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Abstract. In this paper we analyze the stable periodic orbits existing in the 1-D lin-
ear piecewise-smooth discontinuous map with respect to variations in the parameters
of the map. We analytically show how to calculate the range of parameter µ such that
the orbits of specific periodicity can exist. Moreover, for a given period, the relation
between the probability of occurrence of orbits of that period and the corresponding
length of range of µ is established. Further, we show that this probability can be
maximized by varying the parameter of the map. We prove that there exist a unique
value of this parameter such that this probability is maximum. We provide diagrams
generated by numerical simulations to illustrate these results and to depict the effects
of variations in the parameters of the map on the ranges of existence of orbits.
Keywords: Border collision bifurcation, piecewise-smooth, discontinuous map, pe-
riodic orbit.

1 Introduction

Piecewise-smooth dynamical systems are being extensively studied over the last
decade because of their applications in various fields like electrical engineering,
physics, economics etc. Examples are DC-DC converters in discontinuous mode
[1,2], impact oscillators [3], economic models [4] etc. One of the major reasons
for interest in piecewise-smooth systems is the existence of a phenomenon,
unique to such systems, called border collision bifurcation. Though this term
was coined by Nusse [5] in 1992, the phenomenon was earlier reported by Feigin
[6] in 70’s.

The 1-D linear piecewise-smooth discontinuous map is defined as [7]:

xn�1 � fpxn, a, b, µ, lq �

"
axn � µ for xn ¤ 0
bxn � µ� l for xn ¡ 0

(1)

Over the last decade, several authors have published the analytical as well as
numerical work which analyzes the 1-D piecewise-smooth discontinuous map
in detail [8–11]. Recently in [12] it was shown that exactly φpnq stable periodic
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orbits exist in the map given by Equation (1) when a, b P p0, 1q, l � �1 and
µ P p0, 1q; where n is the period and φ is Euler’s number. In this paper we
extend this analysis to investigate the effect of variation in parameters a, b and
n on the range of existence of periodic orbits.

1.1 Notation

Let L :� p�8, 0s (the closed left half plane) and R :� p0, 8q (the open right
half plane). Given a particular sequence of points txnun¥0 through which the
system evolves, one can convert this sequence into a sequence of Ls and Rs by
indicating which of the two sets (L or R) the corresponding point belongs to.
Since a periodic orbit has a string of Ls and R that keeps repeating, we call
this repeating string, a pattern and denote it by σ. The length of the string
σ is denoted by |σ| and gives the number of symbols in the pattern i.e., the
period of the orbit. The range of existence of this pattern σ is denoted by
Pσ � pp1, p02s where p2 and p1 are the upper and the lower limits respectively.
The sum of geometric series 1� k � k2 � � � � � kn is denoted by Skn.

1.2 Preliminaries

Definition 1. A pattern σ is termed admissible if Pσ � H.

Definition 2. If a pattern consists of a single chain of consecutive Ls followed
by a singleton R then it called an L-prime pattern. Similarly, if a pattern
consists of a single chain of consecutive Rs followed by a singleton L then it
called an R-prime pattern. Together, we call them prime patterns.

Example 1. LnR is a L-prime pattern and LRn is a R-prime pattern. LR is
both L-prime as well as R-prime.

Definition 3. A pattern made up of two or more prime patterns is called a
composite pattern.

Example 2. LLLRLLR is a composite pattern as it is made of two prime
patterns namely LLLR and LLR.

Remark 1. Some authors use the term maximal or principal to describe prime
pattern [13].

Recall that the range of existence of an orbit is denoted by Pσ. We illustrate
with an example how to calculate Pσ.

Example 3. Consider a pattern LLR which means: x0, x1 ¤ 0, x1 ¡ 0 and
x3 � x0. Using Equation (1) these inequalities can be rewritten as:

x0 ¤ 0,

x1 � ax0 � µ ¤ 0,

x2 � a2x0 � pa� 1qµ ¡ 0,

x3 � x0 � a2bx0 � pab� b� 1qµ� 1 ñ x0 �
pab� b� 1qµ� 1

1� a2b
.
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Substituting the value of x0 in x1 and x2 we get:

x1 � a
� pab� b� 1qµ� 1

1� a2b

	
� µ ¤ 0,

x2 � a2
� pab� b� 1qµ� 1

1� a2b

	
� pa� 1qµ ¡ 0.

After simplification we get:

µ ¡
a2

a2 � a� 1
,

µ ¤
a

ab� a� 1
.

Hence, PLLR �
�

a2

a2�a�1 ,
a

ab�a�1

�
.

In a similar way we can find the range of existence (Pσ) for the prime
patterns LnR and LRn for any n ¥ 2. The method is explained in detail in
[12]. We directly use the formulas from [12] here:

PLnR �

�
an

Sa
n

,
an�1

an�1b � Sa
n�1

�
(2)

and

PLRn �

�
abn�1 � Sb

n�2

abn�1 � Sb
n�1

,
Sb

n�1

Sb
n

�
. (3)

1.3 Characterization of Patterns

We have seen earlier that the prime patterns are admissible and the range of
existence of prime patterns is given by Equations (2) and (3). The immediate
question is other than prime patterns, which type of patterns are admissible? It
is shown in [12] that only specific type of patterns are admissible. For example,
it is shown that admissible patterns can not contain consecutive chain of Ls
and Rs simultaneously. Moreover, admissible composite patterns are always
made up of exactly two prime patterns of successive lengths. Further, it is
shown that these results lead to the final conclusion that exactly φpnq number
of distinct patterns are admissible for a given n.

For a given n, the algorithm to generate the φpnq patterns and to calculate
the range of existence of these patterns is discussed in detail in [12]. We now
extend this analysis to find out the effects of variations in parameters on the
range of existence of patterns.

2 Effects of Variations in Parameters on The Range of
Existence of Patterns

In this section we analyze the effects of variations in parameters a, b and n on
the range of existence of patterns. Recall that the range of existence of pattern
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σ is expressed as Pσ � pp1, p2s. Let the length occupied on the parameter
line µ corresponding to the ith pattern of length n is denoted by Γni . That is,
Γni � p2 � p1. Let the total length occupied corresponding to all the patterns

of length n is denoted by Γn. That is, Γn �
°φpnq
i�1 Γni . We now find out the

expression for Γn. In this paper we consider the case of a � b.
Consider the pattern of length N � n�1. We substitute a � b in Equations

(2) and (3) to get:

PLnR �
�
an

Sa
n
, a

n�1

Sa
n

�
and PLRn �

�
an�Sa

n�2

Sa
n

,
Sa
n�1

Sa
n

�
.

Note that ΓNPLnR
� ΓNPLRn � an�1p1�aq

Sa
n

. We denote it by γN . Since, for a � b

the map becomes symmetric, all the patterns of length N have ΓNi � γN .

This gives ΓN �
°φpNq
i�1 ΓNi � φpNqγN . Substituting for γN and N we get

Γn�1 � φpn � 1qa
n�1p1�aq
Sa
n

� φpn � 1qa
n�1p1�aq2

1�an�1 . For consistency, we use the

formula for n which is:

Γn � φpnqγn � φpnq
an�2p1� aq2

1� an
. (4)

From the above equation it is clear that Γn depends on the parameters a and n.
Recall that Γn is the length of range of existence of patterns as defined earlier.
Hence, any change in Γn due to the variations in a and n can be interpreted
as the effect on the range of existence of patterns.

2.1 Probability of Occurrence of a Pattern

We have seen that the total length occupied on the parameter line µ correspond-
ing to all the patterns of length n is expressed by Γn. We know µ P p0, 1q.
This leads us to the question: for a randomly selected µ from the set p0, 1q,
what is the probability that it corresponds to a pattern of length n? Since
µ P p0, 1q, the total length of the parameter line is unity and Γn is the total
length occupied on parameter line µ corresponding to all the patterns of length
n. Hence, the probability of occurrence of a pattern of length n is Γn. The
Equation (4) gives the formula for this probability in terms of a and n.

2.2 Maximizing the Probability of Occurrence of a Pattern

For n � 2, Γ 2 � 1�a
1�a and a P p0, 1q. Clearly, it is a monotonically decreasing

function. Hence, the suprimum is achieved at a � 0. For all n ¡ 2, Γn is not
monotonic. With bit more analysis we can show that Γn attains maxima for
a particular value of a P p0, 1q. This can be calculated by differentiating Γn

with respect to a.

d

da
pΓnq �

d

da
pφpnqγnq � φpnq

�
an �

n

2
a�

n

2
� 1



. (5)

We check that the expression an � n
2 a�

n
2 � 1 has only one real root in p0, 1q.

At that root, d2

da2 pΓ
nq � an�1� 1

2 is negative. Hence, for a given n, there is an
unique value of a such that Γn is maximum.
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Example 4. We plot Γn versus n for different values of a. In these plots, n is
varied from 2 to 14. These graphs (see Figure 1a to Figure 1e) show that as n
increases, the position of maxima for Γn increases too. This means, higher the
value of a, greater is the probability of occurrence of high period orbits. For
the same values of a, figures 1b to 1f shows the bifurcation diagrams. We note
that above results are validated by the bifurcation diagrams.

The graphs of Γn versus a, for different values of n, are plotted in figures
from 1g to 1i. In these plots, a is varied from 0.01 to 0.99. From these plots we
can see that Γ 2 is indeed a monotonically decreasing function. For vary small
values of a, Γ2 almost completely occupies the parameter line. For example,
when a � 0.1, Γ 2 � 0.818. For all n ¡ 2 is clear from the graphs that Γn is
not monotonic and the maxima attained varies as n changes.
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Fig. 1a. Graph showing Γn for different
values of n. a � 0.1

Fig. 1b. Bifurcation Diagram for a � b �
0.1
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Fig. 1c. Graph showing Γn for different
values of n. a � 0.5

Fig. 1d. Bifurcation Diagram for a � b �
0.5

2.3 Patterns Completely Span The Parameter Line µ

We know that Γn gives the total length occupied on the parameter line µ
corresponding to all the patterns of length n. We have shown that for a � b,
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Fig. 1e. Graph showing Γn for different
values of n. a � 0.9

Fig. 1f. Bifurcation Diagram for a � b �
0.9
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Fig. 1g. Graph showing
Γn for different values of
a. n � 2
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Fig. 1h. Graph showing
Γn for different values of
a. n � 3
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Fig. 1i. Graph showing
Γn for different values of
a. n � 7

Γn can be maximized by appropriately choosing the value of a. Now let the
total length occupied on the parameter line µ corresponding to all the possible
patterns be denoted by Γ . That is, Γ �

°8
n�2 Γ

n. The following lemma proves
that Γ � 1 and it completely spans the parameter line µ.

Lemma 1. For every µ P p0, 1q, there exists a pattern.

Proof. We know that PLnR � pσ1, σ2s �
�
an

Sa
n
, an�1

an�1b�Sa
n�1

�
and

PLn�1R � pσ11, σ
1
2s �

�
an�1

Sa
n�1

, an�2

an�2b�Sa
n�2

�
. Hence, for any arbitrarily given

µ P p0, 1q we can find an ‘n’ such that
Step 1: either µ P PLnR or µ P PLn�1R or σ2   µ   σ11.
For the first two cases the pattern exists as µ belongs to the range of existence
of a pattern. For the last case we proceed further by calculating PLnRLn�1R �
pσ21 , σ

2
2s. Now again we have three cases:

Step 2: either µ P PLnRLn�1R or σ2   µ   σ21 or σ22   µ   σ11.
For the first case the pattern exists as µ belongs to the range of existence of a
pattern. For the second case we again go to Step 1 but this time with PLnR
and PLnRLn�1R. Similarly for the third case we go to Step 1 with PLnRLn�1R
and PLn�1R. Without the loss of generality we assume the second case to be
true i.e. µ always lay in the left side partition or nearer to PLnR. Then, before
every time we take Step 2, we construct the new pattern of form pLnRqkLn�1R
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with k � 2, 3, 4 . . . With the help of generalized map method explained in [12]
this pattern can be written as L1kR1 where, L1 � LnR and R1 � Ln�1R.

This process is nothing but constructing a series of intervals PL1kR1 . This
series of intervals must converge at σ2. This is because, if it converges at
some other point (say σ̃1) then we get a finite length subinterval pσ2, σ̃1s. We
arbitrarily select any point from this interval (say µ̃). Now as we argued for
the case of PLnR, similar arguments can be made here i.e. we can select a large
enough k (since limits of PL1kR1 involve a and b with k in power) such that
PL1kR1 lies to the left of µ̃. This is contradiction to the earlier assumption that
series converges to σ̃. Hence, the series must converge to σ2.

3 Conclusions

In this paper we have analyzed the stable periodic orbits of the 1-D linear
piecewise-smooth discontinuous map with respect to change in the parameters.
We have analytically calculated the range of parameters for which period-n
orbits exist. The length of this range is considered as the probability of occur-
rence of period-n orbit. Further, we have shown that this probability can be
maximized by varying the parameter of the map and we prove that there exist
an unique value of this parameter such that this probability is maximum.
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