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Abstract. Erratic behaviour in the simulated current-voltage characteristics of cou-
pled intrinsic Josephson junctions, for certain ranges of the parameters, are observed
and are shown to be chaotic in origin. In order to demonstrate the chaotic origin of
the erratic behaviour, the Lyapunov exponents for the system are calculated. System
trajectories and their Poincaré maps are used to confirm the chaotic signature ob-
tained from the Lyapunov spectrum in certain ranges of the bias current, below the
break point current.
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1 Introduction

Systems of coupled intrinsic Josephson junctions (I1JJs) are prospective candi-
dates for the development of superconducting electronic devices [1]. Questions
about their dynamics are, for a variety of reasons, of great technological impor-
tance [2]. For example, systems of junctions can produce much greater power
output that a single junction and they also provide a model which may help
to elucidate the physics of high temperature superconductors (HTSC) [3,4].
The intrinsic Josephson effect (IJE) [5], i.e. tunneling of Cooper pairs between
superconducting layers inside of strongly anisotropic layered HTSC, provides a
further motivation for considering HTSC as stacks of coupled Josephson junc-
tions. The IJE also plays an important role in determining the current voltage
characteristics (CVC) of tunneling structures based on HT'SC and the proper-
ties of the vortex structures in these materials.

Although there has been a recent report on the hyperchaotic behaviour
of an array of two resistive-capacitive-inductive-shunted Josephson junctions
[6], the so-called RCLSJJ model [7], chaotic behaviour does not feature in
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the literature on other closely-related phenomenological models; such as, the
capacitively-coupled model (CCJJ) [8], the resistive-capacitive shunted model
(RCSJII) [5,9], or the CCIJ plus diffusion current (DC) model [10,11] of the
present work. One possible reason for the comparatively late discovery of chaos
in these systems may be that the (often subtle) chaotic features may have been
masked by numerical instability and added noise in simulations.

This paper is organized as follows. In Section 2 we present the CCJJ+DC
model and describe the numerical method used to calculate the Lyapunov ex-
ponents. In Section 3 we describe the observation of erratic behaviour in the
CVC, which led to the discovery of chaos in the model. In section 4 we demon-
strate that the erratic behaviour is chaotic in origin by looking as the Lyapunov
exponents, system trajectories and Poincaré maps. In Section 5 we conclude
that the erratic behaviour is chaotic in origin and that experimental investiga-
tions are required to ascertain whether this feature of the model is observable
in real systems that satisfy the assumptions of the CCJJ4+DC model. We also
suggest that further work could be done on developing methods for controlling
the observed chaos (hyperchaos) in this model.

2 Theory and simulation methods

2.1 The CCJJ+DC model

We solve the system of dynamical equations for the gauge-invariant phase dif-
ferences @y () = 041 () — Oy (1) — 3¢ ZZH dzA,(z,7) between superconducting
layers (S-layers), for stacks consisting of different numbers of 1JJs, within the
framework of the CCJJ+DC model [12,13]. In this model, 8, is the phase of
the order parameter in the ¢th S-layer and A, is the vector potential in the

insulating barrier. For a system of N junctions the equations are,
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where £ = 1,2,..., N and the matrix A contains coupling parameters such as

«. Note that A differs in form depending on whether periodic or non-periodic
boundary conditions (BCs) are used [14]. The dissipation parameter 3 is related
to the McCumber parameter (3. as 8 = 1/1/B.. For the purpose of numerical
simulations we make use of a dimensionless time parameter 7 = tw,, where
wp = /2el./(hC) is the plasma frequency, I. is the critical current and C is
the capacitance. We measure the DC voltage on each junction V; in units of
the characteristic voltage V. = hw,/(2e) and the bias current I in units of I..
The critical currents in these (series) systems can typically range from 1 to
1000 A, corresponding to voltages of RI. ~ 1mV across individual junctions.
Further details concerning this model can be found in Refs. [14,15]
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2.2 Calculation of Lyapunov exponents

The Lyapunov exponents of a nonlinear dynamical system provide a quantita-
tive measure of the degree of chaos inherent in the system, i.e. they quantify the
sensitivity of the system to changes in initial conditions [16]. Usually one Lya-
punov exponent is associated with each independent coordinate in the system.
The numerical value of this exponent then characterizes the long term average
exponential convergence (negative exponent) or divergence (positive exponent)
of that coordinate with respect to some arbitrarily small initial separation.

Although the calculation of the Lyapunov exponents is in principle straight
forward, in numerical calculations one has to guard against cumulative round-
off errors which occur because of the exponential manner in which the small
initial differences in coordinates may be amplified. Since real experimental
data sets are typically small and noisy, it has taken a sustained effort to de-
velop efficient algorithms for estimating the Lyapunov exponents associated
with chaotic data sets [17-20]. In the preset simulations, since the system
of Eqns. (1) and (2) are know in analytical form, we make use of the well-
known algorithm by Wolf et al. [17]. Unlike some other methods, which only
calculate the maximal Lyapunov exponent [21,22], the algorithm by Wolf et
al. calculates the full spectrum of Lyapunov exponents and thus allows one
to distinguish between chaotic attractors, which are characterised by only one
positive exponent, and hyperchaotic attractors, which is characterised by more
than one positive exponent.

In addition to Egs. (1) and (2), the algorithm by Wolf et al. requires
analytical expressions for the action of the system Jacobian J on an arbitrary
column vector x = (p1,p02,... ,<pN,V1,V2,...,VN)T in the (p,V) coordinate
space. For the present system the action of J on x is given by

ApuVi+ ApVo+ ...+ AinVn
A1 Vi + Ao Vo + ...+ Aasn Vi

ANiVi+ AnaVo+ ...+ AV

Jx = 3
x —pi1cospy — BAVE — ARV — ... = BAINVN 3)
—p2cos g — BAnVL — fA0Va — ... — BANVN
—pncospny — BAN1VI — BAN2V2 — ... — BANNVN

To calculate the Lyapunov exponents for a particular current I, we typically
used 30000 dimensionless time steps, with a step size of A7 = 0.2. In all
our calculations the number of steps and step size were chosen so that the
magnitude of the zero exponent always converged to a value which was at least
two orders of magnitude smaller than the magnitude of the smallest non-zero
exponent. A fifth-order Runge-Kutta integration scheme was used.

3 Observation of erratic behaviour in the CVC

Erratic behaviour was first observed in the simulated CVC for certain ranges of
parameter values. Figure 1 presents the simulated outermost branches in the
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CVC for a stack of nine IJJs. Here V is the sum of the time averaged voltages
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Fig. 1. Simulated outermost branches of the current voltage characteristics of an
array with nine 1JJ with @ = 1 and periodic boundary conditions (PBC). The curves
for four different values of 3 are shown. The break point of each curve has been
marked by a cross.

across each junction, i.e. V = (Vi) + (Vo) + ...+ (Vo), and I is bias current
through the stack. As explained in Section 2.1, V and I are in units of V, and
I, respectively. In Fig. 1 one can see the variation of the branch slope and
the breakpoint (marked by a cross), for the four different values of dissipation
parameter. As expected, the value of the break point current increases with
increasing (; however, for 0.1 < 8 < 0.4 the break point boarders on a so-called
break point region (BPR). In Fig. 1 this region can be clearly seen to the left
of the break points for the 5 = 0.2 and 8 = 0.3 curves. For these two values
of 3, erratic behaviour is observed to the left of each breakpoint. Initially this
erratic behaviour was thought to be numerical in origin; however, as we will
demonstrate in the next section, it is in fact chaotic.

4 Results and discussion

4.1 Demonstration of chaotic behaviour via Lyapunov exponents

Since we were unable to account for the observed erratic behaviour in terms of
numerical instability, we decided to check whether or not the system is chaotic
by calculating its Lyapunov exponents according to the method described in
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Fig. 2. Lyapunov exponents and CVC for a stack of seven 1JJs with periodic boundary
conditions.

Section 2.2. Typical results are shown in Fig. 2, for a stack of seven junc-
tions, using the PBC. Here the left vertical axis is for the Lyapunov exponents
(A1,...,A14), while the right vertical axis is for In(V') (red dashed curve). The
largest two Lyapunov exponents, A; and Ay (plotted in blue) both become
positive exactly over the range of currents for which the erratic behaviour in
V' was observed, indicating that this system is hyperchaotic within the range
0.5520 < I < 0.5570. In this range, as the current is decreased, A; and A
steadily increase, reaching their respective maxima of 0.052 and 0.031. At
I ~ 0.5520 the system makes an abrupt transition to one of the inner branches
of the CVC, over the range 0.5515 < I < 0.5520. For the inner branch there
is only one positive Lyapunov exponent (A1 = 0.075), which suggests that this
transition may be associated with a change in the dynamics of the system, from
hyperchaotic to chaotic. We have also performed other simulations at different
parameter values and for IV in the range 7-13, using both the PBC and NPBC.
In all cases, for which erratic behaviour in the CVC was observed, we found
either one or two positive Lyapunov exponent.

4.2 Comparison of system trajectories
To further verify that the observed behaviour is chaotic (hyperchaotic), we

also looked at the system trajectory for a variety of different parameter val-
ues and initial conditions. Our observations are consistent with the values
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obtained for the Lyapunov exponents. For example, Fig. 3 shows a projec-
tion onto the p3Vs-plane of two different trajectories corresponding to a nine
junction system (N = 9) with periodic boundary conditions and the param-
eters « = 1 and 8 = 0.2. Both trajectories correspond to the outer branch
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Fig. 3. A projection of two different system trajectories for a stack of nine 1JJs with
periodic boundary conditions. The solid red curve corresponds to a current above the
break point value and is quasi-periodic, while the dashed green curve corresponds to
a current below the break point, where the system is hyperchaotic.

of the CVC and have been integrated for 250 dimensionless time units. The
solid red trajectory appears to be quasi-periodic, corresponding to I = 0.5650
and zero maximal Lyapunov exponent. The dashed green trajectory is hyper-
chaotic, corresponding to I = 0.5575, with the three largest exponents given
by A1 = 0.035, A2 = 0.022 and A3 = 0.00005. In this figure the quasi-periodic
nature of the non-chaotic trajectory (solid red curve) is clearly discernible from
the hyperchaotic trajectory (dashed green curve).

4.3 Poincaré maps

To investigate further the differences between regular and chaotic regimes of the
system, several Poincaré maps were constructed. Figure 4 shows a comparison
of the maps for the trajectories described in Fig. 3. Here the intersection
of the V3Vy-projection of the trajectory with the plane V5 = 2.6 is shown.
Note the intersection is only from one side of the Vo = 2.6 plane, i.e. the
map was constructed by plotting the coordinates (Vs, Vy) for each intersection
point, defined by a change in V5 from Vo — 2.6 < 0 to 0 < Vo — 2.6, over one
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Fig. 4. Poincaré maps for the trajectories shown in Fig. 3. The intersection plane
is given by Vo = 2.6. The red pixels are for the intersection of the quasi-periodic
trajectory while the green pixels are for the intersection of the hyperchaotic trajectory.

integration step. In order to obtain the large number of intersection points
shown (between 8000 — 9000 in each case) both trajectories were integrated for
20000 dimensionless time units, using a step size of A7 = 0.025. The quasi-
periodic (hyperchaotic) behaviour of the red (green) trajectory is clearly visible,
in agreement with Fig 3 and the calculated values of the Lyapunov exponents.

5 Conclusions

We have demonstrated that the observed erratic behaviour in our simulations
of the CVC of coupled 1JJs within the CCJJ+DC model is chaotic in origin.
We have also shown that transitions can take place between hyperchaotic and
chaotic dynamics, as the system jumps from the outermost CVC branch to
inner branches. In this preliminary work we have not addressed many other
important physical aspects; such as, the influence of the number of junctions,
boundary conditions and charge correlations. A more detailed analysis of the
chaos is currently in preparation [23].

In future work it would be interesting to establish whether or not the ob-
served chaotic features in the present simulation are also experimentally ob-
servable in systems that satisfy the underlying assumptions of the CCJJ+DC
model. Perhaps further work could also be done on controlling and exploiting
(for technological use) the observed chaos (hyperchaos) in these systems.
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