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Abstract. An analysis is made of the hyperchaotic behaviour of a triple plane pen-
dulum. It is shown that there are only eight physically distinct equilibrium config-
urations for the pendulum and that the types of eigen solutions obtained, for the
Jacobian matrix evaluated at each equilibrium configuration, are independent of the
system parameters. A new method for extracting the periodic orbits of the system
is also developed. This method makes use of least-squares minimisation and could
possibly be applied to other non-linear dynamic systems. As an example of its use,
four periodic orbits, two of which are numerically unstable, are found. Time series
plots and Poincaré maps are constructed to investigate the periodic to hyperchaotic
transition that occurs for each unstable orbit.
Keywords: Triple pendulum; hyperchaos; fixed points; periodic orbits.

1 Introduction

The present work is motivated by recent interest in studying pendulum systems
for possible exploitation in various technological applications. There have been
a number of experimental and theoretical investigations aimed at understanding
the stability of human gait (manner of stepping) through the use of inverted
pendulum models [1,2]. Experimental investigations of either simple or coupled
electro-mechanically driven pendulums have been undertaken with the view of
developing more precise conditions for the onset of chaos in such systems [3,4].
Also, a triple pendulum suspension system has been developed to seismically
isolate optical components on the GEO 600 interferometric gravitational wave
detector [5]. The latter development has allowed the detector to achieve a
seismic noise sensitivity level which is well below the level from thermal noise.

Coupled pendulums with obstacles have been used to model real mechanical
systems that exhibit nonlinear phenomena such as resonances, jumps between
different system states, various continuous and discontinuous bifurcations, sym-
metry breaking and crisis bifurcations, pools of attractions, oscillatory-rotational
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attractors, etc. [6–9]. In Ref. [9], for example, it has been shown that a triple
pendulum model can provide insight into the real, highly-complicated dynamics
of a piston connecting-rod crankshaft system.

An experimental triple pendulum has been constructed by Awrejcewicz et
al. [10]. This pendulum has been analysed numerically and experimentally, and
good agreement has been obtained between the mathematical model and the
real system. In the present work, higher order effects that pertain to specific ex-
perimental systems, like [10], are neglected. For example, we have not included
finer details of the frictional forces that act on the joints of the pendulum, or
asymmetries in its driving mechanism. One of the motivating factors for ne-
glecting such higher order effects is the correspondence that exists between the
equations for a damped simple pendulum, driven by a constant torque, and the
well-known phenomenological model of a superconducting Josephson junction
[4,11]. It is thought that our somewhat simplified model of the triple pendu-
lum could, with minor modifications, serve as a useful mechanical analogy for
a series system of three resistively coupled Josephson junctions.

This paper is organised as follows. In Section 2, the basic model and equa-
tions are described. The system is linearised at its equilibria in Section 3. In
Section 4 a new method is developed for finding the periodic orbits of the sys-
tem, based on least-squares minimisation. Four examples of found periodic or-
bits are discussed, including their time series and Poincaré maps. In two of the
examples interesting periodic-hyperchaotic transitions are observed. Section 5
concludes with a discussion of the main advantages and possible disadvantages
of the new method.

2 Description of model and equations

The current work is a continuation of our previous work [12], in which a three-
dimensional animation of a model triple plane pendulum was created by using
the Visual module in the Python programming language [14]. As shown in Fig.
1, the model consists of a series of absolutely rigid bars which form the three
links of the pendulum (shown in red, green and blue). Additional point-like
masses are attached to the bottom of each link (shown as yellow cylindrical
disks).

Fig. 1. Visualisation of the triple plane
pendulum. The pendulum is made of
rigid bars (two of length `1, two of
length `2 and one of length `3) to which
point-like masses may be attached (two
of mass m1

2
, two of mass m2

2
and one of

mass m3). The pendulum is assumed
to be under the influence of gravity
(g = 9.81 ms−2) and in vacuum. Also
shown is the trajectory followed by the
centre of m3.
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The equations for the pendulum have been derived in a very general form
which allows each link in the pendulum to have an arbitrary moment of inertia
[8]. In the present work we consider the equations for a pendulum consisting
of three point masses, i.e. we neglect the moments of inertia of the three links
shown in Fig. 1. The equations for this special case are given in Appendix A
of Ref. [12] in the form,

dx

dt
= f (x, α, t) . (1)

In Eq. (1), α ≡ (m1,m2,m3, `1, `2, `3, c1, c2, c3), represents the system pa-
rameters, where c1−3 model the viscous damping in each joint. The vector
x ≡ (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3), where θ1−3 are the angles made between the vertical
and each of the three links.

3 Linearisation at the equilibria

The spatial distribution and local dynamical characteristics of the equilibria of
a system greatly influence its nonlinear dynamics. Since the un-damped pen-
dulum is conservative, having only time independent constraints, its equilibria
are defined by the vanishing of the generalised forces Qi [13], i.e. by,

Qi =
∂V

∂xi
= 0 (for i = 1, 2, 3) , (2)

where V (x1, x2, x3) = (m1 +m2 +m3) g`1 cosx1+(m2 +m3) g`2 cosx2+m3g`3 cosx3
is the potential energy. The solutions to Eq. (2) produce eight physically dis-
tinct equilibria, as shown in Fig. 2.

Fig. 2. The eight physically distinct equilibrium configurations of the pendulum.
Configurations (i) to (vii) are unstable. Configuration (viii) is stable.

To characterize the linearised dynamics of the system near each equilibrium,
we calculate the Jacobian matrix of the system and determine its eigenvalues
at the equilibria. The Jacobian matrix, evaluated at any of the equilibria, has
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the form

J =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

±J1 ±J2 0 0 0 0
±J3 ±J4 ±J5 0 0 0

0 ±J6 ±J7 0 0 0

 , (3)

where J1 = g (m1 +m2 +m3) / (`1m1), J2 = g (m2 +m3) / (`1m1), J3 =
g (m1 +m2 +m3) / (`2m1), J4 = g (m1 +m2) (m2 +m3) / (`2m1m2), J5 =
gm3/ (`2m2), J6 = g (m2 +m3) / (`3m2) and J7 = g (m2 +m3) / (`3m2). To
evaluate J at any particular equilibrium, the signs preceding J1−7 in Eq. (3)
must be chosen according to the convention given in Table 1.

Equilibrium config. J1 J2 J3 J4 J5 J6 J7

(i) (π, π, π, 0, 0, 0) + - - + - - +

(ii) (π, π, 0, 0, 0, 0) + - - + - + -

(iii) (π, 0, π, 0, 0, 0) + - + - + - +

(iv) (π, 0, 0, 0, 0, 0) + - + - + + -

(v) (0, π, π, 0, 0, 0) - + - + - - +

(vi) (0, π, 0, 0, 0, 0) - + - + - + -

(vii) (0, 0, π, 0, 0, 0) - + + - + - +

(viii) (0, 0, 0, 0, 0, 0) - + + - + + -

Table 1. The choice of signs pre-
ceding J1−7 in Eq. (3) for each
of the eight possible equilibrium
configurations listed in the left
hand column. These combina-
tions of signs should also be used
in the definitions of b, c and d in
Eq. (4).

The eigenvalues η of the Jacobian matrix were determined by solving the
characteristic equation det(J − η1) = 0, where 1 is the 6 × 6 identity matrix.
By choosing all the signs in Eq. (3) to be positive, we found the characteristic
equation,

0 = aη6 + bη4 + cη2 + d , (4)

where a = 1, b = J1J4J7−J1J5J6−J2J3J7, c = J1J4−J2J3−J1J7−J4J7+J5J6
and d = J7−J1−J4. In the expressions for b, c and d the correct combination
of signs, for a particular equilibrium, must once again be chosen from Table
1. For example, for the second equilibrium, row (ii) in Table 1, one obtains
d = (−) J7 − (+) J1 − (+) J4.

Since Eq. (4) is a cubic polynomial in η2, its solutions could be written al-
gebraically [15]. The discriminant of each eigen solution was then used to prove
that the type of solution associated with a particular equilibrium configuration
is independent of the system parameters. These results are presented in Table
2. To present the complete analysis of the fixed points associated with each
equilibrium in Table 2 is beyond the scope of the present article. Briefly, our
analysis reveals that (i) to (vii) may be associated with various types of saddle
points (depending on the parameter values) and that (viii) will always remain
a nonlinear centre.
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Table 2. The various types of eigenvalues obtained by solving Eq. (4) at each of the
eight possible equilibrium configurations.

Equilibrium config. Stability Eigenvalues of J

(i) (π, π, π, 0, 0, 0) unstable all real

(ii) (π, π, 0, 0, 0, 0) unstable 4 real, 2 imaginary

(iii) (π, 0, π, 0, 0, 0) unstable 4 real, 2 imaginary

(iv) (π, 0, 0, 0, 0, 0) unstable 2 real, 4 imaginary

(v) (0, π, π, 0, 0, 0) unstable 4 real, 2 imaginary

(vi) (0, π, 0, 0, 0, 0) unstable 2 real, 4 imaginary

(vii) (0, 0, π, 0, 0, 0) unstable 2 real, 4 imaginary

(viii) (0, 0, 0, 0, 0, 0) stable all imaginary

4 New method for locating periodic orbits

Knowledge of the periodic orbits and their stability is an important aspect of
understanding chaotic systems and therefore a great deal of research has already
gone into developing more efficient methods for discovering the periodic orbits
and periods of non-linear dynamic systems. See, for example, Refs. [16–18],
and references therein. In this section we will develop a new method for finding
the periodic orbits by making use of the Levenberg-Marquardt algorithm for
least-squares estimation of nonlinear parameters [19].

Assume that the system has a periodic orbit with principle period T . As
pointed out by Li and Xu [17], it is convenient to use T as one of the optimi-
sation parameters. We therefore re-write Eq. (1) in terms of a dimensionless
time parameter τ , by setting t = Tτ . This substitution produces the equivalent
equation,

dx

dτ
= T f (x, α, T τ) . (5)

Since τ is measured in units of T , Eq. (5) has the advantage that it can be
integrated over exactly one period, by letting τ run from zero to one.

In order to search for periodic orbits we define the residual (error vector),

R = (x (1) − x (0) , x (1 +∆τ) − x (∆τ) , . . . , x (1 + n∆τ) − x (n∆τ)) , (6)

where ∆τ is the integration step size. In Eq. (6), n is an integer which must be
chosen large enough to ensure that R has a greater number of components than
the number of quantities which are to be optimised simultaneously. This choice
is required by the Levenberg-Marquardt algorithm, which is used to locate the
global minimum in R (note that R = 0 for periodic orbits). In the case of the
un-damped pendulum, for example, if all possible quantities are to be optimised
simultaneously, i.e. six initial conditions, plus six parameters, plus the period
(13 quantities); then one must choose n ≥ 2. The smallest possible choice for
this case is n = 2, which produces a residual with 6(n + 1) = 18 components
(see Eq. 6).

The definition of R requires the system to be integrated from τ = 0 to
τ = 1 + n∆τ . In the present work we have used a fourth-order Runge-Kutta
integration scheme with n = 3 and ∆τ = 1/N , where N = 2000. We have
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implemented the method in the Python programming language [14]. The mod-
ule Scipy.optimize contains the function leastsq, which makes use of a modified
Levenberg-Marquardt algorithm [20].

When applied to the triple pendulum, the method produces a surprisingly
large number of (numerically) stable and unstable periodic orbits. Many of
the found orbits at first appear to be qualitatively similar (when viewed on
a screen), but are in fact quantitatively different, when studied numerically.
In Fig. 3 we have plotted four examples of different periodic orbits that were
found. Figure 3 (a) shows a stable symmetric orbit of period T = 3.0363595 s.

Fig. 3. Four different periodic orbits followed by the centre of m3, i.e. here Y =
−`1 cosx1 − `2 cosx2 − `3 cosx3 is plotted against X = `1 sinx1 + `2 sinx2 + `3 sinx3,
for the first 10 s. (a) Symmetric and stable. (b) Broken-symmetric and stable. (c)
Broken-symmetric and unstable. (d) Symmetric and unstable. The colour of each
orbit represents the speed of m3 in the range zero (red) to 2 ms−1 (blue).

One point on the orbit is (−0.20813379, −0.47019033, 0.80253405, −4.0363589,
4.42470966, 8.3046730), with the parameters
m1−3 = 0.1 kg, `1 = 0.15 m and `2−3 = 0.1 m. Figure 3 (b) shows a stable
broken-symmetric orbit of period T = 2.78866884 s. One point on the orbit is
(−0.22395671, 0.47832902, 0.22100014, −1.47138911, 1.29229544, −0.27559337),
with the parameters m1 = 0.1 kg, m2 = 0.2 kg, m3 = 0.1 kg, `1 = 0.15 m,
`2 = 0.2 m and `3 = 0.3 m. The Lyapunov exponents for the orbits shown in
Figs. 3 (a) and (b) confirm that the orbits are periodic.

Figure 3 (c) shows an unstable broken-symmetric orbit of period
T = 3.23387189 s. One point on the orbit is (−0.78539816, 0.79865905, 0.72867705,
0.74762606, 2.56473963, −2.05903234), with the parameters
m1 = 0.35 kg, m2 = 0.2 kg, m3 = 0.3 kg, `1 = 0.3 m, `2 = 0.2 m and `3 =
0.25 m. The Lyapunov exponents, sampled every 0.0005 s for 2000 s, confirm
that this orbit is hyperchaotic, with λ1 = 0.90, λ2 = 0.19 and λ3 = 0.002.
Figure 3 (d) shows an unstable symmetric orbit of period T = 3.44620156 s.
One point on the orbit is (1.30564176, 1.87626915, 1.13990186, 0.75140557,
1.65979939, −2.31442362), with the parameters m1 = 0.35 kg, m2 = 0.2 kg,
m3 = 0.3 kg, `1 = 0.3 m, `2 = 0.2 m and `3 = 0.25 m. The Lyapunov exponents,
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sampled every 0.0005 s for 2000 s, confirm that the orbit is also hyperchaotic,
with λ1 = 2.95, λ2 = 1.10 and λ3 = 0.004.

To investigate the rapid transition that occurs from periodic to hyperchaotic
the time series and Poincaré maps of each orbit have been studied. Figure 4(a)
shows the time series of x6 for each of the four orbits.

Fig. 4. (a) Time series of x6 for the orbits discussed in connection with Figs. 3 (a)
magenta (top), (b) red, (c) green and (d) blue (bottom). (b) The corresponding
Poincaré maps. Parameter values and initial conditions are as for Fig. 3.

The corresponding Poincaré maps, shown in Fig. 4 (b), were constructed
by sampling the trajectories every 0.001 s, for 100 s. For this relatively short
time interval the periodic parts of the two unstable orbits are still clearly visible
within the surrounding (so-called) stochastic layer that is thought to replace
the region of destroyed separatrices [21].

5 Discussion and conclusion

The equations for a triple plane pendulum, consisting of three point masses
connected by massless links, have been analysed. It was shown that there
are only eight physically distinct equilibrium configurations for the pendulum
and that the type of eigen solutions obtained for the linearised system at each
equilibrium is independent of the system parameter values. A new method
for extracting the periodic orbits of the system was also developed. The new
method exploits the high-efficiency of the modified Levenberg-Marquardt al-
gorithm. It is simple to implement and does not require the computation of
the Jacobian matrix. In addition, the minimisation algorithm may easily be
constrained in order to restrict the search to specific regions of the phase space;
for example, to a constant energy surface. One possible disadvantage of the
method is that it does not discriminate between unstable and stable periodic
orbits. However, this aspect of the method may in fact be an important ad-
vantage, since it enables the method to be used for studying the coexistence of
both regions of stable dynamics and hyperchoas within the phase space.
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