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Abstract. Necessary and sufficient conditions for normal solvability are obtained
for linear differential equations in Banach space. Constructed examples demonstrate
that even in the linear case (but certainly not correct) you can select a family of
bounded solutions, which tend to an equilibrium positions, so-called homoclinic and
heteroclinic trajectories.
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A lot of papers are devoted to development of constructive methods for the
analysis of different classes of boundary value problems. They traditionally oc-
cupy one of the central places in the qualitative theory of differential equations.
This is due to practical significance of the theory of boundary-value problems
for various applications - theory of nonlinear oscillations, theory of stability of
motion, control theory and numerous problems in radioengineering, mechanics,
biology etc.

Correct and incorrect boundary value problems are studied. Ususally cor-
rectness is understood as uniqueness of the solution for arbitrary right-hand
side of the equation. Correct boundary value problems for ordinary differen-
tial equations, impulsive systems, Noether operator equations became popular
relatively recently, they were studied in detail [5]. Analysis of a large class of
incorrect boundary value problems was associated with the properties of the
generalized inverse operator (which exists for any linear operator in a finite
dimensional space).

Efforts aimed to solving problem of the existence of bounded solutions of
linear differential equations are mainly devoted to the correct case. Additional
boundary conditions can be full filled only in a trivial situations for such prob-
lems. After Palmer’s work [2] it became clear that in the general case, even
a finite set of differential equations can not have one bounded solution, and it
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makes sense to study the boundary value problem in the incorrect case. Us-
ing the pseudoinverse operators approach one can obtain the conditions under
which a family of bounded solutions satisfying the supplementary boundary
conditions can be identified.

1 Statement of the Problem

In a Banach space X we consider a boundary value problem

dx

dt
= A(t)x(t) + f(t) , (1)

lx(·) = α , (2)

where the vector - function f(t) acts from R into the Banach space X,

f(t) ∈ BC(R,X) := {f(·) : R→ X, f(·) ∈ C(R,X), |||f ||| = sup
t∈R
‖f(t)‖ <∞},

BC(R,X) is the Banach space of functions continuous and bounded on R; the
operator-valued function A(t) is strongly continuous with the norm |||A||| =
supt∈R ||A(t)|| < +∞; BC1(R,X) := {x(·) : R → X, x(·) ∈ C1(R,X), |||x||| =
sup
t∈R
{‖x(t)‖, ‖x1(t)‖} <∞}, - the space of functions continuously differentiable

on R and bounded together with their derivatives; l - linear and bounded
operator acts from the space of BC1(R,X) into the Banach space Y. We
determine the conditions of the existence of solutions x(·) ∈ BC1(R,B) of
boundary value problem (1), (2) under the assumption that the corresponding
homogeneous equation

dx

dt
= A(t)x(t) (3)

admits an exponential dichotomy [1–3] on the semi-axes R+ and R− with
projectors P and Q, respectively, i.e., there exist projectors P (P 2 = P ) and
Q(Q2 = Q) and constants k1,2 ≥ 1 and α1,2 > 0 such that the estimates{ ∥∥U(t)PU−1(s)

∥∥ ≤ k1e−α1(t−s), t ≥ s,∥∥U(t)(E − P )U−1(s)
∥∥ ≤ k1eα1(t−s), s ≥ t, for all t, s ∈ R+,

and { ∥∥U(t)QU−1(s)
∥∥ ≤ k2e−α2(t−s), t ≥ s,∥∥U(t)(E −Q)U−1(s)

∥∥ ≤ k2eα2(t−s), s ≥ t, for all t, s ∈ R−

hold, where U(t) = U(t, 0) is the evolution operator of Eq. (3) such that

dU(t)

dt
= A(t)U(t), U(0) = E is the identity operator [1, p.145] .
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2 Preliminaries

Now we formulate the following result, which is proved in [4] for the nonhomo-
geneous equation (1).
Theorem 1. Suppose that the homogeneous equation (3) admits an exponential
dichotomy on the semi-axes R+ and R− with projectors P and Q, respectively.
If the operator

D = P − (E −Q) : X→ X (4)

acting from the Banach space X onto itself is invertible in the generalized sense
[5, p.26], then

(i) in order that solutions of Eq. (1) bounded on the entire real axis exist,
it is necessary and sufficient that the function f(t) ∈ BC(R,X) satisfies the
condition

+∞∫
−∞

H(t) f(t) dt = 0; (5)

where
H(t) = PN(D∗)QU

−1(t) = PN(D∗)(E − P )U−1(t),

(ii) under condition (5), solutions bounded on the entire axis of Eq. (1) have
the form

x(t, c) = U(t)PPN(D)c+ (G[f ])(t), ∀ c ∈ X, (6)

where

(G[f ])(t) = U(t)



t∫
0

PU−1(s)f(s) ds−
∞∫
t

(E − P )U−1(s)f(s) ds+

+PD−
[∞∫

0

(E − P )U−1(s)f(s) ds +
0∫
−∞

QU−1(s)f(s)ds

]
, t ≥ 0,

t∫
−∞

QU−1(s)f(s) ds−
0∫
t

(E −Q)U−1(s)f(s) ds+

+(E −Q)D−
[∞∫

0

(E − P )U−1(s)f(s) ds+
0∫
−∞

QU−1(s)f(s) ds

]
, t ≤ 0

(7)

is the generalized Green operator of the problem for solutions bounded on the
entire axis, D− - is the generalized inverse of D , mathcalPN(D) = E −D−D
and PN(D∗) = E −DD− , c is an arbitrary constant element of the Banach
space X.

3 Main result

We now show that under condition from the theorem 1, the boundary value
problem can be solved using the operator B0 = lU(·)PPN(D) : X→ Y.

Theorem 2. Let’s conditions from the theorem 1 are satisfied. If the
operator

B0 : X −→ Y
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acting from the Banach space X into the Banach space Y is invertible in the
generalized sense, then

(i) in order that solutions of boundary value problem (1), (2) exist, it is
necessary and sufficient that

PN(B∗0 )
(α− l((G[f ])(·))) = 0 ; (8)

(ii) under condition (8) solutions of boundary value problem (1), (2) have
the form

x(t, c) = U(t)PPN(D)PN(B0)c+U(t)PPN(D)B
−
0 (α−l(G[f ])(·))+(G[f ])(t),∀c ∈ X,

where (G[f ])(·) - is generalized Green operator defined below; B−0 - is gener-
alized inverse of B0, PN(B∗0 )

- projector, which project X onto the kernel of
adjoint operator B∗0 .

Proof. From the theorem 1, we have that the family of bounded solutions of
the equation (1) has the form x(t, c) = U(t)PPN(D)c+(G[f ])(t). We substitute
this solutions to the equation (2):

l(U(·)PPN(D)c+ (G[f ])(·)) = α.

Since the operator l is linear we have :

l(U(·)PPN(D))c+ l((G[f ])(·)) = α,

and we have finally the operator equation :

B0c = α− l((G[f ])(·)).

Since operator B0 is invertible in the generalized sence , then in order that so-
lutions of the boundary value problem (1),(2) exist it is necessary and sufficient
[5] that

PN(B∗0 )
(α− l((G[f ])(·))) = 0.

If this condition is satisfied, then

c = PN(B0)c+B−0 (α− l((G[f ])(·))), ∀c ∈ X.

Then the family of bounded solutions of the boundary value problem (1), (2)
has the form:

x(t, c) = U(t)PPN(D)PN(B0)c+ U(t)PPN(D)B
−
0 (α− l((G[f ])(·))) + (G[f ])(t)

Remark. If Y = X×X, lx = (x(+∞), x(−∞)) = (α, α) ∈ X×X, where α
- equilibrium point of (1), then all bounded solutions of boundary value problem
(1), (2) are homoclinic paths [6].
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4 Examples

1. We now illustrate the assertions proved above. Consider the next boundary
value problem

dx

dt
= A(t)x(t) + f(t), (9)

lx(·) = x(b)− x(a) = α, (10)

where A(t) - is operator in the form of a countably-dimensional matrix that,
for every real value t, acts on the Banach space B = lp, p ∈ [1; +∞) and

x(t) = col{x1(t), x2(t), . . . xk(t), . . .} ∈ BC1(R, lp),

f(t) = col{f1(t), f2(t), . . . , fk(t), . . .} ∈ BC(R, lp)

- are countable vector - columns; a, b ∈ R, b > 0, a < 0;

α = col{α1, α2, . . . , αk, . . .} ∈ lp

- constant vector (αi ∈ R, i ∈ N).
Consider boundary value problem (9), (10) with the operator

A(t) =



k︷ ︸︸ ︷
th t 0 0 . . . . . .

0 th t 0 . . . . . .
. . . . . . . . . . . . . . .

0 0 th t . . . . . .
0 0 0 − th t . . .
. . . . . . . . . . . . . . .


: lp → lp. (11)

The evolution operator of system (9), (11) has the form:

U(t) =



k︷ ︸︸ ︷
(et + e−t)/2 0 0 . . . . . .

0 (et + e−t)/2 0 . . . . . .
. . . . . . . . . . . . . . .
0 0 (et + e−t)/2 . . . . . .
0 0 0 2/(et + e−t) . . .
. . . . . . . . . . . . . . .


;

The operator inverse to U(t) has the form

U−1(t) =



k︷ ︸︸ ︷
2/(et + e−t) 0 0 . . . . . .

0 2/(et + e−t) 0 . . . . . .
. . . . . . . . . . . . . . .
0 0 2/(et + e−t) . . . . . .
0 0 0 (et + e−t)/2 . . .
. . . . . . . . . . . . . . .


;
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and the corresponding homogeneous system is exponentially - dichotmous on
both semi-axes R+ and R− with the projectors

P =



k︷ ︸︸ ︷
0 0 . . . . . .
. . . . . . . . . . . .
0 0 . . . . . .
0 0 1 . . .
0 0 0 . . .
. . . . . . . . . . . .


and Q =



k︷ ︸︸ ︷
1 0 . . . . . .
. . . . . . . . . . . .
0 . . . 1 . . .
0 0 0 . . .
0 0 0 . . .
. . . . . . . . . . . .


, respectively. Thus, we have

D = P − (E −Q) = 0, PN(D) = PN(D∗) = E.

Since dimR[PN(D∗)Q] = k, then operator PN(D∗)Q is finite-dimensional:

H(t) = [PN(D∗)Q]U−1(t) =



k︷ ︸︸ ︷
1 0 . . . . . .
. . . . . . . . . . . .
0 . . . 1 . . .
0 0 0 . . .
0 0 0 . . .
. . . . . . . . . . . .


U−1(t) = diag{Hk(t), 0},

where

Hk(t) =

 2/(et + e−t) . . . 0
...

. . .
...

0 . . . 2/(et + e−t)

 is a k × k − dimensional matrix .

According theorem 1, for the existence of solutions of system (9), (11) bounded
on the entire axis, it is necessary and sufficient that following conditions be
satisfied: ∫ +∞

−∞
Hk(t)f(t)dt = 0 ⇔


∫ +∞
−∞

f1(t)
et+e−t dt = 0

. . .∫ +∞
−∞

fk(t)
et+e−t dt = 0.

(12)

Thus, in order that system (3), (11) have solutions bounded on the entire
axis, it is necessary and sufficient that exactly k conditions be satisfied; the other
functions fi(t) for all i ≥ k+1 can be taken arbitrary from the class BC(R, lp).
Moreover, system (3), (11) has countably many linearly independent bounded
solutions. For example, as a vector function f from the class BC(R, lp), one can
take an arbitrary vector function whose first k components are odd functions.

For solving boundary value problem we find the matrix B0 :

B0 = lU(·)PPN(D) = U(b)PPN(D) − U(a)PPN(D),
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and finally

B0 =



k︷ ︸︸ ︷
0 0 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 . . . . . . . . .
0 . . . 0 cha−chb

cha·chb . . . . . .
0 . . . 0 . . . cha−chb

cha·chb . . .
. . . . . . . . . . . . . . . . . .


: lp → lp.

Since a 6= b then operator PN(B∗0 )
have the form :

PN(B∗0 )
=



k︷ ︸︸ ︷
1 0 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 1 . . . . . . . . .
0 . . . 0 0 . . . . . .
0 . . . 0 . . . 0 . . .
. . . . . . . . . . . . . . . . . .


: lq → lq (1/p+ 1/q = 1),

and

G[f ](b)−G[f ](a) =



−
∫ a
−∞

2f1(s)
es+e−s ds−

∫ +∞
b

2f1(s)
es+e−s ds

. . .

−
∫ a
−∞

2fk(s)
es+e−s ds−

∫ +∞
b

2fk(s)
es+e−s ds

1
2

∫ b
a

(es + e−s)fk+1(s)ds
. . .


.

PN(B∗0 )
(α− l(G[f ])(·)) = 0 ⇔


∫ a
−∞

2f1(s)
es+e−s ds+

∫ +∞
b

2f1(s)
es+e−s ds = −α1

. . .∫ a
−∞

2fk(s)
es+e−s ds+

∫ +∞
b

2fk(s)
es+e−s ds = −αk.

(13)
Thus, according to Theorem 2, boundary value problem (9), (10), (11) pos-

sesses at least one solution bounded on R if and only if the vector-function f
satisfies conditions (12), (13).

2.Consider one-dimensional boundary value problem

dx(t)

dt
= −tht x(t) + f(t),

lx = (x(+∞), x(−∞)) = (α1, α2) ∈ R2. (14)

a) let f(t) = 2e−t

et+e−t and (α1, α2) = (0,−2). The set of bounded solutions
which satisfy boundary condition (14) have the form:

x(t, c) =
2

et + e−t
c− 2e−t

et + e−t
+

2

et + e−t
, for all c ∈ R.

Integral curves for different values of the parameter c are shown in Figure 1.
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Fig. 1. Integral curves for different values of the parameter c

b) let f(t) = 2 tht and (α1, α2) = (2, 2). In this case equation (1) has
equilibrium solution x0(t) = 2 and a set of homoclinic paths have the next
form:

x(t, c) =
2

et + e−t
c+ 2− 4

et + e−t
, for all c ∈ R.

Integral curves for different values of the parameter c are shown in Figure 2.

Fig. 2. Integral curves for different values of the parameter c

3. Consider two-dimensional boundary value problem

dx1(t)

dt
= −tht x1(t) + f1(t),

dx2(t)

dt
= −tht x2(t) + f2(t),

l(x1, x2) = (x1(+∞), x1(−∞), x2(+∞), x2(−∞)) = (α1, α2, α3, α4) = (0,−2, 2, 2) ∈ R4,

where f1(t) = 2e−t

et+e−t , f2(t) = 2 tht (direct product of examples 2a, 2b). This
problem has a two-parametric family of bounded solutions

x1(t, c1) = 2
et+e−t c1 − 2e−t

et+e−t + 2
et+e−t ,

x2(t, c2) = 2
et+e−t c2 + 2− 4

et+e−t ,

for all c1, c2 ∈ R.

The phase portrait of this system is shown for different parameters in Figure 3
(in plane x1, x2).

We see that the portrait resembles a horseshoe.



Chaotic Modeling and Simulation (CMSIM) 2: 247–255, 2013 255

Fig. 3. The phase portrait of system
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