical theory can be obtained by the 

q − partition function qZ . The q − partition function is related with the meta-

equilibrium distribution of the canonical ensemble which is given by the 

relation: 
( )/i q qq E V Z

i qp e
β− −=

  
        (66) 

with 
( )i qq E V

q q

conf

Z e
β− −= ∑        (67) 

and 

/ q

q i

conf

pβ β= ∑        (68) 

where 1/ KTβ = is the Lagrange parameter associated with the energy 

constraint: 

    /q q

i i i qq
conf conf

E p E p U≡ =∑ ∑   (69) 

The q − extension of thermodynamics is related with the estimation of 

q − Free energy ( qF ) the q − expectation value of internal energy ( )qU  the 

q − specific heat ( )qC  by using the q − partition function: 

1
lnq q q qF U TS qZ

β
≡ − = −    (70) 
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1
ln ,

q

q q

q

S
U qZ

T Uβ

∂∂
= =

∂ ∂
   (71) 

2

2

q q q

q

U F
C T T

T T T

δ∂ ∂ ∂
≡ = = −

∂ ∂ ∂
   (72) 

 

2.6.3 The Tsallis q − extension of statistics via the fractal extension 
of dynamics 
 

 At the equilibrium thermodynamical state the underlying statistical dynamics is 

Gaussian ( 1q = ). As the system goes far from equilibrium the underlying 

statistical dynamics becomes non-Gaussian ( 1q ≠ ). At the first case the phase 

space includes ergodic motion corresponding to normal diffusion process with 

mean-squared jump distances proportional to the time 
2x t�  whereas far 

from equilibrium the phase space motion of the dynamics becomes chaotically 

self-organized corresponding to anomalous diffusion process with mean-

squared jump distances 
2 ax t� , with 1a <  for sub-diffusion and 1a >  

for super-diffusion. The equilibrium normal-diffusion process is described by a 

chain equation of the Markov-type: 

( ) ( ) ( )3 3 1 1 2 3 3 2 2 2 2 1 1, ; , , ; , , ; ,W x t x t dx W x t x t W x t x t= ∫   
           (73) 

where  ( ), ; ', 'W x t x t is the probability density for the motion from the 

dynamical state ( ', ')x t  to the state ( , )x t  of the phase space. The Markov 

process can be related to a random differential Langevin equation with additive 

white noise and a corresponding Fokker – Planck probabilistic equation [38] by 

using the initial condition: 

          
0

( , ; ) ( )
t

x y t x yW δ
∆ →

∆ = −
                     (74)

 

This relation means no memory in the Markov process and help to obtain the 

expansion: 

 

( ) ( ) ( ) ( ) ( ) ( )1
, ; ; ' ; ''

2
W x y t x y a y t x y b y t x yδ δ δ∆ = − + ∆ − + ∆ −

   (75)

 

where ( );A y t∆  and ( );B y t∆  are the first and second moment of the 

transfer probability function ( ), ;W x y t∆ : 

  ( ); ( ) ( , ; )a y t dx x y W x y t y∆ = − ∆ ≡ ∆∫             (76)
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 ( )22( ; ) ( ) ( , ; )b y t dx x y W x y t y∆ = − ∆ ≡ ∆∫
             (77)

 

By using the normalization condition: 

    ( , ; ) 1dyW x y t∆ =∫                            (78)
 

we can obtain the relation: 

  
1 ( ; )

( ; )
2

b y t
a y t

y

∂ ∆
∆ = −

∂
                  (79)

 

The Fokker – Planck equation which corresponds to the Markov process can be 

obtained by using the relation: 

  

 
0

( , ) 1
lim ( , ; ) ( , ) ( , )

t

p x t
dyW x y t p y t p x t

t t

+∞

∆ →
−∞

 ∂
= ∆ − ∂ ∆  

∫
      (80)

 

where 0( , ) ( , ; )p x t W x x t≡  is the probability distribution function of the 

state ( , )x t  corresponding to large time asymptotic, as follows: 

 

   ( )( ) ( )( )2( , ) 1
, ,

2
x x

P x t
AP x t BP x t

t

∂
= −∇ + ∇

∂
       (81) 

where ( )A x  is the flow coefficient: 

  
0

1
( , ) lim

t
A x t x

t∆ →
≡ ∆

∆
           (82) 

and ( , )B x t is the diffusion coefficient: 

 
2

0

1
( , ) lim

t
B x t x

t∆ →
≡ ∆

∆
r

    

                (83) 

The Markov process is a Gaussian process as the moments 
0

lim m

t
x

∆ →
∆ for 

2m > are zero [63]. The stationary solutions of F-P equation satisfy the 

extremal condition of Boltzmann – Gibbs entropy: 

 ( ) ln ( )BG BS K p x p x dx= − ∫             (84) 

corresponding to the known Gaussian distribution: 

  ( )2 2( ) exp / 2p x x σ−�
 

 (85) 

According to Zaslavsky [38] the fractal extension of Fokker – Planck (F-P) 

equation can be produced by the scale invariance principle applied for the phase 

space of the non-equilibrium dynamics. As it was shown by Zaslavsky for 

strong chaos the phase space includes self similar structures of islands inside 
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islands dived in the stochastic sea [38]. The fractal extension of the FPK 

equation (FFPK) can be derived after the application of a Renormalization 

group of anomalous kinetics (RGK): 

    ˆ : 'K sR s Sλ= , ' tt tλ=
 
 

where s is a spatial variable and t is the time.  

 Correspondingly to the Markov process equations: 

( ) ( )0 0
0

( , ) 1
lim , ; , ;

( )t

p t
W t t W t

t t

β

β β

ξ
ξ ξ ξ ξ

∆ →

∂
≡ + ∆ −  ∂ ∆

 

(86) 

    

(87) 

 

as the space-time variations of probability W are considered on fractal space-

time variables ( , )t ξ with dimensions ( , )aβ . 

For fractal dynamics ( ; )a n t∆ , ( ; )b n t∆
 
satisfy the equations: 

  ( ; ) ( , ; )
a

a n t n W n t d
αξ ξ ξ ξ∆ = − ∆ ≡ ∆∫

  
(88) 

 
2 2

( ; ) ( , ; )
a

b n t n W n t d
αξ ξ ξ ξ∆ = − ∆ ≡ ∆∫

 
(89) 

and the limit equations: 

   
0

( ; )
( ) lim

( )t

a t
A

t β

ξ
ξ

∆ →

∆
=

∆
                               

(90) 

 
0

( ; )
( ) lim

( )t

b t
B

t β

ξ
ξ

∆ →

∆
=

∆
     

(91) 

By them we can obtain the FFPK equation. 

Far from equilibrium the non-linear dynamics can produce phase space 

topologies corresponding to various complex attractors of the dynamics. In this 

case the extended complexity of the dynamics corresponds to the generalized 

strange kinetic Langevin equation with correlated and multiplicative noise 

components and extended fractal Fokker – Planck - Kolmogorov equation 

(FFPK) [38, 80]. The q − extension of statistics by Tsallis can be related with 

the strange kinetics and the fractal extension of dynamics through the Levy 

process: 

                   

( ) ( ) ( )0 0 1 1 1 1 1 1 0 0, ; ... , ; , ... , ; ,n n N N N N NP x t x t dx dx P x t x t P x t x t− − −= ∫  (92) 

The Levy process can be described by the fractal F-P equation: 

                    

[ ] [ ]
1

1

( , )
( ) ( , ) ( ) ( , )

( ) ( )

a a

a a

P x t
A x P x t B x P x t

t x x

β

β

+

+

∂ ∂ ∂
= +

∂ ∂ − ∂ −
  (93) 

( ) (2 )1
( , ; ) ( ) ( ; ) ( ) ( ; ) ( ) ...

2

aW n t n A n t n B n t nαξ δ ξ δ ξ δ ξ∆ = − + ∆ − + ∆ − +
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where / tβ β∂ ∂ , / ( )a ax∂ ∂ −  and 
1 1/ ( )a ax+ +∂ ∂ −  are the fractal time and 

space derivatives correspondingly [38]. The stationary solution of the F F-P 

equation for large x  is the Levy distribution 
(1 )( )P x x γ− +

� . The Levy 

distribution coincides with the Tsallis q − extended optimum distribution 

(3.2.4) for ( ) ( )3 / 1q γ γ= + + . The fractal extension of dynamics takes into 

account non-local effects caused by the topological heterogeneity and fractality 

of the self-organized phase – space. Also the fractal geometry and the complex 

topology of the phase – space introduce memory in the complex dynamics 

which can be manifested as creation of long range correlations, while, 

oppositely, in Markov process we have complete absence of memory. 

 In general, the fractal extension of dynamics as it was done until now from 

Zaslavsky, Tarasov and other scientists indicate the internal consistency of 

Tsallis q − statistics as the non-equilibrium extension of B-G statistics with the 

fractal extension of classical and quantum dynamics. Concerning the space 

plasmas the fractal character of their dynamics has been indicated also by many 

scientists. Indicatively, we refer the fractal properties of sunspots and their 

formation by fractal aggregates as it was shown by Zelenyi and Milovanov [30, 

32], the anomalous diffusion and intermittent turbulence of the solar convection 

and photospheric motion shown by Ruzmakin et al. [33], the multi-fractal and 

multi-scale character of space plasmas indicated by Lui [46] and Pavlos et al. 

[37]. 

 Finally we must notice the fact that the fractal extension of dynamics identifies 

the fractal distribution of a physical magnitude in space and time according to 

the scaling relation ( ) aM R R� with the fractional integration as an 

integration in a fractal space [12]. From this point of view it could be possible 

to conclude the novel concept that the non-equilibrium q − extension of 

statistics and the fractal extension of dynamics are related with the fractal space 

and time themselves [6, 39, 80]. 

 

2.6.4 Fractal acceleration and fractal energy dissipation 
 

The problem of kinetic or magnetic energy dissipation in fluid and plasmas as 

well as the bursty acceleration processes of particles at flares, magnetospheric 

plasma sheet and other regions of space plasmas is an old and yet resisting 

problem of fluids or space plasma science.  

 

Normal Gaussian diffusion process described by the Fokker – Planck equation 

is unable to explain either the intermittent turbulence in fluids or the bursty 

character of energetic particle acceleration following the bursty development of 

inductive electric fields after turbulent magnetic flux change in plasmas [81]. 

However the fractal extension of dynamics and Tsallis extension of statistics 
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indicate the possibility for a mechanism of fractal dissipation and fractal 

acceleration process in fluids and plasmas. 

According to Tsallis statistics and fractal dynamics the super-diffusion process: 

  
2

R tγ�
         (94)

 

with 1γ > ( 1γ = for normal diffusion) can be developed at systems far from 

equilibrium. Such process is known as intermittent turbulence or as anomalous 

diffusion which can be caused by Levy flight process included in fractal 

dynamics and fractal Fokker – Planck Kolmogorov equation (FFPK). The 

solution of FFPK equation [38] corresponds to double (temporal, spatial) fractal 

characteristic function: 

  ( )( , ) expP k t constxt k aβ= −
   (95)

 

Where ( ),P k t  is the Fourier transform of asymptotic distribution function: 

  
1( , ) /P t constxtβ αξ ξ +

� , ( )ξ → ∞
  (96)

 

This distribution is scale invariant with mean displacement: 

   constxt
α βξ � , ( )t → ∞

                    (97)
 

According to this description, the flights of multi-scale and multi-fractal profile 

can explain the intermittent turbulence of fluids, the bursty character of 

magnetic energy dissipation and the bursty character of induced electric fields 

and charged particle acceleration in space plasmas as well as the non-Gaussian 

dynamics of brain-heart dynamics. The fractal motion of charged particles 

across the fractal and intermittent topologies of magnetic – electric fields is the 

essence of strange kinetic [38, 80]. Strange kinetics permits the development of 

local sources with spatial fractal – intermittent condensation of induced 

electric-magnetic fields in brain, heart and plasmas parallely with fractal – 

intermittent dissipation of magnetic field energy in plasmas and fractal 

acceleration of charged particles. Such kinds of strange accelerators in plasmas 

can be understood by using the Zaslavsky studies for Hamiltonian chaos in 

anomalous multi-fractal and multi-scale topologies of phase space [38]. 

Generally the anomalous topology of phase space and fractional Hamiltonian 

dynamics correspond to dissipative non-Hamiltonian dynamics in the usual 

phase space [12]. The most important character of fractal kinetics is the 

wandering of the dynamical state through the gaps of cantori which creates 

effective barriers for diffusion and long range Levy flights in trapping regions 

of the phase space. Similar Levy flights processes can be developed by the 

fractal dynamics and intermittent turbulence of the complex systems. 

 In this theoretical framework it is expected the existence of Tsallis non 

extensive entropy and q-statistics in non-equilibrium distributed complex 

systems as, fluids, plasmas or brain and heart systems which are studied in the 

next section of this work. The fractal dynamics corresponding to the non-

extensive Tsallis q − statistical character of the probability distributions in the 
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distributed complex systems indicate the development of a self-organized and 

globally correlated parts of active regions in the distributed dynamics. This 

character can be related also with deterministic low dimensional chaotic profile 

of the active regions according to Pavlos et al. [37,]. 

 

3. Theoretical expectations through Tsallis statistical theory and 

fractal dynamics 
 

Tsallis q − statistics as well as the non-equilibrium fractal dynamics indicate 

the multi-scale, multi-fractal chaotic and holistic dynamics of space plasmas. 

Before we present experimental verification of the theoretical concepts 

described in previous studies as concerns space plasmas in this section we 

summarize the most significant theoretical expectations. 

 

3.1 The q − triplet of Tsallis 
 

The non-extensive statistical theory is based mathematically on the nonlinear 

equation: 

qdy
y

dx
= , ( (0) 1,y q= ∈ℜ )  (98) 

with solution the q − exponential function defined previously in equation (2.2). 

The solution of this equation can be realized in three distinct ways included in 

the q − triplet of Tsallis: ( , ,sen stat relq q q ). These quantities characterize three 

physical processes which are summarized here, while the q − triplet values 

characterize the attractor set of the dynamics in the phase space of the dynamics 

and they can change when the dynamics of the system is attracted to another 

attractor set of the phase space. The equation (2.36) for 1q = corresponds to 

the case of equilibrium Gaussian Boltzmann-Gibbs (BG) world [35, 36]. In this 

case of equilibrium BG world the q − triplet of Tsallis is simplified to 

( 1, 1, 1sen stat relq q q= = = ). 

 

a. The statq  index and the non-extensive physical states 
 

According to [35, 36] the long range correlated metaequilibrium non-extensive 

physical process can be described by the nonlinear differential equation: 

( )
( ) statqi stat

stat i stat

i

d p Z
q p Z

dE
β= −   (99) 

The solution of this equation corresponds to the probability distribution: 

/stat i

stat stat

E

i q qp e Z
β−=    (100) 



Chaotic Modeling and Simulation (CMSIM) 2:   395-447,  2012    423

where

1
statq

statKT
β = , 

stat j

stat

q E

stat q

j

Z e
β−=∑ . 

Then the probability distribution function is given by the relations: 
1/1

1 (1 )
stat

stat

q

i q ip q Eβ
−

 ∝ − −           (101) 

for discrete energy states { }iE by the relation: 

   
1/1

2( ) 1 (1 )
stat

stat

q

qp x q xβ
−

 ∝ − −              (102) 

for continuous X states{ }X , where the values of the 

magnitude X correspond to the state points of the phase space. 

 The above distributions functions (2.46, 2.47) correspond to the attracting 

stationary solution of the extended (anomalous) diffusion equation related with 

the nonlinear dynamics of system [36]. The stationary solutions ( )P x  describe 

the probabilistic character of the dynamics on the attractor set of the phase 

space. The non-equilibrium dynamics can be evolved on distinct attractor sets 

depending upon the control parameters values, while the statq exponent can 

change as the attractor set of the dynamics changes. 

 

b. The senq index and the entropy production process 
 

The entropy production process is related to the general profile of the attractor 

set of the dynamics. The profile of the attractor can be described by its 

multifractality as well as by its sensitivity to initial conditions. The sensitivity 

to initial conditions can be described as follows: 

 1 1( ) q

q

d

d

ξ
λ ξ λ λ ξ

τ
= + −                     (103) 

where ξ describes the deviation of trajectories in the phase space by the 

relation:
( ) 0lim { ( ) \ (0)}x x t xξ ∆ →≡ ∆ ∆ and ( )x t∆ is the distance of 

neighboring trajectories [82]. The solution of equation (2.41) is given by: 

1

1

1
(1 )

1 1

1 sen

q
q tsen senq q

e
λλ λ

ξ
λ λ

−
− 

= − + 
 

  (104) 

The senq exponent can be also related with the multifractal profile of the 

attractor set by the relation: 

min max

1 1 1

senq a a
= −    (105) 
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where min max( )a a corresponds to the zero points of the multifractal exponent 

spectrum ( )f a [36, 79, 82]. That is min max( ) ( ) 0f a f a= = . 

The deviations of neighboring trajectories as well as the multifractal character 

of the dynamical attractor set in the system phase space are related to the 

chaotic phenomenon of entropy production according to Kolmogorov – Sinai 

entropy production theory and the Pesin theorem [36]. The q − entropy 

production is summarized in the equation: 

( )
lim lim lim

q

q
t W N

S t
K

t→∞ →∞ →∞

< >
≡ .  (106) 

The entropy production ( /qdS t ) is identified with qK , as W are the number 

of non-overlapping little windows in phase space and N the state points in the 

windows according to the relation 
1

W

ii
N N

=
=∑ . The qS entropy is estimated 

by the probabilities ( ) ( ) /i iP t N t N≡ . According to Tsallis the entropy 

production qK is finite only for senq q= [36, 82]. 

 

c. The relq index and the relaxation process 
 

The thermodynamical fluctuation – dissipation theory [63] is based on the 

Einstein original diffusion theory (Brownian motion theory). Diffusion process 

is the physical mechanism for extremization of entropy. If S∆ denote the 

deviation of entropy from its equilibrium value 0S , then the probability of the 

proposed fluctuation that may occur is given by: 

exp( / )P s k∆� .   (107) 

The Einstein – Smoluchowski theory of Brownian motion was extended to the 

general Fokker – Planck diffusion theory of non-equilibrium processes.  The 

potential of Fokker – Planck equation may include many metaequilibrium 

stationary states near or far away from the basic thermodynamical equilibrium 

state. Macroscopically, the relaxation to the equilibrium stationary state can be 

described by the form of general equation as follows: 

1d

dτ τ
Ω

− Ω� ,    (108) 

where ( ) [ ( ) ( )] / [ (0) ( )]t O t O O OΩ ≡ − ∞ − ∞ describes the relaxation of 

the macroscopic observable ( )O t relaxing towards its stationary state value. 

The non-extensive generalization of fluctuation – dissipation theory is related to 

the general correlated anomalous diffusion processes [36]. Now, the 

equilibrium relaxation process (2.46) is transformed to the metaequilibrium 

non-extensive relaxation process: 
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1
rel

rel

q

q

d

dt T

Ω
= − Ω    (109) 

the solution of this equation is given by: 
/

( ) rel

rel

t

qt e
τ−Ω �     (110) 

The autocorrelation function ( )C t or the mutual information ( )I t can be used 

as candidate observables ( )tΩ for the estimation of relq .  However, in contrast 

to the linear profile of the correlation function, the mutual information includes 

the non linearity of the underlying dynamics and it is proposed as a more 

faithful index of the relaxation process and the estimation of the Tsallis 

exponent relq .  

 

3.2 Measures of Multifractal Intermittence Turbulence 
 

In the following, we follow Arimitsu and Arimitsu [78] for the theoretical 

estimation of significant quantitative relations which can also be estimated 

experimentally. The probability singularity distribution ( )P a can be estimated 

as extremizing the Tsallis entropy functional qS . According to Arimitsu and 

Arimitsu [78] the extremizing probability density function ( )P a  is given as a 

q − exponential function: 

12
1 10( )

( ) [1 (1 ) ]
2 ln 2

q

q

a a
P a Z q

X

− −−
= − −   (111) 

where the partition function qZ is given by the relation: 

   2 /[(1 ) ln 2]qZ X q= − (1 2,2 1 )B q− , (112) 

and ( , )B a b is the Beta function. The partition function qZ as well as the 

quantities X and q can be estimated by using the following equations: 

2 2

0

(1 )

2

2 (1 ) (1 ) /

(1 2 ) / [(1 ) ln ]q

X a q q b

b q− −

 = + − − −   
= − − 

  (113) 

We can conclude for the exponent’s spectrum ( )f a  by using the 

relation
( )( ) lnd F aP a −≈ as follows: 
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2
1

0 2

( )
( ) log [1 (1 ) ] / (1 )

2 ln 2

oa a
f a D q q

X

−−
= + − − −  (114) 

where 0a corresponds to the q − expectation (mean) value of a through the 

relation: 
2

0 0( ) ( ( ) ( ) ) / ( )q q q

qa a daP a a a daP a< − > = −∫ ∫ . (115) 

while the q − expectation value 0a corresponds to the maximum of the 

function ( )f a as 0( ) / | 0df a da a = . For the Gaussian dynamics ( 1q → ) 

we have mono-fractal spectrum 0 0( )f a D= . The mass exponent ( )qτ can be 

also estimated by using the inverse Legendre transformation: 

( ) ( )q aq f aτ = − (relations 2.24 – 2.25) and the relation (2.29) as follows: 

2

0 2

2 1
( ) 1 [1 log (1 )]

11
q

q

Xq
q qa C

qC
τ = − − − − +

−+ , (116) 

Where 
21 2 (1 ) ln 2qC q q X= + − .  

The relation between a and q can be found by solving the Legendre 

transformation equation ( ) /q df a da= . Also if we use the equation (2.29) 

we can obtain the relation: 

0 (1 ) / [ (1 ) ln 2]q qa a C q q− = − −   (117) 

The q − index is related to the scaling transformations (2.20) of the multifractal 

nature of turbulence according to the relation 1q a= − . Arimitsu and Arimitsu 

[78] estimated the q − index by analyzing the fully developed turbulence state 

in terms of Tsallis statistics as follows: 

1 1 1

1 q a a− +

= −
−    (118) 

where a± satisfy the equation ( ) 0f a± = of the multifractal exponents 

spectrum ( )f a . This relation can be used for the estimation of senq − index 

included in the Tsallis q − triplet (see next section). 

The above analysis based at the extremization of Tsallis entropy can be also 

used for the theoretical estimation of the structure functions scaling exponent 

spectrum ( )J p of the ( )pS τ , where 1, 2,3,4,...p = The structure functions 

were first introduced by Kolmogorov [79] defined as statistical moments of the 

field increments: 

( ) | ( ) ( ) | | |p p

p nS r u x d u x uδ=< + − >=< >
uur rr r

  (119) 
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( ) | ( ) ( ) |p

pS r u x x u x=< + ∆ − >
r r r r

  (120) 

After discretization of x∆
r

displacement the above relation can be identified to: 
n( ) | |p

nSp l uδ=< >    (121) 

The field values ( )u x
r

can be related with the energy dissipation values nε by 

the general relation 
3 n( ) /n nu lε δ= in order to obtain the structure functions 

as follows: 
n ( 1) ( )

0( ) ( ) p p a j p

p n n nS l ε ε δ δ−=< >=< >=  (122) 

where the averaging processes ...< > is defined by using the probability 

function ( )P a da as ... (...) ( )da P a< >= ∫ . By this, the scaling exponent 

( )J p of the structure functions is given by the relation: 

( ) 1 ( )
3

p
J p qτ= + =    (123) 

By following Arimitsu [78] the relation (2.30) leads to the theoretical prediction 

of ( )J p  after extremization of Tsallis entropy as follows: 

2

0
2 /3

/3

2 1
( ) [1 log (1 )]

3 1(1
p

p

a p Xp
J p C

qq C
= − − − +

−+          (124) 

The first term 0 3a p corresponds to the original of known Kolmogorov theory 

(K41) according to which the dissipation of field energy nε is identified with 

the mean value 0ε according to the Gaussian self-similar homogeneous 

turbulence dissipation concept, while 0 1a =  according to the previous analysis 

for homogeneous turbulence. According to this concept the multifractal 

spectrum consists of a single point. The next terms after the first in the relation 

(2.39) correspond to the multifractal structure of intermittence turbulence 

indicating that the turbulent state is not homogeneous across spatial scales. That 

is, there is a greater spatial concentration of turbulent activity at smaller than at 

larger scales. According to Abramenko [36] the intermittent multifractal 

(inhomogeneous) turbulence is indicated by the general scaling exponent 

( )J p  of the structure functions according to the relation: 

( ) ( )( ) ( ) ( )
3

u Fp
J p T p T p= + + ,  (125) 

where the 
( ) ( )uT p term is related with the dissipation of kinetic energy and the 

( ) ( )FT p  term is related to other forms of field's energy dissipation as the 

magnetic energy at MHD turbulence [36, 83] . 
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The scaling exponent spectrum ( )J p can be also used for the estimation of the 

intermittency exponent µ according to the relation: 

2 (2)(2) / J

n nS µε ε δ δ≡< > =�   (127) 

from which we conclude that (2)Jµ = . The intermittency turbulence 

correction to the law 
5/3( )P f f −

� of the energy spectrum of Kolmogorov’s 

theory is given by using the intermittency exponent: 
(5/3 )( )P f f µ− +

�    (128)  

The previous theoretical description can be used for the theoretical 

interpretation of the experimentally estimated structure function, as well as for 

relating physically the results of data analysis with Tsallis statistical theory, as 

it is described in the next sections. 

 

4. Comparison of theory with the observations 
 

4.1 The Tsallis q-statistics 
 

  The traditional scientific point of view is the priority of dynamics over 

statistics. That is dynamics creates statistics. However for complex system their 

holistic behaviour does not permit easily such a simplification and division of 

dynamics and statistics. Tsallis q − statistics and fractal or strange kinetics are 

two faces of the same complex and holistic (non-reductionist) reality. As Tsallis 

statistics is an extension of B-G statistics, we can support that the thermic and 

the dynamical character of a complex system is the manifestation of the same 

physical process which creates extremized thermic states (extremization of 

Tsallis entropy), as well as dynamically ordered states. From this point of view 

the Feynman path integral formulation of physical theory [84] indicates the 

indivisible thermic and dynamical character of physical reality. After this 

general investment in the following, we present evidence of Tsallis non-

extensive q − statistics for space plasmas. The Tsallis statistics in relation with 

fractal and chaotic dynamics of space plasmas will be presented in a short 

coming series of publications.          

 

In next sections we present estimations of Tsallis statistics for various kinds of 

space plasma’s systems. The statq  Tsallis index was estimated by using the 

observed Probability Distribution Functions (PDF) according to the Tsallis q-

exponential distribution: 

[ ] ( ) ( )
1

2 11 1 q

q qPDF A q β −∆Ζ ∆Ζ ≡ + −  , (129)  

where the coefficients Aq, βq denote the normalization constants and statq q≡  

is the entropic or non-extensivity factor ( 3statq ≤ ) related to the size of the tail 
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in the distributions. Our statistical analysis is based on the algorithm described 

in [56]. We construct the [ ]PDF ∆Ζ  which is associated to the first difference 

1n nZ+∆Ζ Ζ= −  of the experimental sunspot time series, while the ∆Ζ  range is 

subdivided into little ``cells'' (data binning process) of width δz , centered at iz  

so that one can assess the frequency of ∆z -values that fall within each cell/bin. 

The selection of the cell-size  δz  is a crucial step of the algorithmic process 

and its equivalent to solving the binning problem: a proper initialization of the 

bins/cells can speed up the statistical analysis of the data set and lead to a 

convergence of the algorithmic process towards the exact solution. The 

resultant histogram is being properly normalized and the estimated q-value 

corresponds to the best linear fitting to the graph lnq i(p(z )) vs 
2

iz . Our 

algorithm estimates for each 0,01qδ =  step the linear adjustment on the graph 

under scrutiny (in this case the lnq i(p(z )) vs 
2

iz  graph) by evaluating the 

associated correlation coefficient (CC), while the best linear fit is considered to 

be the one maximizing the correlation coefficient. The obtained statq , 

corresponding to the best linear adjustment is then being used to compute the 

following equation: 

 

2

( , ) z

q q

q

G z e
C

ββ
β −=    (130) 

where 
3 1

( ) / 1 ( )
2( 1) 1

q

q
C q

q q
π

−
= ⋅Γ − ⋅Γ

− −
, 1 3< q <  for different β-

values. Moreover, we select the β-value minimizing 

the
2[ ( , ) ( )]

sstatq i i

i

G z p zβ −∑ , as proposed again in [56]. 

In the following we present the estimation of Tsallis statistics 
stat

q for various 

cases of space plasma system. Especially, we study the q − statistics for the 

following space plasma complex systems: I Magnetospheric system, II Solar 

Wind (magnetic cloud), III Solar activity, IV Cosmic stars, IIV Cosmic Rays. 

 

4.2 Cardiac Dynamics 
 

For the study of the q-statistics we used measurements from the cardiac and 

especially the heart rate variability timeseries which includes a multivariate 

data set recorded from a patient in the sleep laboratory of the Beth Israel 

Hospital in Boston, Massachusetts. The heart rate was determined by measuring 

the time between the QRS complexes in the electrocardiogram, taking the 
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inverse, and then converting this to an evenly sampled record by interpolation. 

They were converted from 250 Hz to 2 Hz data by averaging over a 0.08 

second window at the times of the heart rate samples. 

 Figure 1a presents the experimental time series, while Fig.1b presents the q-

Gaussian functions 
q

G , corresponding to the time series under scrunity. The q-

Gaussian function presents the best fitting of the experimental distribution 

function ( )P z  estimated for the value 1.26 0.1
stat

q = ±  for the stationary 

heart variability time series. The q-value was estimated by the linear correlation 

fitting between ( )lnq iP z  and ( )2

i
z , shown in fig. 1c, were ( )P z  

corresponds to the experimental distribution functions, according to the 

description in section 4.1. The fact that the heart’s variability observations obey 

to non-extensive Tsallis with a q − values higher than the Gaussian case 

( 1q = ) permit to conclude for the heart’s variability dynamics case the 

existence of q-statistics . 

 

 
Figure 1: (a) Time series of heart rate variability (b) PDF P(zi) vs. zi q 

Guassian function that fits P(zi) for the heart rate variability (c) Linear 

Correlation between lnqP(zi) and (zi)
2
 where q = 1.26 ± 0.10 for the heart rate 

variability. 

 

 

4.3 Brain Epilepsy Dynamics 
 

In this section we present the q-statistics obtained from real EEG timeseries 

from epileptic patients during seizure attack. Each EEG timeseries consisting of 

3.750 points. The width of the timeseries is ranging from -1,000 Volt to 1,000 

Volt. 

In Figure 2a the experimental time series during the epilepsy is presented. The 

q-value was found to be 1.64 0.14
stat

q = ± . The results of the q-statistics 

analysis are shown in Figure 2b and Figure 2c. 
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Figure 2: (a) Time series of seizure state (b) PDF P(zi) vs. zi q Guassian 

function that fits P(zi) for the seizure state (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 1.63 ± 0.14 for the seizure state. 

 

 

4.4 Eartquakes Dynamics 
 

In this sub-section we present the q-statistics of the experimental data from 

earthquakes in the region of whole Greece with magnitude greater from 4 and 

time period 1964-2004. The data set was found  from the National Observatory 

of Athens (NOA). 

In Figure 3a the time series of Interevent Times is presented, while the 

corresponding q-value is shown in Figure 3b and was found to be 

2.28 0.12
stat

q = ±  . In Figure 3d we present the experimental time series of 

Magnitude data. The q-statistics for this case are presented in Figure 3e. The 

corresponding q-value was found to be 1.77 0.09
stat

q = ±  . The results 

reveal clearly non-Gaussian statistics for the earthquake Interevent Times and 

Magnitude data. The results showed the existence of q-statistics and the non-

Gaussianity of the data sets. 

  

 

4.5 Atmospheric Dynamics 
  
  In this sub-section we study the q-statistics for the air temperature and rain fall 

experimental data sets from the weather station 20046 Polar GMO in E.T. 

Krenkelja for the period 1/1/1960 – 31/12/1960. In Figure 4(a,d) the 

experimental time series from temperature and rainfall correspondingly are 

presented and in the Figure 4(b,c,e,f) the results of the q-statistics analysis are 

shown. The estimated q-values were found to be  for the temperature data set 

and for the rainfall data set. In both cases we observed clearly non Gaussian 

statistics. 
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Figure 3: (a) Time series of Interevent Times (b) PDF P(zi) vs. zi q Guassian 

function that fits P(zi) for the Interevent Times (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 2.28 ± 0.12 for the Interevent Times (d) Time series 

of Magnitude (e) PDF P(zi) vs. zi q Gaussian  function that fits P(zi) for the 

Magnitude (f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 1.77 ± 

0.09 for the Magnitude. 

 

 

 
 

Figure 4: (a) Time series of Temperature (b) PDF P(zi) vs. zi q Guassian 

function that fits P(zi) for the Temperature (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 1.89 ± 0.08 for the Temperature (d) Time series of 

Rainfall (e) PDF P(zi) vs. zi q Gaussian  function that fits P(zi) for the Rainfall 

(f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 2.21 ± 0.06 for the 

Rainfall. 
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4.6 Magnetospheric Magneto Hydro Dynamics (MHD) Dynamics 
 

The estimation of ,
x z

V B  Tsallis statistics during the substorm period is 

presented in fig.5(a-f). Fig. 2(a,d) shows the experimental time series 

corresponding to spacecraft observations of bulk plasma flows 
x

V  and 

magnetic field 
z

B  component. Fig. 2(b,e) presents the estimated q-values for 

the 
x

V  plasma velocity time series and for the magnetic field 
z

B  component 

time series. The q-values of the signals under scrutiny were found to be 

1.98 0.06
stat

q = ±  for the 
x

V  plasma velocity time series and 

2.05 0.04
stat

q = ±  for the magnetic field 
z

B  component. The fact that the 

magnetic field and plasma flow observations obey to non-extensive Tsallis with 

q − values much higher than the Gaussian case ( 1q = ) permit to conclude for 

magnetospheric plasma the existence of non-equilibrium MHD anomalous 

diffusion process. 

 

 

 
 

 
 

Figure 5: (a) Time series of Bz storm period (b) PDF P(zi) vs. zi q Gaussian  

function that fits P(zi) for the Bz storm period (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 2.05 ± 0.04 for the Bz storm period (d) Time series 

of Vx storm period (e) PDF P(zi) vs. zi q Guassian function that fits P(zi) for the 

Vx storm period (f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 1.98 

± 0.06 for the Vx storm period. 
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4.7 Magnetospheric Fractal Accelerator of Charged Particles 
 

Already Tsallis theory has been used for the study of magnetospheric energetic 
particles  non-Gaussian by Voros [61] and Leubner [62]. In the following we 
study the q-statistics of magnetospheric energetic particle during a strong sub-
storm period. We used the data set from the GEOTAIL/EPIC experiment 
during the period from 12:00 UT to 21:00 UT of 8/2/1997 and from 12:00 UT 
of 9/2/1997 to 12:00 UT of 10/2/1997. The Tsallis statistics estimated for the 
magnetospheric electric field and the magnetospheric particles ( ),e p− +  

during the storm period is shown in Fig. 6(a-i). Fig. 6(a,d,g) present the 

spacecraft observations of the magnetospheric electric field 
y

E  component and 

the magnetospheric electrons ( )e −  and protons ( )p + . The corresponding 

Tsallis q-statistics was found to correspond to the q-values: 

2.49 0.07
stat

q = ±  for the 
yE  electric field component, 

2.15 0.07
stat

q = ±  for the energetic electrons and 2.49 0.05
stat

q = ±  for 

the energetic protons. These values reveal clearly non-Gaussian dynamics for 
the mechanism of electric field development and electrons-protons acceleration 
during the magnetospheric storm period. 

 

 

 
Figure 6: (a) Time series of Ey storm period (b) PDF P(zi) vs. zi q Guassian 
function that fits P(zi) for the Ey storm period (c) Linear Correlation between 
lnqP(zi) and (zi)

2
 where q = 2.49 ± 0.07 for the Ey storm period (d) Time series 

of electrons storm period (e) PDF P(zi) vs. zi q Gaussian  function that fits P(zi) 
for the electrons storm period  (f) Linear Correlation between lnqP(zi) and (zi)

2
 

where q = 2.15 ± 0.07 for the electrons storm period time series (g) Time series 
of protons storm period (h) PDF P(zi) vs. zi q Gaussian  function that fits P(zi) 
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for the protons storm period (i) Linear Correlation between lnqP(zi) and (zi)
2
 

where q = 2.49 ± 0.05 for the protons storm period. 

 

4.8 Solar Wind Magnetic Cloud 
 

From the spacecraft ACE, magnetic field experiment (MAG) we take raw data 

and focus on the Bz magnetic field component with a sampling rate 3 sec. Tha 

data correspond to sub-storm period with time zone from 07:27 UT, 20/11/2001 

until 03:00 UT, 21/11/2003. 

 Magnetic clouds are a possible manifestation of a Coronal Mass Ejection 

(CME) and they represent on third of ejectra observed by satellites. Magnetic 

cloud behave like a magnetosphere moving through the solar wind. Carbone et 

al. [58], de Wit [63] estimated non-Gaussian turbulence profile of solar wind. 

Bourlaga and Vinas [55] estimated the q-statistics of solar wind at the q-value 

1.75 0.06
stat

q = ± . Fig. 7 presents the q-statistics estimated in the magnetic 

cloud solar plasma for the z-component 
Z

B  of the magnetic field. The 
Z

B  

time series is shown in Fig. 7a. The q-statistics for 
Z

B  component is shown at 

Fig. 7(b,c), while the q-value was found to be  2.02 0.04
stat

q = ± . This value 

is higher than the value 1.75
stat

q =  estimated from Bourlaga and Vinas [55] 

at 40 AU. 

 

 
Figure 7: (a) Time series of Bz cloud (b) PDF P(zi) vs. zi q Gaussian  function 

that fits P(zi) for the Bz cloud (c) Linear Correlation between lnqP(zi) and (zi)
2
 

where q = 2.02 ± 0.04 for the Bz cloud. 

 

4.9 Solar Activity: Sun Spot-Flares Dynamics 
 

In this sub-section we present the q-statistics of the sunspot and solar flares 

complex systems by using data of Wolf number and daily Flare Index. 

Especially, we use the Wolf number, known as the international sunspot 

number measures the number of sunspots and group of sunspots on the surface 

of the sun computed by the formula: (10)R=k*(10g+s) where: s is the number 

of individual spots, g is the number of sunspot groups and k is a factor that 

varies with location known as the observatory factor. We analyse a period of 

184 years. Moreover we analyse the daily Flare Index of the solar activity that 

was determined using the final grouped solar flares obtained by NGDC 

(National Geophysical Data Center). It is calculated for each flare using the 
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formula: ( * )Q i t= , where "i" is the importance coefficient of the flare and 

“t” is the duration of the flare in minutes. To obtain final daily values, the daily 

sums of the index for the total surface are divided by the total time of 

observation of that day. The data covers time period from 1/1/1996 to 

31/12/2007.  

 

     

   
 

Figure 8: (a) Time series of Sunspot Index concerning the period of 184 years 

(b) PDF P(zi) vs. zi q Guassian function that fits P(zi) for the Sunspot Index (c) 

Linear Correlation between lnqP(zi) and (zi)
2
 where q = 1.53 ± 0.04 for the 

Sunspot Index (d) Time series of Solar Flares concerning the period of 184 

years (e) PDF P(zi) vs. zi q Guassian function that fits P(zi) for the Solar Flares 

(f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 1.90 ± 0.05 for the 

Solar Flares. 

 

Although solar flares dynamics is coupled to the sunspot dynamics. 

Karakatsanis and Pavlos [64] and Karakatsanis et al. [64] have shown that the 

dynamics of solar flares can be discriminated from the sunspot dynamics. Fig. 8 

presents the estimation of q-statistics of sunspot index shown in fig. 8(b,c) and 

the q-statistics of solar flares signal shown in fig. 8(e,g). The q-values for the 

sunspot index and the solar flares time series were found to be 

1.53 0.04
stat

q = ±  and 1.90 0.05
stat

q = ± correspondingly. We clearly 

observe non-Gaussian statistics for both cases but the non-Gaussianity of solar 

flares was found much stronger than the sunspot index.   

 

4.10  Solar Flares Fractal Accelerator 
 

At solar flare regions the dissipated magnetic energy creates strong electric 

fields according to the theoretical concepts. The bursty character of the electric 

field creates burst of solar energetic particles through a mechanism of solar 
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flare fractal acceleration. According to theoretical concept presented in 

previous section the fractal acceleration of energetic particles can be concluded 

by the Tsallis q-extenstion of statistics for non-equilibrium complex states. In 

the following we present significants verification of this theoretical prediction 

of Tsallis theory by study the q-statistics of energetic particle acceleration.  

Finally we analyze energetic particles from spacecraft ACE – experiment 

EPAM and time zone 1997 day 226 to 2006 day 178 and protons (0.5 – 4) MeV 

with period 20/6/1986 – 31/5/2006, spacecraft GOES, hourly averaged data. 

Figure 9 presents the estimation of the solar protons - electrons q-statistics. The 

q-values for solar energetic protons and electrons time series were found to be 

2.31 0.13
stat

q = ±
 
and

 
2.13 0.06

stat
q = ±  correspondingly. Also in this 

case we clearly observe non-Gaussian statistics for both cases. 

 
   

 
Figure 9: (a) Time series of Solar proton (b) PDF P(zi) vs. zi q Guassian 

function that fits P(zi) for the Solar proton data (c) Linear Correlation between 

lnqP(zi) and (zi)
2
 where q = 2.31 ± 0.13 for the Solar proton (d) Time series of 

Solar electrons (e) PDF P(zi) vs. zi q Guassian function that fits P(zi) for the 

Solar electrons (f) Linear Correlation between lnqP(zi) and (zi)
2
 where q = 2.13 

± 0.06 for the Solar electrons. 

 

4.11 Cosmic Stars 
 

In the following we study the q-statistics for cosmic star brightness. For this we 

used a set of measurements of the light curve (time variation of the intensity) of 

the variable white dwarf star PG1159-035 during March 1989. It was recorded 

by the Whole Earth Telescope (a coordinated group of telescopes distributed 

around the earth that permits the continuous observation of an astronomical 

object) and submitted by James Dixson and Don Winget of the Department of 

Astronomy and the McDonald Observatory of the University of Texas at 

Austin. The telescope is described in an article in The Astrophysical Journal 

(361), p. 309-317 (1990), and the measurements on PG1159-035 will be 

described in an article scheduled for the September 1 issue of the Astrophysical 
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Journal. The observations were made of PG1159-035 and a non-variable 

comparison star. A polynomial was fit to the light curve of the comparison star, 

and then this polynomial was used to normalize the PG1159-035 signal to 

remove changes due to varying extinction (light absorption) and differing 

telescope properties.  
 

Figure 10 shows the estimation of q-statistics for the cosmic stars PG-1159-

035. The q-values for the star PG-1159-035 time series was found to be 

1.64 0.03
stat

q = ± . We clearly observe non-Gaussian statistics.  

 
Figure 10: (a) Time series of cosmic star PG-1159-035 (b) PDF P(zi) vs. zi q 

Guassian function that fits P(zi) for the cosmic star PG-1159-035 (c) Linear 

Correlation between lnqP(zi) and (zi)
2
 where q = 1.64 ± 0.03 for the cosmic star 

PG-1159-035. 

 

4.12 Cosmic Rays 
 

In this sub-section we study the q-statistics for the cosmic ray (carbon) data set. 

For this we used the data from the Cosmic Ray Isotope Spectrometer (CRIS) on 

the Advanced Composition Explorer (ACE) spacecraft and especially the 

carbon element (56-74 Mev) in hourly time period and time zone duration from 

2000 – 2011.The cosmic rays data set is presented in Fig.11a, while the q-

statistics is presented in Fig.11[b,c]. The estimated  
stat

q  value was found to he 

1.44 0.05
stat

q = ± . This resulted reveals clearly non-Gaussian statistics for 

the cosmic rays data. 

 

 
Figure 11: (a) Time series of cosmic ray Carbon (b) PDF P(zi) vs. zi q 

Guassian function that fits P(zi) for the cosmic ray Carbon (c) Linear 

Correlation between lnqP(zi) and (zi)
2
 where q = 1.44 ± 0.05 for the cosmic ray 

Carbon. 
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System q_stat 

Cardiac (hrv) 1.26 0.10±  

Brain (seizure) 1.63 0.14±  

Seismic (Interevent) 2.28 0.12±  

Seismic (Magnitude) 1.77 0.09±  

Atmosphere (Temperature) 1.89 0.08±  

Atmosphere (Rainfall) 2.21 0.06±  

Magnetosphere (Bz storm) 2.05 0.04±  

Magnetosphere (Vx storm) 1.98 0.06±  

Magnetosphere (Ey storm) 2.49 0.07±  

Magnetosphere (Electrons storm) 2.15 0.07±  

Magnetosphere (Protons storm) 2.49 0.05±  

Solar Wind (Bz cloud) 2.02 0.04±  

Solar (Sunspot Index) 1.53 ± 0.04 

Solar (Flares Index) 1.8700 

Solar (Protons) 2.31 0.13±  

Solar (Electrons) 2.13 0.06±  

Cosmic Stars (Brigthness) 1.64 0.03±  

Cosmic Ray (C) 1.44 0.05±  

 

TABLE 1: This table includes the estimated qstat indeces for the brain and 

heart activity, the Magnetospheric dynamics (Bz, Vx, Ey, electron, protons time 

series), solar wind magnetic cloud, sunspot-solar flare time series, cosmic stars 

and cosmic rays 

 

5. Summary and Discussion 
 

In this study we presented novel theoretical concepts (sections 2-3) and novel 

experimental results (section 4) concerning the non-equilibrium distributed 

dynamics of various kinds of complex systems as : brain and heart activity, 

seismic and atmospheric dynamics as well as space plasmas dynamics 

corresponding to planetic magnetospheres, solar wind, solar corona, solar 

convection zone, cosmic stars and cosmic rays. In all of these cases the 

statistics was found to be non-Gaussian as the q-statistics index was estimated 

to be larger than the value q=1 which corresponds to Gaussian dynamics. The 

values of qstat index for the systems which were studied are presented in table 

1. This experimental result constitutes strong evidence for the universality of 

non-equilibrium complex or strange dynamics as it was presented in section 2 
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of this study. As for the theory in the theoretical description of this study we 

have shown the theoretical coupling of Tsallis non-extensive statistical theory 

and the non-equilibrium fractal dynamics. That is has been shown also the 

internal correlation of the Tsallis q-extension of Boltzmann-Gibbs statistics 

with modern fractal generalization of dynamics. Our theoretical descriptions 

showed the possibility of the experimental testing of Tsallis statistics and fractal 

dynamics through the Tsallis q-triplet as well as the structure functions 

exponent spectrum. Moreover at this study we have tested the theoretical 

concepts only through the q-statistics index of Tsallis non extensive theory, the 

tests of the entire q-triplet and the structure functions exponent spectrum are 

going to be presented in a short coming paper [37].  

Finally the theoretical concepts and the experimental results of this study 

clearly indicate the faithful character of the universality of Tsallis q-statistics 

and fractal dynamics in a plenty of different physical systems. In this way we 

can indicate faithfully that the Tsallis q-entropy theory as well as the fractal 

dynamics constitutes the new basis for a novel unification of the complexity 

physical theory. 
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