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A lot of papers are devoted to development of constructive methods for the
analysis of different classes of boundary value problems. They traditionally oc-
cupy one of the central places in the qualitative theory of differential equations.
This is due to practical significance of the theory of boundary-value problems
for various applications - theory of nonlinear oscillations, theory of stability of
motion, control theory and numerous problems in radioengineering, mechanics,
biology etc.

Correct and incorrect boundary value problems are studied. Ususally cor-
rectness is understood as uniqueness of the solution for arbitrary right-hand
side of the equation. Correct boundary value problems for ordinary differen-
tial equations, impulsive systems, Noether operator equations became popular
relatively recently, they were studied in detail [5]. Analysis of a large class of
incorrect boundary value problems was associated with the properties of the
generalized inverse operator (which exists for any linear operator in a finite
dimensional space).

Efforts aimed to solving problem of the existence of bounded solutions of
linear differential equations are mainly devoted to the correct case. Additional
boundary conditions can be full filled only in a trivial situations for such prob-
lems. After Palmer’s work [2] it became clear that in the general case, even
a finite set of differential equations can not have one bounded solution, and it
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makes sense to study the boundary value problem in the incorrect case. Us-
ing the pseudoinverse operators approach one can obtain the conditions under
which a family of bounded solutions satisfying the supplementary boundary
conditions can be identified.

1 Statement of the Problem

In a Banach space X we consider a boundary value problem

dx

dt
= A(t)x(t) + f(t) , (1)

lx(·) = α , (2)

where the vector - function f(t) acts from R into the Banach space X,

f(t) ∈ BC(R,X) := {f(·) : R→ X, f(·) ∈ C(R,X), |||f ||| = sup
t∈R
‖f(t)‖ <∞},

BC(R,X) is the Banach space of functions continuous and bounded on R; the
operator-valued function A(t) is strongly continuous with the norm |||A||| =
supt∈R ||A(t)|| < +∞; BC1(R,X) := {x(·) : R → X, x(·) ∈ C1(R,X), |||x||| =
sup
t∈R
{‖x(t)‖, ‖x1(t)‖} <∞}, - the space of functions continuously differentiable

on R and bounded together with their derivatives; l - linear and bounded
operator acts from the space of BC1(R,X) into the Banach space Y. We
determine the conditions of the existence of solutions x(·) ∈ BC1(R,B) of
boundary value problem (1), (2) under the assumption that the corresponding
homogeneous equation

dx

dt
= A(t)x(t) (3)

admits an exponential dichotomy [1–3] on the semi-axes R+ and R− with
projectors P and Q, respectively, i.e., there exist projectors P (P 2 = P ) and
Q(Q2 = Q) and constants k1,2 ≥ 1 and α1,2 > 0 such that the estimates{ ∥∥U(t)PU−1(s)

∥∥ ≤ k1e−α1(t−s), t ≥ s,∥∥U(t)(E − P )U−1(s)
∥∥ ≤ k1eα1(t−s), s ≥ t, for all t, s ∈ R+,

and { ∥∥U(t)QU−1(s)
∥∥ ≤ k2e−α2(t−s), t ≥ s,∥∥U(t)(E −Q)U−1(s)

∥∥ ≤ k2eα2(t−s), s ≥ t, for all t, s ∈ R−

hold, where U(t) = U(t, 0) is the evolution operator of Eq. (3) such that

dU(t)

dt
= A(t)U(t), U(0) = E is the identity operator [1, p.145] .
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2 Preliminaries

Now we formulate the following result, which is proved in [4] for the nonhomo-
geneous equation (1).
Theorem 1. Suppose that the homogeneous equation (3) admits an exponential
dichotomy on the semi-axes R+ and R− with projectors P and Q, respectively.
If the operator

D = P − (E −Q) : X→ X (4)

acting from the Banach space X onto itself is invertible in the generalized sense
[5, p.26], then

(i) in order that solutions of Eq. (1) bounded on the entire real axis exist,
it is necessary and sufficient that the function f(t) ∈ BC(R,X) satisfies the
condition

+∞∫
−∞

H(t) f(t) dt = 0; (5)

where
H(t) = PN(D∗)QU

−1(t) = PN(D∗)(E − P )U−1(t),

(ii) under condition (5), solutions bounded on the entire axis of Eq. (1) have
the form

x(t, c) = U(t)PPN(D)c+ (G[f ])(t), ∀ c ∈ X, (6)

where

(G[f ])(t) = U(t)



t∫
0

PU−1(s)f(s) ds−
∞∫
t

(E − P )U−1(s)f(s) ds+

+PD−
[∞∫

0

(E − P )U−1(s)f(s) ds +
0∫
−∞

QU−1(s)f(s)ds

]
, t ≥ 0,

t∫
−∞

QU−1(s)f(s) ds−
0∫
t

(E −Q)U−1(s)f(s) ds+

+(E −Q)D−
[∞∫

0

(E − P )U−1(s)f(s) ds+
0∫
−∞

QU−1(s)f(s) ds

]
, t ≤ 0

(7)

is the generalized Green operator of the problem for solutions bounded on the
entire axis, D− - is the generalized inverse of D , mathcalPN(D) = E −D−D
and PN(D∗) = E −DD− , c is an arbitrary constant element of the Banach
space X.

3 Main result

We now show that under condition from the theorem 1, the boundary value
problem can be solved using the operator B0 = lU(·)PPN(D) : X→ Y.

Theorem 2. Let’s conditions from the theorem 1 are satisfied. If the
operator

B0 : X −→ Y
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acting from the Banach space X into the Banach space Y is invertible in the
generalized sense, then

(i) in order that solutions of boundary value problem (1), (2) exist, it is
necessary and sufficient that

PN(B∗0 )
(α− l((G[f ])(·))) = 0 ; (8)

(ii) under condition (8) solutions of boundary value problem (1), (2) have
the form

x(t, c) = U(t)PPN(D)PN(B0)c+U(t)PPN(D)B
−
0 (α−l(G[f ])(·))+(G[f ])(t),∀c ∈ X,

where (G[f ])(·) - is generalized Green operator defined below; B−0 - is gener-
alized inverse of B0, PN(B∗0 )

- projector, which project X onto the kernel of
adjoint operator B∗0 .

Proof. From the theorem 1, we have that the family of bounded solutions of
the equation (1) has the form x(t, c) = U(t)PPN(D)c+(G[f ])(t). We substitute
this solutions to the equation (2):

l(U(·)PPN(D)c+ (G[f ])(·)) = α.

Since the operator l is linear we have :

l(U(·)PPN(D))c+ l((G[f ])(·)) = α,

and we have finally the operator equation :

B0c = α− l((G[f ])(·)).

Since operator B0 is invertible in the generalized sence , then in order that so-
lutions of the boundary value problem (1),(2) exist it is necessary and sufficient
[5] that

PN(B∗0 )
(α− l((G[f ])(·))) = 0.

If this condition is satisfied, then

c = PN(B0)c+B−0 (α− l((G[f ])(·))), ∀c ∈ X.

Then the family of bounded solutions of the boundary value problem (1), (2)
has the form:

x(t, c) = U(t)PPN(D)PN(B0)c+ U(t)PPN(D)B
−
0 (α− l((G[f ])(·))) + (G[f ])(t)

Remark. If Y = X×X, lx = (x(+∞), x(−∞)) = (α, α) ∈ X×X, where α
- equilibrium point of (1), then all bounded solutions of boundary value problem
(1), (2) are homoclinic paths [6].
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4 Examples

1. We now illustrate the assertions proved above. Consider the next boundary
value problem

dx

dt
= A(t)x(t) + f(t), (9)

lx(·) = x(b)− x(a) = α, (10)

where A(t) - is operator in the form of a countably-dimensional matrix that,
for every real value t, acts on the Banach space B = lp, p ∈ [1; +∞) and

x(t) = col{x1(t), x2(t), . . . xk(t), . . .} ∈ BC1(R, lp),

f(t) = col{f1(t), f2(t), . . . , fk(t), . . .} ∈ BC(R, lp)

- are countable vector - columns; a, b ∈ R, b > 0, a < 0;

α = col{α1, α2, . . . , αk, . . .} ∈ lp

- constant vector (αi ∈ R, i ∈ N).
Consider boundary value problem (9), (10) with the operator

A(t) =



k︷ ︸︸ ︷
th t 0 0 . . . . . .

0 th t 0 . . . . . .
. . . . . . . . . . . . . . .

0 0 th t . . . . . .
0 0 0 − th t . . .
. . . . . . . . . . . . . . .


: lp → lp. (11)

The evolution operator of system (9), (11) has the form:

U(t) =



k︷ ︸︸ ︷
(et + e−t)/2 0 0 . . . . . .

0 (et + e−t)/2 0 . . . . . .
. . . . . . . . . . . . . . .
0 0 (et + e−t)/2 . . . . . .
0 0 0 2/(et + e−t) . . .
. . . . . . . . . . . . . . .


;

The operator inverse to U(t) has the form

U−1(t) =



k︷ ︸︸ ︷
2/(et + e−t) 0 0 . . . . . .

0 2/(et + e−t) 0 . . . . . .
. . . . . . . . . . . . . . .
0 0 2/(et + e−t) . . . . . .
0 0 0 (et + e−t)/2 . . .
. . . . . . . . . . . . . . .


;
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and the corresponding homogeneous system is exponentially - dichotmous on
both semi-axes R+ and R− with the projectors

P =



k︷ ︸︸ ︷
0 0 . . . . . .
. . . . . . . . . . . .
0 0 . . . . . .
0 0 1 . . .
0 0 0 . . .
. . . . . . . . . . . .


and Q =



k︷ ︸︸ ︷
1 0 . . . . . .
. . . . . . . . . . . .
0 . . . 1 . . .
0 0 0 . . .
0 0 0 . . .
. . . . . . . . . . . .


, respectively. Thus, we have

D = P − (E −Q) = 0, PN(D) = PN(D∗) = E.

Since dimR[PN(D∗)Q] = k, then operator PN(D∗)Q is finite-dimensional:

H(t) = [PN(D∗)Q]U−1(t) =



k︷ ︸︸ ︷
1 0 . . . . . .
. . . . . . . . . . . .
0 . . . 1 . . .
0 0 0 . . .
0 0 0 . . .
. . . . . . . . . . . .


U−1(t) = diag{Hk(t), 0},

where

Hk(t) =

 2/(et + e−t) . . . 0
...

. . .
...

0 . . . 2/(et + e−t)

 is a k × k − dimensional matrix .

According theorem 1, for the existence of solutions of system (9), (11) bounded
on the entire axis, it is necessary and sufficient that following conditions be
satisfied: ∫ +∞

−∞
Hk(t)f(t)dt = 0 ⇔


∫ +∞
−∞

f1(t)
et+e−t dt = 0

. . .∫ +∞
−∞

fk(t)
et+e−t dt = 0.

(12)

Thus, in order that system (3), (11) have solutions bounded on the entire
axis, it is necessary and sufficient that exactly k conditions be satisfied; the other
functions fi(t) for all i ≥ k+1 can be taken arbitrary from the class BC(R, lp).
Moreover, system (3), (11) has countably many linearly independent bounded
solutions. For example, as a vector function f from the class BC(R, lp), one can
take an arbitrary vector function whose first k components are odd functions.

For solving boundary value problem we find the matrix B0 :

B0 = lU(·)PPN(D) = U(b)PPN(D) − U(a)PPN(D),
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and finally

B0 =



k︷ ︸︸ ︷
0 0 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 . . . . . . . . .
0 . . . 0 cha−chb

cha·chb . . . . . .
0 . . . 0 . . . cha−chb

cha·chb . . .
. . . . . . . . . . . . . . . . . .


: lp → lp.

Since a 6= b then operator PN(B∗0 )
have the form :

PN(B∗0 )
=



k︷ ︸︸ ︷
1 0 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 1 . . . . . . . . .
0 . . . 0 0 . . . . . .
0 . . . 0 . . . 0 . . .
. . . . . . . . . . . . . . . . . .


: lq → lq (1/p+ 1/q = 1),

and

G[f ](b)−G[f ](a) =



−
∫ a
−∞

2f1(s)
es+e−s ds−

∫ +∞
b

2f1(s)
es+e−s ds

. . .

−
∫ a
−∞

2fk(s)
es+e−s ds−

∫ +∞
b

2fk(s)
es+e−s ds

1
2

∫ b
a

(es + e−s)fk+1(s)ds
. . .


.

PN(B∗0 )
(α− l(G[f ])(·)) = 0 ⇔


∫ a
−∞

2f1(s)
es+e−s ds+

∫ +∞
b

2f1(s)
es+e−s ds = −α1

. . .∫ a
−∞

2fk(s)
es+e−s ds+

∫ +∞
b

2fk(s)
es+e−s ds = −αk.

(13)
Thus, according to Theorem 2, boundary value problem (9), (10), (11) pos-

sesses at least one solution bounded on R if and only if the vector-function f
satisfies conditions (12), (13).

2.Consider one-dimensional boundary value problem

dx(t)

dt
= −tht x(t) + f(t),

lx = (x(+∞), x(−∞)) = (α1, α2) ∈ R2. (14)

a) let f(t) = 2e−t

et+e−t and (α1, α2) = (0,−2). The set of bounded solutions
which satisfy boundary condition (14) have the form:

x(t, c) =
2

et + e−t
c− 2e−t

et + e−t
+

2

et + e−t
, for all c ∈ R.

Integral curves for different values of the parameter c are shown in Figure 1.
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Fig. 1. Integral curves for different values of the parameter c

b) let f(t) = 2 tht and (α1, α2) = (2, 2). In this case equation (1) has
equilibrium solution x0(t) = 2 and a set of homoclinic paths have the next
form:

x(t, c) =
2

et + e−t
c+ 2− 4

et + e−t
, for all c ∈ R.

Integral curves for different values of the parameter c are shown in Figure 2.

Fig. 2. Integral curves for different values of the parameter c

3. Consider two-dimensional boundary value problem

dx1(t)

dt
= −tht x1(t) + f1(t),

dx2(t)

dt
= −tht x2(t) + f2(t),

l(x1, x2) = (x1(+∞), x1(−∞), x2(+∞), x2(−∞)) = (α1, α2, α3, α4) = (0,−2, 2, 2) ∈ R4,

where f1(t) = 2e−t

et+e−t , f2(t) = 2 tht (direct product of examples 2a, 2b). This
problem has a two-parametric family of bounded solutions

x1(t, c1) = 2
et+e−t c1 − 2e−t

et+e−t + 2
et+e−t ,

x2(t, c2) = 2
et+e−t c2 + 2− 4

et+e−t ,

for all c1, c2 ∈ R.

The phase portrait of this system is shown for different parameters in Figure 3
(in plane x1, x2).

We see that the portrait resembles a horseshoe.
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Fig. 3. The phase portrait of system
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Abstract. In this paper we analyze the stable periodic orbits existing in the 1-D lin-
ear piecewise-smooth discontinuous map with respect to variations in the parameters
of the map. We analytically show how to calculate the range of parameter µ such that
the orbits of specific periodicity can exist. Moreover, for a given period, the relation
between the probability of occurrence of orbits of that period and the corresponding
length of range of µ is established. Further, we show that this probability can be
maximized by varying the parameter of the map. We prove that there exist a unique
value of this parameter such that this probability is maximum. We provide diagrams
generated by numerical simulations to illustrate these results and to depict the effects
of variations in the parameters of the map on the ranges of existence of orbits.
Keywords: Border collision bifurcation, piecewise-smooth, discontinuous map, pe-
riodic orbit.

1 Introduction

Piecewise-smooth dynamical systems are being extensively studied over the last
decade because of their applications in various fields like electrical engineering,
physics, economics etc. Examples are DC-DC converters in discontinuous mode
[1,2], impact oscillators [3], economic models [4] etc. One of the major reasons
for interest in piecewise-smooth systems is the existence of a phenomenon,
unique to such systems, called border collision bifurcation. Though this term
was coined by Nusse [5] in 1992, the phenomenon was earlier reported by Feigin
[6] in 70’s.

The 1-D linear piecewise-smooth discontinuous map is defined as [7]:

xn�1 � fpxn, a, b, µ, lq �

"
axn � µ for xn ¤ 0
bxn � µ� l for xn ¡ 0

(1)

Over the last decade, several authors have published the analytical as well as
numerical work which analyzes the 1-D piecewise-smooth discontinuous map
in detail [8–11]. Recently in [12] it was shown that exactly φpnq stable periodic
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orbits exist in the map given by Equation (1) when a, b P p0, 1q, l � �1 and
µ P p0, 1q; where n is the period and φ is Euler’s number. In this paper we
extend this analysis to investigate the effect of variation in parameters a, b and
n on the range of existence of periodic orbits.

1.1 Notation

Let L :� p�8, 0s (the closed left half plane) and R :� p0, 8q (the open right
half plane). Given a particular sequence of points txnun¥0 through which the
system evolves, one can convert this sequence into a sequence of Ls and Rs by
indicating which of the two sets (L or R) the corresponding point belongs to.
Since a periodic orbit has a string of Ls and R that keeps repeating, we call
this repeating string, a pattern and denote it by σ. The length of the string
σ is denoted by |σ| and gives the number of symbols in the pattern i.e., the
period of the orbit. The range of existence of this pattern σ is denoted by
Pσ � pp1, p02s where p2 and p1 are the upper and the lower limits respectively.
The sum of geometric series 1� k � k2 � � � � � kn is denoted by Skn.

1.2 Preliminaries

Definition 1. A pattern σ is termed admissible if Pσ � H.

Definition 2. If a pattern consists of a single chain of consecutive Ls followed
by a singleton R then it called an L-prime pattern. Similarly, if a pattern
consists of a single chain of consecutive Rs followed by a singleton L then it
called an R-prime pattern. Together, we call them prime patterns.

Example 1. LnR is a L-prime pattern and LRn is a R-prime pattern. LR is
both L-prime as well as R-prime.

Definition 3. A pattern made up of two or more prime patterns is called a
composite pattern.

Example 2. LLLRLLR is a composite pattern as it is made of two prime
patterns namely LLLR and LLR.

Remark 1. Some authors use the term maximal or principal to describe prime
pattern [13].

Recall that the range of existence of an orbit is denoted by Pσ. We illustrate
with an example how to calculate Pσ.

Example 3. Consider a pattern LLR which means: x0, x1 ¤ 0, x1 ¡ 0 and
x3 � x0. Using Equation (1) these inequalities can be rewritten as:

x0 ¤ 0,

x1 � ax0 � µ ¤ 0,

x2 � a2x0 � pa� 1qµ ¡ 0,

x3 � x0 � a2bx0 � pab� b� 1qµ� 1 ñ x0 �
pab� b� 1qµ� 1

1� a2b
.
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Substituting the value of x0 in x1 and x2 we get:

x1 � a
� pab� b� 1qµ� 1

1� a2b

	
� µ ¤ 0,

x2 � a2
� pab� b� 1qµ� 1

1� a2b

	
� pa� 1qµ ¡ 0.

After simplification we get:

µ ¡
a2

a2 � a� 1
,

µ ¤
a

ab� a� 1
.

Hence, PLLR �
�

a2

a2�a�1 ,
a

ab�a�1

�
.

In a similar way we can find the range of existence (Pσ) for the prime
patterns LnR and LRn for any n ¥ 2. The method is explained in detail in
[12]. We directly use the formulas from [12] here:

PLnR �

�
an

Sa
n

,
an�1

an�1b � Sa
n�1

�
(2)

and

PLRn �

�
abn�1 � Sb

n�2

abn�1 � Sb
n�1

,
Sb

n�1

Sb
n

�
. (3)

1.3 Characterization of Patterns

We have seen earlier that the prime patterns are admissible and the range of
existence of prime patterns is given by Equations (2) and (3). The immediate
question is other than prime patterns, which type of patterns are admissible? It
is shown in [12] that only specific type of patterns are admissible. For example,
it is shown that admissible patterns can not contain consecutive chain of Ls
and Rs simultaneously. Moreover, admissible composite patterns are always
made up of exactly two prime patterns of successive lengths. Further, it is
shown that these results lead to the final conclusion that exactly φpnq number
of distinct patterns are admissible for a given n.

For a given n, the algorithm to generate the φpnq patterns and to calculate
the range of existence of these patterns is discussed in detail in [12]. We now
extend this analysis to find out the effects of variations in parameters on the
range of existence of patterns.

2 Effects of Variations in Parameters on The Range of
Existence of Patterns

In this section we analyze the effects of variations in parameters a, b and n on
the range of existence of patterns. Recall that the range of existence of pattern
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σ is expressed as Pσ � pp1, p2s. Let the length occupied on the parameter
line µ corresponding to the ith pattern of length n is denoted by Γni . That is,
Γni � p2 � p1. Let the total length occupied corresponding to all the patterns

of length n is denoted by Γn. That is, Γn �
°φpnq
i�1 Γni . We now find out the

expression for Γn. In this paper we consider the case of a � b.
Consider the pattern of length N � n�1. We substitute a � b in Equations

(2) and (3) to get:

PLnR �
�
an

Sa
n
, a

n�1

Sa
n

�
and PLRn �

�
an�Sa

n�2

Sa
n

,
Sa
n�1

Sa
n

�
.

Note that ΓNPLnR
� ΓNPLRn � an�1p1�aq

Sa
n

. We denote it by γN . Since, for a � b

the map becomes symmetric, all the patterns of length N have ΓNi � γN .

This gives ΓN �
°φpNq
i�1 ΓNi � φpNqγN . Substituting for γN and N we get

Γn�1 � φpn � 1qa
n�1p1�aq
Sa
n

� φpn � 1qa
n�1p1�aq2

1�an�1 . For consistency, we use the

formula for n which is:

Γn � φpnqγn � φpnq
an�2p1� aq2

1� an
. (4)

From the above equation it is clear that Γn depends on the parameters a and n.
Recall that Γn is the length of range of existence of patterns as defined earlier.
Hence, any change in Γn due to the variations in a and n can be interpreted
as the effect on the range of existence of patterns.

2.1 Probability of Occurrence of a Pattern

We have seen that the total length occupied on the parameter line µ correspond-
ing to all the patterns of length n is expressed by Γn. We know µ P p0, 1q.
This leads us to the question: for a randomly selected µ from the set p0, 1q,
what is the probability that it corresponds to a pattern of length n? Since
µ P p0, 1q, the total length of the parameter line is unity and Γn is the total
length occupied on parameter line µ corresponding to all the patterns of length
n. Hence, the probability of occurrence of a pattern of length n is Γn. The
Equation (4) gives the formula for this probability in terms of a and n.

2.2 Maximizing the Probability of Occurrence of a Pattern

For n � 2, Γ 2 � 1�a
1�a and a P p0, 1q. Clearly, it is a monotonically decreasing

function. Hence, the suprimum is achieved at a � 0. For all n ¡ 2, Γn is not
monotonic. With bit more analysis we can show that Γn attains maxima for
a particular value of a P p0, 1q. This can be calculated by differentiating Γn

with respect to a.

d

da
pΓnq �

d

da
pφpnqγnq � φpnq

�
an �

n

2
a�

n

2
� 1



. (5)

We check that the expression an � n
2 a�

n
2 � 1 has only one real root in p0, 1q.

At that root, d2

da2 pΓ
nq � an�1� 1

2 is negative. Hence, for a given n, there is an
unique value of a such that Γn is maximum.
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Example 4. We plot Γn versus n for different values of a. In these plots, n is
varied from 2 to 14. These graphs (see Figure 1a to Figure 1e) show that as n
increases, the position of maxima for Γn increases too. This means, higher the
value of a, greater is the probability of occurrence of high period orbits. For
the same values of a, figures 1b to 1f shows the bifurcation diagrams. We note
that above results are validated by the bifurcation diagrams.

The graphs of Γn versus a, for different values of n, are plotted in figures
from 1g to 1i. In these plots, a is varied from 0.01 to 0.99. From these plots we
can see that Γ 2 is indeed a monotonically decreasing function. For vary small
values of a, Γ2 almost completely occupies the parameter line. For example,
when a � 0.1, Γ 2 � 0.818. For all n ¡ 2 is clear from the graphs that Γn is
not monotonic and the maxima attained varies as n changes.
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Fig. 1a. Graph showing Γn for different
values of n. a � 0.1

Fig. 1b. Bifurcation Diagram for a � b �
0.1
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Fig. 1c. Graph showing Γn for different
values of n. a � 0.5

Fig. 1d. Bifurcation Diagram for a � b �
0.5

2.3 Patterns Completely Span The Parameter Line µ

We know that Γn gives the total length occupied on the parameter line µ
corresponding to all the patterns of length n. We have shown that for a � b,
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Fig. 1e. Graph showing Γn for different
values of n. a � 0.9

Fig. 1f. Bifurcation Diagram for a � b �
0.9
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Fig. 1g. Graph showing
Γn for different values of
a. n � 2
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Fig. 1h. Graph showing
Γn for different values of
a. n � 3
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Fig. 1i. Graph showing
Γn for different values of
a. n � 7

Γn can be maximized by appropriately choosing the value of a. Now let the
total length occupied on the parameter line µ corresponding to all the possible
patterns be denoted by Γ . That is, Γ �

°8
n�2 Γ

n. The following lemma proves
that Γ � 1 and it completely spans the parameter line µ.

Lemma 1. For every µ P p0, 1q, there exists a pattern.

Proof. We know that PLnR � pσ1, σ2s �
�
an

Sa
n
, an�1

an�1b�Sa
n�1

�
and

PLn�1R � pσ11, σ
1
2s �

�
an�1

Sa
n�1

, an�2

an�2b�Sa
n�2

�
. Hence, for any arbitrarily given

µ P p0, 1q we can find an ‘n’ such that
Step 1: either µ P PLnR or µ P PLn�1R or σ2   µ   σ11.
For the first two cases the pattern exists as µ belongs to the range of existence
of a pattern. For the last case we proceed further by calculating PLnRLn�1R �
pσ21 , σ

2
2s. Now again we have three cases:

Step 2: either µ P PLnRLn�1R or σ2   µ   σ21 or σ22   µ   σ11.
For the first case the pattern exists as µ belongs to the range of existence of a
pattern. For the second case we again go to Step 1 but this time with PLnR
and PLnRLn�1R. Similarly for the third case we go to Step 1 with PLnRLn�1R
and PLn�1R. Without the loss of generality we assume the second case to be
true i.e. µ always lay in the left side partition or nearer to PLnR. Then, before
every time we take Step 2, we construct the new pattern of form pLnRqkLn�1R



Chaotic Modeling and Simulation (CMSIM) 2: 257–264, 2013 263

with k � 2, 3, 4 . . . With the help of generalized map method explained in [12]
this pattern can be written as L1kR1 where, L1 � LnR and R1 � Ln�1R.

This process is nothing but constructing a series of intervals PL1kR1 . This
series of intervals must converge at σ2. This is because, if it converges at
some other point (say σ̃1) then we get a finite length subinterval pσ2, σ̃1s. We
arbitrarily select any point from this interval (say µ̃). Now as we argued for
the case of PLnR, similar arguments can be made here i.e. we can select a large
enough k (since limits of PL1kR1 involve a and b with k in power) such that
PL1kR1 lies to the left of µ̃. This is contradiction to the earlier assumption that
series converges to σ̃. Hence, the series must converge to σ2.

3 Conclusions

In this paper we have analyzed the stable periodic orbits of the 1-D linear
piecewise-smooth discontinuous map with respect to change in the parameters.
We have analytically calculated the range of parameters for which period-n
orbits exist. The length of this range is considered as the probability of occur-
rence of period-n orbit. Further, we have shown that this probability can be
maximized by varying the parameter of the map and we prove that there exist
an unique value of this parameter such that this probability is maximum.
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Abstract. Erratic behaviour in the simulated current-voltage characteristics of cou-
pled intrinsic Josephson junctions, for certain ranges of the parameters, are observed
and are shown to be chaotic in origin. In order to demonstrate the chaotic origin of
the erratic behaviour, the Lyapunov exponents for the system are calculated. System
trajectories and their Poincaré maps are used to confirm the chaotic signature ob-
tained from the Lyapunov spectrum in certain ranges of the bias current, below the
break point current.
Keywords: Chaos; Hyperchaos; CCJJ+DC model; Intrinsic Josephson Junctions.

1 Introduction

Systems of coupled intrinsic Josephson junctions (IJJs) are prospective candi-
dates for the development of superconducting electronic devices [1]. Questions
about their dynamics are, for a variety of reasons, of great technological impor-
tance [2]. For example, systems of junctions can produce much greater power
output that a single junction and they also provide a model which may help
to elucidate the physics of high temperature superconductors (HTSC) [3,4].
The intrinsic Josephson effect (IJE) [5], i.e. tunneling of Cooper pairs between
superconducting layers inside of strongly anisotropic layered HTSC, provides a
further motivation for considering HTSC as stacks of coupled Josephson junc-
tions. The IJE also plays an important role in determining the current voltage
characteristics (CVC) of tunneling structures based on HTSC and the proper-
ties of the vortex structures in these materials.

Although there has been a recent report on the hyperchaotic behaviour
of an array of two resistive-capacitive-inductive-shunted Josephson junctions
[6], the so-called RCLSJJ model [7], chaotic behaviour does not feature in
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the literature on other closely-related phenomenological models; such as, the
capacitively-coupled model (CCJJ) [8], the resistive-capacitive shunted model
(RCSJJ) [5,9], or the CCJJ plus diffusion current (DC) model [10,11] of the
present work. One possible reason for the comparatively late discovery of chaos
in these systems may be that the (often subtle) chaotic features may have been
masked by numerical instability and added noise in simulations.

This paper is organized as follows. In Section 2 we present the CCJJ+DC
model and describe the numerical method used to calculate the Lyapunov ex-
ponents. In Section 3 we describe the observation of erratic behaviour in the
CVC, which led to the discovery of chaos in the model. In section 4 we demon-
strate that the erratic behaviour is chaotic in origin by looking as the Lyapunov
exponents, system trajectories and Poincaré maps. In Section 5 we conclude
that the erratic behaviour is chaotic in origin and that experimental investiga-
tions are required to ascertain whether this feature of the model is observable
in real systems that satisfy the assumptions of the CCJJ+DC model. We also
suggest that further work could be done on developing methods for controlling
the observed chaos (hyperchaos) in this model.

2 Theory and simulation methods

2.1 The CCJJ+DC model

We solve the system of dynamical equations for the gauge-invariant phase dif-

ferences ϕ`(τ) = θ`+1(τ)− θ`(τ)− 2e
h̄

∫ `+1

`
dzAz(z, τ) between superconducting

layers (S-layers), for stacks consisting of different numbers of IJJs, within the
framework of the CCJJ+DC model [12,13]. In this model, θ` is the phase of
the order parameter in the `th S-layer and Az is the vector potential in the
insulating barrier. For a system of N junctions the equations are,

dϕ`

dτ
=

N∑
`′=1

A``′V`′ and (1)

dV`
dτ

= I − sinϕ` − β
N∑

`′=1

A``′V`′ , (2)

where ` = 1, 2, . . . , N and the matrix A contains coupling parameters such as
α. Note that A differs in form depending on whether periodic or non-periodic
boundary conditions (BCs) are used [14]. The dissipation parameter β is related
to the McCumber parameter βc as β = 1/

√
βc. For the purpose of numerical

simulations we make use of a dimensionless time parameter τ = tωp, where

ωp =
√

2eIc/(h̄C) is the plasma frequency, Ic is the critical current and C is
the capacitance. We measure the DC voltage on each junction V` in units of
the characteristic voltage Vc = h̄ωp/(2e) and the bias current I in units of Ic.
The critical currents in these (series) systems can typically range from 1 to
1000µA, corresponding to voltages of RIc ∼ 1 mV across individual junctions.
Further details concerning this model can be found in Refs. [14,15]
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2.2 Calculation of Lyapunov exponents

The Lyapunov exponents of a nonlinear dynamical system provide a quantita-
tive measure of the degree of chaos inherent in the system, i.e. they quantify the
sensitivity of the system to changes in initial conditions [16]. Usually one Lya-
punov exponent is associated with each independent coordinate in the system.
The numerical value of this exponent then characterizes the long term average
exponential convergence (negative exponent) or divergence (positive exponent)
of that coordinate with respect to some arbitrarily small initial separation.

Although the calculation of the Lyapunov exponents is in principle straight
forward, in numerical calculations one has to guard against cumulative round-
off errors which occur because of the exponential manner in which the small
initial differences in coordinates may be amplified. Since real experimental
data sets are typically small and noisy, it has taken a sustained effort to de-
velop efficient algorithms for estimating the Lyapunov exponents associated
with chaotic data sets [17–20]. In the preset simulations, since the system
of Eqns. (1) and (2) are know in analytical form, we make use of the well-
known algorithm by Wolf et al. [17]. Unlike some other methods, which only
calculate the maximal Lyapunov exponent [21,22], the algorithm by Wolf et
al. calculates the full spectrum of Lyapunov exponents and thus allows one
to distinguish between chaotic attractors, which are characterised by only one
positive exponent, and hyperchaotic attractors, which is characterised by more
than one positive exponent.

In addition to Eqs. (1) and (2), the algorithm by Wolf et al. requires
analytical expressions for the action of the system Jacobian J on an arbitrary
column vector x = (ϕ1,ϕ2, . . . ,ϕN ,V1,V2, . . . ,VN )

T
in the (ϕ, V ) coordinate

space. For the present system the action of J on x is given by

Jx =



A11V1 +A12V2 + . . .+A1NVN
A21V1 +A22V2 + . . .+A2NVN

...
AN1V1 +AN2V2 + . . .+ANNVN

−ϕ1 cosϕ1 − βA11V1 − βA12V2 − . . .− βA1NVN
−ϕ2 cosϕ2 − βA21V1 − βA22V2 − . . .− βA2NVN

...
−ϕN cosϕN − βAN1V1 − βAN2V2 − . . .− βANNVN


(3)

To calculate the Lyapunov exponents for a particular current I, we typically
used 30000 dimensionless time steps, with a step size of ∆τ = 0.2. In all
our calculations the number of steps and step size were chosen so that the
magnitude of the zero exponent always converged to a value which was at least
two orders of magnitude smaller than the magnitude of the smallest non-zero
exponent. A fifth-order Runge-Kutta integration scheme was used.

3 Observation of erratic behaviour in the CVC

Erratic behaviour was first observed in the simulated CVC for certain ranges of
parameter values. Figure 1 presents the simulated outermost branches in the
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CVC for a stack of nine IJJs. Here V is the sum of the time averaged voltages

Fig. 1. Simulated outermost branches of the current voltage characteristics of an
array with nine IJJ with α = 1 and periodic boundary conditions (PBC). The curves
for four different values of β are shown. The break point of each curve has been
marked by a cross.

across each junction, i.e. V = 〈V1〉 + 〈V2〉 + . . . + 〈V9〉, and I is bias current
through the stack. As explained in Section 2.1, V and I are in units of Vc and
Ic respectively. In Fig. 1 one can see the variation of the branch slope and
the breakpoint (marked by a cross), for the four different values of dissipation
parameter. As expected, the value of the break point current increases with
increasing β; however, for 0.1 < β < 0.4 the break point boarders on a so-called
break point region (BPR). In Fig. 1 this region can be clearly seen to the left
of the break points for the β = 0.2 and β = 0.3 curves. For these two values
of β, erratic behaviour is observed to the left of each breakpoint. Initially this
erratic behaviour was thought to be numerical in origin; however, as we will
demonstrate in the next section, it is in fact chaotic.

4 Results and discussion

4.1 Demonstration of chaotic behaviour via Lyapunov exponents

Since we were unable to account for the observed erratic behaviour in terms of
numerical instability, we decided to check whether or not the system is chaotic
by calculating its Lyapunov exponents according to the method described in
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Fig. 2. Lyapunov exponents and CVC for a stack of seven IJJs with periodic boundary
conditions.

Section 2.2. Typical results are shown in Fig. 2, for a stack of seven junc-
tions, using the PBC. Here the left vertical axis is for the Lyapunov exponents
(λ1, . . . , λ14), while the right vertical axis is for ln(V ) (red dashed curve). The
largest two Lyapunov exponents, λ1 and λ2 (plotted in blue) both become
positive exactly over the range of currents for which the erratic behaviour in
V was observed, indicating that this system is hyperchaotic within the range
0.5520 < I < 0.5570. In this range, as the current is decreased, λ1 and λ2

steadily increase, reaching their respective maxima of 0.052 and 0.031. At
I ≈ 0.5520 the system makes an abrupt transition to one of the inner branches
of the CVC, over the range 0.5515 < I < 0.5520. For the inner branch there
is only one positive Lyapunov exponent (λ1 = 0.075), which suggests that this
transition may be associated with a change in the dynamics of the system, from
hyperchaotic to chaotic. We have also performed other simulations at different
parameter values and for N in the range 7-13, using both the PBC and NPBC.
In all cases, for which erratic behaviour in the CVC was observed, we found
either one or two positive Lyapunov exponent.

4.2 Comparison of system trajectories

To further verify that the observed behaviour is chaotic (hyperchaotic), we
also looked at the system trajectory for a variety of different parameter val-
ues and initial conditions. Our observations are consistent with the values



270 A.E. Botha and Yu. M. Shukrinov

obtained for the Lyapunov exponents. For example, Fig. 3 shows a projec-
tion onto the ϕ3V5-plane of two different trajectories corresponding to a nine
junction system (N = 9) with periodic boundary conditions and the param-
eters α = 1 and β = 0.2. Both trajectories correspond to the outer branch

Fig. 3. A projection of two different system trajectories for a stack of nine IJJs with
periodic boundary conditions. The solid red curve corresponds to a current above the
break point value and is quasi-periodic, while the dashed green curve corresponds to
a current below the break point, where the system is hyperchaotic.

of the CVC and have been integrated for 250 dimensionless time units. The
solid red trajectory appears to be quasi-periodic, corresponding to I = 0.5650
and zero maximal Lyapunov exponent. The dashed green trajectory is hyper-
chaotic, corresponding to I = 0.5575, with the three largest exponents given
by λ1 = 0.035, λ2 = 0.022 and λ3 = 0.00005. In this figure the quasi-periodic
nature of the non-chaotic trajectory (solid red curve) is clearly discernible from
the hyperchaotic trajectory (dashed green curve).

4.3 Poincaré maps

To investigate further the differences between regular and chaotic regimes of the
system, several Poincaré maps were constructed. Figure 4 shows a comparison
of the maps for the trajectories described in Fig. 3. Here the intersection
of the V3V9-projection of the trajectory with the plane V2 = 2.6 is shown.
Note the intersection is only from one side of the V2 = 2.6 plane, i.e. the
map was constructed by plotting the coordinates (V3, V9) for each intersection
point, defined by a change in V2 from V2 − 2.6 ≤ 0 to 0 ≤ V2 − 2.6, over one
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Fig. 4. Poincaré maps for the trajectories shown in Fig. 3. The intersection plane
is given by V2 = 2.6. The red pixels are for the intersection of the quasi-periodic
trajectory while the green pixels are for the intersection of the hyperchaotic trajectory.

integration step. In order to obtain the large number of intersection points
shown (between 8000− 9000 in each case) both trajectories were integrated for
20000 dimensionless time units, using a step size of ∆τ = 0.025. The quasi-
periodic (hyperchaotic) behaviour of the red (green) trajectory is clearly visible,
in agreement with Fig 3 and the calculated values of the Lyapunov exponents.

5 Conclusions

We have demonstrated that the observed erratic behaviour in our simulations
of the CVC of coupled IJJs within the CCJJ+DC model is chaotic in origin.
We have also shown that transitions can take place between hyperchaotic and
chaotic dynamics, as the system jumps from the outermost CVC branch to
inner branches. In this preliminary work we have not addressed many other
important physical aspects; such as, the influence of the number of junctions,
boundary conditions and charge correlations. A more detailed analysis of the
chaos is currently in preparation [23].

In future work it would be interesting to establish whether or not the ob-
served chaotic features in the present simulation are also experimentally ob-
servable in systems that satisfy the underlying assumptions of the CCJJ+DC
model. Perhaps further work could also be done on controlling and exploiting
(for technological use) the observed chaos (hyperchaos) in these systems.
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Abstract. Pseudo random numbers are used for various purposes. Pseudo random
number generators (PRNGs) are useful tools to provide pseudo random numbers.
The FIPS 140-2 test issued by the American National Institute of Standards and
Technologyhas been widely used for the verifications the statistical properties of the
randomness of the pseudo random numbers generated by PRNGs.

First this paper analyzes the FIPS 140-2 test. The results show that

• The required interval of the FIPS140-2 Monobit Test corresponds to the confident
interval with significant level α = 0.0001(1− α).

• The required interval of the FIPS140-2 Pork Test corresponds to χ2 test with
significant level α = 0.0002(1 - α).

• The required intervals of the FIPS140-2 Run Test correspond to the confident
interval with significant level α = 0.00000016(1− α).

Second this study considers a novel chaotic map (NCM), whose prototype is the
Lorenz three-dimensional Lorenz chaotic map. A NCP -based CPRNG is designed.
Using the FIPS 140-2 test measures the 1000 keystreams randomly generated by the
RC4 algorithm, and the 1000 keystreams generated by the CPRNG with perturbed
randomly initial conditions in the range |ε| ∈ [10−16, 10−4]. The results show that the
statistical properties of the randomness of the sequences generated via the CPRNG
and the RC4 do not have significant differences. The results confirm once again that
suitable designed chaos-based PRNGs may generate sound random sequences, in par-
ticular for a replacement for the one-time pad system.
Keywords: FIPS 140-2 Test, Analysis in required intervals, Chaos-based pseudo-
random number generator, RC4, Randomness comparison..

1 Introduction

Pseudorandom numbers are important in applications such as in simulations of
physical systems[1], in cryptography[2], in Entertainment[3], and in protecting
computer systems. John von Neumann was the first contributor in computer-
based random number generators. Today algorithmic pseudorandom number
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generators (PRNGs) have replaced almost random number tables and hardware
random number generators in practical uses.

A algorithmic PRNG is an algorithm for generating sequences of numbers
that approximate the properties of random numbers. A poor PRNG will lead
to weak or guessable its keys, and leak the information which is prevented.
There are many designed tests for measuring the randomness quantities of
the sequences of numbers generated via PRNGs. The FIPS 140-2 test[4], the
SP800-22 test[5], and the Diehard Battery test[6] are popular tests to be used
in evaluating the randomness quantities of the sequence numbers deriving from
PRNGs.

Since Lorenz’s influential article[7] and Li and York’s pioneer paper [8], the
study of chaos has been rapidly developed. Matthews has first derived a chaotic
encryption algorithm and shown that it may be suitable for a replacement for
the one-time pad system[9].

Gámez-Guzmán et al. have considered a modified Chua’s circuit generator
of 5-scroll chaotic attractor and shown that it may have a potential application
to transmit encrypted audio and image information[11]. Stojanovski and Ko-
carev [10] have analyzed the application of a chaos-based PRNG. Li et al.[12]
have reported that using only 120 consecutive known plain-byres can broken
the whole secret key of a multiple one-dimensional chaotic map -based PRNG.
Yu et al[13] have introduced and analyzed a quadric polynomial chaotic map
based PRNG by the FIPS PUB 140-2 test.

This paper analyzes the standards of the randomness criteria of the FIPS
140-2 test, introduces a novel chaotic map (NCM), designs a NCM-based
PRNG. Using the FIPS 140-2 test measures and compares the randomness
performances of the NCM-based PRNG and the RC4 algorithm – a famous
algorithm PRNG used in computer prevent.

The rest of this paper is organized as follows. Section 2 discusses the
standards of the randomness criteria of the FIPS 140-2 test. Section 3 intro-
duces the NCM, stimulates numerically its dynamic orbits, designed the NCM-
based PRNG. Section 4 compares the randomness quantities of the NCM-based
PRNG and the RC4 PRNG. Section 5 gives concluding remarks.

2 Analysis of FIPS 140-2 Test

The FIPS 140-2 Test issued by the National Institute of Standard and Technol-
ogy consists of four tests: Monobit test, Pork test, Run test and Long Run test.
Each test needs a single stream of 20,000 one and zero bits from keystream gen-
eration. Any failure in the test means the sequence of stream must be rejected.
The four test are listed as for follows:

(1) Monobit test: Count the numbers N of “0” and “1” in the 20,000 bitstream,
respectively. The test is passed if the N is fallen into the required interval
given in the second column in Table 1.

(2) Poker test: Divide a sequence of 20,000 into 5,000 consecutive 4-bit seg-
ments. Denote f(i) to be the number of each 4-bit valve i where 0 < i < 15.



Chaotic Modeling and Simulation (CMSIM) 2: 273–280, 2013 275

Then calculate the following:

N =
16

5000

16∑
i=1

f(i)2 − 5000. (1)

The test is passed if the N is fallen into the required interval given in the
second column in Table 1.

(3) Run test: Run is defined as maximal sequence of consecutive bits of either
all ′1′ or all ′0′ that is the part of a 20,000 bitstream. Count and store the
run bits with ≥ 1. The test is passed if the length of each run is fallen into
the required interval listed in the second column in Table 1.

(4) Long Run test: The test is passed if there are no runs of length 26 or more.

Table 1. The required intervals of the FIPS 140-2 Monobit Test Pork Tests and
Run Test, and the calculated confident intervals of random sequences with different
significant level α′s. Here MT, PT, and RT represent the Monobit Test, the Pork
Test and the Run Test; k represents the length of the run of a tested sequence.

FIPS 140-2 Standard α = 10−4 Golomb’s
Required Interval Confident Interval Postulates

MT 9,725∼10,275 9,725∼10,275 10000

α = 2× 10−4

PT 2.16∼46.17 2.41∼44.26 16.01

RT FIPS 140-2 Standard α = 1.6× 10−7 Golomb’s
k Required Interval Confident Interval Postulates

1 2,315∼2,685 2,315∼2,685 2,500

2 1,114∼1,386 1,119∼1,381 1,250

3 527∼723 532∼718 625

4 240∼384 247∼378 313

5 103∼209 110∼203 156

6+ 103∼209 110∼203 156

Golomb has proposed three postulates on the randomness that pseudoran-
dom sequences should satisfy [14]:

1. Balance Property. In one period of a pseudorandom sequence, If the
period p is even, then the number of ones is equal to the number of zeros,
otherwise they differ only by one.

2. Run Distribution Property. In one period of a pseudorandom sequence,

the frequency of runs of length k is
1

2k
. The numbers of the same length

one run and zero run are the same.
3. Ideal Autocorrelation Property. The autocorrelation function AC(k)

has two values for a period. Explicitly:

AC(k) =
1

p

p∑
i=1

sisi+k =

 1 for k = np
−1

p
otherwise



276 Min et al.

where 0’s of the sequence are replace by 1’s and 1’s by -1’s, sisj denote the
multiplication of two bits si and sj .

According to Golomb’s postulates (1) and (2), the ideal values of the N’s
of the Monobit test and the Run test should be those listed in the 4th column
in Table 1.

1. Monobit test analysis: Let ε = ε1ε2 · · · εn be an one and zero bit sequence
where n is the length of the bit string. Denote Xi = 2εi − 1, then Sn =
X1+X2+ · · ·Xn = 2(ε1+ε2+ · · ·+εn)−n. If ε is a sequence of independent
identically distributed Bernoulli random variables, then[5]

Sn√
n
∼ N(0, 1)

where N(0, 1) is a standard normal distribution.

The confident interval of S′n = ε1 + ε2 + · · · εn with significant level α is
given by

n

2
−
√
n

2
Zα

2
≤ S′n ≤

n

2
+

√
n

2
Zα

2

where Zα
2

(Matlab command norminv(1−α/2)) is the inverse of the normal
cumulative distribution function. In the case n = 20, 000 and α = 0.0001,
the calculated result is given in the second column in Table 1 which is the
same as the required interval given by the FIPS 140-2 test.

2. Run test analysis. Pick up the runs of length k from an one and zero
bitstream and construct a new bit stream. Replace each one run of length
k by 1, and zero run of length k by 0. Then we obtain an one and zero
bit sequence ε′ = ε′1ε

′
2 · · · ε′n′ where n′ is the length of the new bit string.

Assume ε′ is a sequence of independent identically distributed Bernoulli
random variables, then similar to the analysis in the case of the Monobit
test, we obtain

Sn′
√
n′
∼ N(0, 1)

The confident interval of S′n′ = ε′1 + ε′2 + · · · ε′n′ with significant level α is
given by

n′

2
−
√
n′

2
Zα

2
≤ S′n′ ≤

n′

2
+

√
n′

2
Zα

2

For an ideal 20,000 one and zero bit pseudorandom stream, the length n′

of a bit sequence ε′ generated via the runs of length k should equal to
10000/2k. Let α = 1.6× 10−7, the calculated confident intervals are listed
in the second column in Table 1 which are almost the same as the required
intervals given by the FIPS 140-2 test.
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3. Poker test analysis. Assume the the 4-bit segments are distributed in-
dependently and identically. Then the statistic quality

N =
16

5000

16∑
i=1

f(i)2 − 5000

=

16∑
i=1

5000

1/16
(
f(i)

5000
− 1

16
)2

obeys χ2 distribution. Hence the confident interval of the statistic quality
of N with significant level α is given by

χ2
1−α

2
(15) ≤ N ≤ χ2

α
2

(15),

where χ2
α(15) (Matlab command chi2inv(α,15) ) is the inverse of the χ2

cumulative distribution function with free degree 15.

Let α = 0.0002. The calculated confirmation interval is given in Table 1 which
is similar to the one given by the FIPS 140-2 test.

3 New Chaotic Map and Pseudorandom Number
Generator

we consider a novel chaotic map (NCM), whose prototype is the three-dimensional
Lorenz chaotic map [15].X(n+ 1) = k1X(n)Y (n)− k2Z(n)− k3X(n)

Y (n+ 1) = k4X(n)− k5Y (n)
Z(n+ 1) = k6Y (n)− k7Z(n)

where

k1 = 1− 10−6, k2 = 1 + 10−6, k3 = 2× 10−6,

k4 = 1 + 10−6, k5 = 3× 10−6, k6 = 1− 10−6, k7 = 10−6.

The Lyapunov exponents of the NCM are [λ1, λ2, λ3] = [+0.0824, 0,−0.0824].
If select an initial condition [X0, Y0, Z0] = [0.5 0.5 -1], the numerical simulations
of the orbits of the NCM display are given in Fig. 1. Observe that the dynamic
patterns are similar to those of the 3D Lorenz map[15].

Let
Kn =

√
3X(n) +

√
5Y (n) +

√
2Z(n), n = 1, 2, · · · , N ;

Min(K) = min
1≤n≤N

Kn,Max(K) = max
1≤n≤N

Kn.

Define a transformation T by

T (Kn) = mod

(
round

(
255
√

2× 105(Kn −Min(K))

Max(K)−Min(K)

)
, 256

)
, n = 1, 2, · · · , N.
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Fig. 1. Orbits of the first 5000 iterations: (a) X(n), Y (n), Z(n), and (b) X(n) and
Y (n).

Transferring T (Kn) into binary codes, we obtain a binary sequence

s(k) = binary(T (Kn)), n = 1, 2, · · · , N. (2)

Hence, we construct a chaos-based pseudorandom number generator (CPNG).

4 FIPS 140-2 test

The RC4 was designed by Ron Rivest of RSA Security in 1987, and widely
used in popular protocols such as Secure Sockets. Now we use the FIPS 140-2
test to test the 1000 keystreams randomly generated by the RC4, and the 1000
keystreams generated by the CPNG with an initial condition [X(0), Y (0), Z(0)]
= [0.5, 0.5, -1] perturbed randomly in the range |ε| ∈ [10−16, 10−4]. The results
are shown in Table 2. It follows that the statistical properties of the randomness
of the sequences generated via the CPNG and the RC4 do not have significant
differences.

Matlab commands for implement the RC4 algorithms are listed as follows.
L=8; K=randint(1,2∧L,[0 2∧L-1]);S=[0:2∧L-1]; j=0;
for i=1:2∧L
j=mod(j+S(i)+K(i),2∧L);
Sk=S(j+1); S(j+1)=S(i); S(i)=Sk;
end
l=1; C=zeros(1,20000/8+10); j=0;i=0; k=1;
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for l=1:20000/8+10; i=mod(i+1,2∧L); j=mod(j+S(i+1),2∧L);
Sk=S(j+1); S(j+1)=S(i+1); S(i+1)=Sk;
C(k)=S(mod(S(j+1)+S(i+1),2∧L)+1);
k=k+1;
end

Table 2. The confident intervals of the FIPS 140-2 tested values of 1000 key streams
generated by the RC4 and the CPNG respectively. The significant level. α = 0.00001

Test bits Golomb’s RC4 CPNG

item {0, 1} Postulates Confident Interval Confident Interval

MT
0 10000 9992.2 ∼ 10012 9990.1 ∼ 10010
1 10000 9988 ∼ 10008 9989.6 ∼ 10009

PT – 16.01 14.408 ∼ 15.899 13.373 ∼ 13.914

LT
0 < 26 13.443 ∼ 13.971 13.405 ∼ 13.913
1 < 26 13.340∼13.872 13.328∼ 13.823

LR Run Test

1
0 2500 2493.6 ∼ 2506.9 2492.0 ∼ 2504.9
1 2500 2493.7 ∼ 2506.6 2489.9 ∼ 2503.3

2
0 1250 1244.9 ∼ 1253.8 1244.7∼ 1253.9
1 1250 1242.6 ∼ 1251.3 1243.6∼ 1252.2

3
0 625 621.46 ∼ 628 622.10 ∼ 628.60
1 625 622.44 ∼ 629.25 622.96 ∼ 629.31

4
0 313 310.09 ∼ 314.68 309.92∼ 314.56
1 313 311.27 ∼ 315.74 310.29∼ 314.83

5
0 156 154.8 ∼ 158.21 154.18∼157.44
1 156 154.79 ∼ 158.2 154.66∼ 158.14

6+ 0 156 154.29 ∼ 157.64 155.32∼ 158.56
1 156 154.54 ∼ 157.93 155.28 ∼158.67

5 Concluding Remarks

Based on Golomb’s postulates for the randomness of pure pseudorandom se-
quences, this paper analyzes the required intervals of the statistic quantities
of three tests given in the FIPS 140-2. The results show that the required
intervals for different tests do not have the same significant levels.

This study introduces a perturbed 3D Lorenze discrete map. The Lyapunov
exponents and the dynamic orbits of the map are both similar to those of the
3D Lorenz map.

This paper constructs a chaos-based PRNG which has 7 key parameters.
This feature of the PRNG may make it have large key space. Comparing the
results of the FIPS 140-2 test for the RC4 PRNG and the chaos-based PRNG
shows that statistical properties of the randomness of the sequences generated
via the PRNG and the RC4 PRNG do not have significant differences.
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The results confirm once again that suitable designed chaos-based PRNGs
may generate sound random sequences, in particular for a replacement for the
one-time pad system[9]. Further research along this line is promising.
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Abstract. This paper presents the motion of a viscoelastic fluid in the interior of a
closed loop thermosyphon. A viscoelastic fluid described by the Maxwell constitutive
equation is considered for the study. This kind of fluids present elastic-like behaviors
and memory effects. Numerical experiments are performed in order to describe the
chaotic behavior of the solution for different ranges of the relevant parameters by
using the inertial manifold for this system proved in [1]. This work comes to verify
the complex nature of the behavior of viscoelastic fluids extending the result in [2]
when we consider a given heat flux instead of Newton’s linear cooling law.

Keywords: Thermosyphon, Viscoelastic fluid, Asymptotic behavior, Numerical anal-
ysis.

1 Introduction

Chaos in fluids subject to temperature gradients has been the subject of intense
work for its applications in the field of engineering or atmospheric sciences. A
thermosyphon is a device composed of a closed loop pipe containing a fluid
whose motion is driven by the effect of several actions such as gravity and
natural convection [3–5]. The flow inside the loop is driven by an energetic
balance between thermal energy and mechanical energy. The interest on this
system comes both from engineering and as a toy model of natural convection
(for instance, to understand the origin of chaos in atmospheric systems). The
theoretical results of the behavior of viscoelastic fluids of this model has been
proved in [1] but in this work we explore it numerically.

As viscoelasticity is, in general, strongly dependent on the material com-
position and working regime, here we will approach this problem by studying
the most essential feature of viscoelastic fluids: memory effects. To this aim
we restrict ourselves to the study of the so-called Maxwell model [6]. In this
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model, both Newton’s law of viscosity and Hooke’s law of elasticity are gener-
alized and complemented through an evolution equation for the stress tensor,
σ. The stress tensor comes into play in the equation for the conservation of
momentum:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · σ (1)

For a Maxwellian fluid, the stress tensor takes the form:

µ

E

∂σ

∂t
+ σ = µγ̇ (2)

where µ is the fluid viscosity, E the Young’s modulus and γ̇ the shear strain
rate (or rate at which the fluid deforms). Under stationary flow, the equation
(2) reduces to Newton’s law, and consequently, the equation (1) reduces to
the celebrated Navier-Stokes equation. On the contrary, for short times, when
impulsive behavior from rest can be expected, equation (2) reduces to Hooke’s
law of elasticity.

The derivation of the thermosyphon equations of motion is similar to that
in [3–5]. The simplest way to incorporate equation (2) into equation (1) is
by differentiating equation (1) with respect to time and replacing the resulting
time derivative of σ with equation (2). This way to incorporate the constitutive
equation allows to reduce the number of unknowns (we remove σ from the
system of equations) at the cost of increasing the order of the time derivatives
to second order. The resulting second order equation is then averaged along
the loop section (as in Ref.[3]). Finally, after adimensionalizing the variables
(to reduce the number of free parameters) we arrive at the main system of
equations

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt (0) = w0

∂T

∂t
+ v

∂T

∂x
= h(x) + ν ∂

2T
∂x2 , T (0, x) = T0(x)

(3)

where v(t) is the velocity, T (t, x) is the distribution of the temperature of
the viscoelastic fluid in the loop, ν is the temperature diffusion coefficient,
G(v) is the friction law at the inner wall of the loop, the function f is the
geometry of the loop and the distribution of gravitational forces, h(x) is the
general heat flux and ε is the viscoelastic parameter, which is the dimensionless
version of the viscoelastic time, tV = µ/E. Roughly speaking, it gives the time
scale in which the transition from elastic to fluid-like occurs in the fluid. We
consider G and h are given continuous functions, such that G(v) ≥ G0 > 0,
and h(v) ≥ h0 > 0, for G0 and h0 positive constants. Finally, for physical
consistency, it is important to note that all functions considered must be 1-
periodic with respect to the spatial variable.

2 Inertial manifold: Finite dimensional asymptotic
behavior

In this section we summarize the main results related to the finite dimensional
asymptotic behavior of the system of equations (3) as proved in [1]. The ex-
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istence and uniqueness of the solutions of (3) was proved in [1] following the
techniques used in [2]. The main idea in [2] is that we rewrite our main equa-
tions (3) in terms of the Fourier expansions of each function and observing
the dynamics of each Fourier mode, where h, f ∈ L̇2

per(0, 1) are given by the
following Fourier expansions:

h(x) =
∑
k∈D

bke
2πkix, f(x) =

∑
k∈D

cke
2πkix

with D = D − {0} while T0 ∈ Ḣ1
per(0, 1) is given by

T0(x) =
∑
k∈D

ak0e
2πkix

and T (t, x) ∈ Ḣ1
per(0, 1) is given by

T (t, x) =
∑
k∈D

ak(t)e2πkix

where

L̇
2
per(0, 1) = {u ∈ L2

loc(IR), u(x+1) = u(x)a.e.,

∮
u = 0}, Ḣm

per(0, 1) = H
m
loc(IR)∩L̇2

per(0, 1). (4)

The coefficients ak(t) verify the equation:

ȧk(t) + (2πkvi+ 4νπ2k2)ak(t) = bk, ak(0) = ak0, k ∈ D.

Here, we assume that h ∈ Ḣm
per with

h(x) =
∑
k∈K

bke
2πkix

where bk 6= 0, for every k ∈ K ⊂ D with 0 /∈ K, since
∮
h = 0. We denote by Vm

the closure of the subspace of Ḣm
per generated by {e2πkix, k ∈ K}. If bk = 0 then

the kth mode for the temperature is dumped out exponentially and therefore
the space Vm attracts the dynamics for the temperature. Moreover if K is a
finite set, the dimension of M is |K|+ 2, where |K| is the number of elements
in K.

Under the above hypotheses we assume that

f(x) =
∑
k∈J

cke
2πkix

with ck 6= 0 for every k ∈ J ⊂ D. Then on the inertial manifold we have:∮
(T · f) =

∑
k∈K

ak(t)c̄k =
∑

k∈K∩J

ak(t)c̄k.

Therefore the evolution of velocity v, and acceleration w depends only on
the coefficients of T which belong to the set K ∩ J . From [1], using similar
techniques as in [7,8] we will reduce the asymptotic behavior of the initial
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system (3) to the dynamics of the reduced explicit nonlinear system of ODE’s
(5) where we consider the relevant modes of temperature ak, k ∈ K ∩ J.

dw

dt
+

1

ε
w +

1

ε
G(v)v =

1

ε

∑
k∈K∩J

ak(t)c̄k w(0) = w0

dv
dt = w, v(0) = v0

ȧk(t) + (2πkvi+ 4νπ2k2)ak(t) = bk, ak(0) = ak0, k ∈ K ∩ J.
(5)

Note that the set K ∩ J can be much smaller than the set K and therefore the
reduced subsystem may possess far fewer degrees of freedom than the system
on the inertial manifold. Also note that it may be the case that K and J are
infinite sets, but their intersection is finite. For instance, for a circular circuit
we have f(x) ∼ a sin(x) + b cos(x), i.e., J = {±1} and then K ∩ J is either
{±1} or the empty set.

3 Numerical experiments

3.1 Preliminary mathematical approximation

In this section, we integrate the system of ODEs (5), where we consider only
the coefficients of temperature ak(t) with k ∈ K ∩ J (relevant modes). Thus,

dw
dt + w

ε + G(v)v(t)
ε = 2

εReal
(∑

k∈K∩J ak(t)c̄k
)
w(0) = w0

dv
dt = w, v(0) = v0

ȧk(t) + ak(t)(2πkiv + ν4π2k2) = bk, ak(0) = ak0.
We impose that all the physical observable as real functions, then a−k = āk,

b−k = b̄k and c−k = c̄k. In particular, we consider a thermosyphon with a
circular geometry, so J = {±1} and K ∩J = {±1}. Consequently, we can take
k = 1 and omit the equation for k = −1 (is conjugated of the equation for
k = 1). Also in order to reduce the number of free parameters we make the
following change of variables a1c−1 → a1.

dw
dt = 2a1

ε −
w
ε −

G(v)v(t)
ε , w(0) = w0

dv
dt = w, v(0) = v0

ȧ1(t) + a1(t)(2πiv + ν4π2) = b1, a1(0) = a10.

We denote the real and imaginary parts of the a1(t) (the Fourier mode of
the temperature) in the following way:

a1(t) = a1(t) + ia2(t), (6)

b1 = A+ iB (7)

with A ∈ IR,B ∈ IR. Thus we obtain the corresponding nonlinear system of
equations where we need to make explicit choice of the constitutive laws for
both the fluid-mechanical and thermal properties for this model:

dw
dt = 2a1

ε −
w
ε −

G(v)v(t)
ε , w(0) = 0

v̇ = w, v(0) = 0

ȧ1 = A− ν4π2a1 + v2πa2, a1(0) = 1

ȧ2 = B − ν4π2a2 − v2πa1 a2(0) = 1.

(8)
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Hereafter, we present the numerical experiments of equations (5) that are
carried out for the resolution of the nonlinear system of ODEs using the fourth-
order explicit Runge-Kutta method. The summary of our results is presented
in the figures of section 3.2. In particular, we present the plots for velocity,
acceleration and (the fourier transform of the) temperature of this system. All
the variables and equations that we deal with are adimensional. As the system
is multidimensional, we present the results in temporal graphs (variables vs
time) and phase-space graphs (two physical variables plot against each other).

In all cases, we take the same mathematical form for the friction law, G(v) =
(|v|+10−4), as used in the previous works (see, for instance, [2,7,8]), for a similar
model of thermosyphon with a non-viscoelastic fluid with one component. The
rationale behind this equation is that it interpolates between a constant (low
Reynolds number laminar flow) and a linear (highly turbulent flow) function of
the velocity. Likewise, A and B, which refer to the position-dependant (x) heat
flux inside the loop will be used as tuning parameters. We will assume A = 0 in
order to simplify, as different values of A only changes the phase the periodic
function h(x). We will also fix B = 50 the heat flux parameter, ν = 0.002
the diffusion coefficient and observe the evolution of the variables. The initial
conditions are fixed to w(0) = 0, v(0) = 0, a1(0) = 1, a2(0) = 1. Finally, we
have also studied the behavior of the system of equations by keeping ε as a
tuning parameter ranging from 1 to 10, to observe the response of the system
under the effects of viscoelasticity.

3.2 The chaotic behavior of the model

10 20 30 40 50
time

-15

-10

-5

5

10

15
Acceleration

ACCELERATION

Fig. 1. The time evolution of the acceleration, w(t), with ε = 1, A = 0, B = 50,
ν = 0.002 and G(v) = (|v|+ 10−4)

The impact of ε on the system has been keenly observed for various pa-
rameters. In general (see below), as the viscoelastic component ε increases,
the chaotic behavior of the system also increases. In Fig. 1 we show the time
evolution of the acceleration, w(t), for the viscoelastic parameter ε = 1. The
acceleration w(t) ranges from -15 to 15. The plot is chaotic but, although this
is more apparent in the acceleration plot than in the velocity one. This is
reasonable as the velocity is the time integral of the acceleration, namely, the
velocity curve looks smoother than that of acceleration (therefore the chaotic
behavior is not so apparent).
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Fig. 2. Phase-plane of the real and imaginary parts of Fourier transform of the tem-
perature for ε = 1, A = 0, B = 50, ν = 0.002 and G(v) = (|v|+ 10−4).

In Fig. 2 we show the phase-diagram for the real a1(t) and imaginary a2(t)
parts of the Fourier transform of the temperature. As expected, the trajectory
in this phase-plane moves inwards and outwards. This plot illustrates the
underlying complex dynamics of the attractor as a two dimensional projection.

10 20 30 40 50
time
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5

10
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ACCELERATION

Fig. 3. The time evolution of the acceleration, w(t), with ε = 3, A = 0, B = 50,
ν = 0.002 and G(v) = (|v|+ 10−4)

In the second set of numerical experiments we increase the value of vis-
coelastic component to ε = 3. As the value of viscoelastic component ε is
relatively higher than the previous experiment i.e., (ε = 3) the system tends to
be more chaotic than the previous experiment. The acceleration w(t) ranges
from -10 to 10. The deviation in the progress of acceleration is maintained
till the end of the progress. Apparently, the behavior is also chaotic but this
chaos seems to be embedded in larger timescale oscillations. Interestingly, the
number of oscillations is reduced from 15 to 9, Fig. 3 showing less number of
peaks than the first case. This is a reflection of the memory effects associated
to the viscoelastic of the fluid. Thus, as ε plays the role of a time scale, the
larger this value the longer are the memory effects (in our case exposed through
the period of the underlying oscillations).

For ε = 10 (Fig. 4), the system still exhibits a chaotic progression, with the
acceleration ranging from -4 to 4 and with even an underlying longer-period
oscillations compared to the previous experiments.

Finally, in Fig. 5 we show the phase-diagram for a1(t) and a2(t). Again,
as expected, the trajectory in this phase-plane moves inwards and outwards.
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Fig. 4. The time evolution of the acceleration, w(t), with ε = 10, A = 0, B = 50,
ν = 0.002 and G(v) = (|v|+ 10−4)
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Fig. 5. Phase-plane of the real and imaginary parts of Fourier transform of the tem-
perature for ε = 10, A = 0, B = 50, ν = 0.002 and G(v) = (|v|+ 10−4).

This plot illustrates the underlying complex dynamics of the attractor of a two
dimensional projection.

In summary, larger values of the viscoelastic parameters ε, results in sus-
tained chaotic behaviors overlapped with an (almost) periodic behavior whose
period scales with the numerical value of ε. The dynamics becomes more
complex and is characterized in all cases by periods of chaos and of violent os-
cillations, giving an idea of the complexity of the solutions of the system under
these variables due to memory effects.

4 Conclusion

The physical and mathematical implications of the resulting system of ODEs
which describe the dynamics at the inertial manifold is analyzed numerically.
The role of the parameter ε which contains the viscoelastic information of the
fluid was treated with special attention. We studied the asymptotic behavior
of the system for different values of ε the coefficient of viscoelasticity. We can
conclude that for larger values of ε the system behaves more chaotic. Physically,
this induction of chaotic behaviors is related to the memory effects inherent to
viscoelastic fluids. Thus, in the same way as delayed equations are known
to produce chaos, even in the simplest situations, viscoelasticity produces the
same kind of transition.
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Abstract. Bifurcating thermal convection flows arising from a horizontal cylinder
centred in a square-sectioned enclosure are studied numerically, with the aim of
achieving a more detailed description of the sequence of transitions leading to the
onset of chaos, and obtaining a more precise estimate of the critical values of the
main system parameter, the Rayleigh number Ra. Only a value of the geometric as-
pect ratio A of the system is considered, namely A = 2.5, for which a period-doubling
cascade was previously observed. Results give evidence of new and interesting fea-
tures in the route to chaos, such as a window of quasiperiodic flow and the detection
of high-order period orbits.
Keywords: Thermal convection, period-doubling cascade, quasi-periodicity, deter-
ministic chaos.

1 Introduction

Buoyancy-induced flows in enclosures represents one of the most complete
multi-scale coupled non-linear fluid flow problems. Their primary importance
in the field of the study of bifurcations and chaos is due to the fact that they
represent passive systems on which bifurcative dynamics easily show up, and,
eventually, lead to relevant observations on the relationship between the onset
of chaos and the transition from laminar to turbulent flow.

Many works have been carried out on the non-linear dynamics of thermal
convection in basic enclosure configurations, such as the rectangular enclosures
heated from below (the Rayleigh-Bénard problem) and from the side [1,2] (the
“vertical enclosure” case), and, more recently, the horizontal annulus between
two coaxial cylinders [3]. Fewer works dealt with more complex geometrical
and thermal configurations [4–6]. Nevertheless, from a theoretical and practical
standpoint, the interest in this topic is growing continuously.
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The physical system considered in the present study is the cavity formed
by an infinite square parallelepiped with a centrally placed cylindrical heat-
ing source. The system is approximated to its 2D transversal square section
containing a circular heat source, as sketched in Fig. 1. The temperature of
both enclosure and cylinder is assumed as uniform, the cylindrical surface be-
ing hotter than the cavity walls. Thus, the leading parameter of the problem is
the Rayleigh number Ra, based on the gap width H, expressing the tempera-
ture difference in dimensionless terms. Another fundamental parameter is the
Prandtl number, fixed for this study at a value Pr = 0.7, representative of air
at environmental conditions.

Fig. 1. Left: schematic of the system under consideration; (×) symbols indicate
locations of the sampling points. Right: quadrant of the computational grid.

From the standpoint of thermofluids, the convective system in Fig. 1 is
particularly interesting, since, due to the curvature of the cylindrical differen-
tially heated surfaces, its phenomenology encompasses the features of both the
Rayleigh-Bénard and the vertical enclosure cases. As soon as a temperature dif-
ference is imposed between the cylinder and the enclosure, fluid motion ensues
immediately in the vicinity of the horizontal midplane, where the cylindrical
walls are substantially vertical. On the other hand, the fluid in the top part
of the enclosure is subject to an unstable vertical gradient, as in the Rayleigh-
Bénard problem, while vertical boundary layers are invariably forming at the
enclosure sidewalls. The combination of these situations in a single problem
produces a variety of flow configurations and transition phenomena.

Previous studies [5,6] already unfolded different scenarios on the route to
chaos of the system considered here, depending on its aspect ratio A = L/H.
Accurate numerical investigations carried out for two A-values, A = 2.5 and
A = 5, revealed the existence of a period-doubling scenario following a Hopf
bifurcation for A = 2.5, and a transition to chaos via a symmetry-breaking
pattern followed by a blue-sky bifurcation for A = 5 [6].
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The aim of the present work is to achieve a deeper insight into the series
of bifurcations for the case A = 2.5, in virtue of a wider set of numerical
simulations performed by refining the step of the bifurcation parameter Ra.
Particular attention has been devoted to the analysis of the stretching and
folding attitudes of specific regions of the system attractor in proximity of the
Ra-values corresponding to the period doubling bifurcation points, and in the
chaotic range.

Numerical predictions are carried out by means of a specifically developed
finite-volume code. Successive bifurcations of the low-Ra fixed point solution
are followed for increasing Ra. To this aim, time series of the state variables (ve-
locity components and temperature), are extracted in 5 locations represented
in Fig. 1 by points P1 to P5. Nonlinear dynamical features are described
by means of phase-space representations, power spectra of the computed time
series, and of Poincaré maps.

2 Problem statement and methods

The problem is stated in terms of the incompressible Navier-Stokes formulation,
under the Boussinesq approximation. The governing equations (continuity,
momentum and energy) are tackled in their non-dimensional form:

∇ · u = 0 (1)

∂u

∂t
+ u · ∇u = −∇p +

Pr1/2

Ra1/2
∇2u + T ĝ (2)

∂T

∂t
+ u · ∇T =

1

(RaPr)1/2
∇2T (3)

where t, u, p and T represent the dimensionless time, velocity vector, pressure
and temperature, respectively, and ĝ is the gravity unit vector. A value Pr =
0.7 is assumed for air. Boundary conditions for T and u are reported in Fig.
1.

Detailed descriptions of the adopted numerical techniques and of discretiza-
tion choices are found in previous works [5,7]. A detail of the computational
grid is shown in Fig. 1. In order to analyze the system dynamics in the vicin-
ity of bifurcation points, Ra was increased monotonically with suitable steps,
each simulation starting from the final frame of the preceeding one. All the
simulations were protracted until a fixed dimensionless time span was covered,
large enough for an asymptotic flow to be attained.

3 Results and discussion

In previous studies [5,6] a preliminary analysis of the system with A = 2.5
reported the birth of chaotic behaviours for Ra greater than Ra = 2.0 · 105. In
particular, power spectral density distributions, attractor representations and



292 Angeli et al.

Poincaré maps were used to give a clear evidence of a basic period doubling
route to chaos. In particular, it was shown that the flow is characterised by
two fundamental harmonics at Ra = 1.7 · 105, four harmonics at Ra = 1.8 · 105

and eight at Ra = 1.9 · 105, whereas chaos was observed at Ra = 2.0 · 105.

Given the great theoretical and practical importance of an accurate deter-
mination of the bifurcating behaviour of the flow, deeper analyses have been
performed by refining the step of numerical simulation of the range of interest
of the Rayleigh number. As described in the following, two main results have
been obtained: (i) the identification of a window of quasiperiodic flow; (ii) the
identification of three further period doublings preluding appearance of chaos.

3.1 Window of quasiperiodic flow

Several simulations performed in the range Ra = 1.7 ÷ 1.9 · 105 have been
found to be characterised by a well defined quasiperiodic behaviour. Again,
the observation of this result has been performed both in the frequency domain
and in the state space.

Fig. 2 reports the PSDs of the variables simulated at point P1 for the case
at Ra = 176875, in (a) for the horizontal velocity component u, in (b) for the
vertical velocity component v and in (c) for the temperature T .

Fig. 2. PSDs of the simulated state variables at point P1 for the quasiperiodic case
at Ra = 176875: (a) horizontal velocity u; (b) vertical velocity v; (c) temperature T .
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The following interesting observations can be drawn from the analysis of
the three plots of Fig. 2:

• the PSDs of v and T are mainly the same, as a consequence of the vertical
character of the buoyancy-driven flow that determines the dynamics of the
thermal and velocity field;

• the quasiperiodic behaviour finds a clear expression in the excitation of two
independent frequencies, reported in the figures, and of bands formed by
their linear harmonic combinations;

• the two dominant frequencies of v and T , exactly double those of the hor-
izontal velocity u, as a direct consequence of the vertical symmetry of the
domain.

Fig. 3 reports the phase plots for the simulation at point P1 for the case at
Ra = 176875, i.e. for the same quasiperiodic dynamic discussed in Fig. 2. Plot
(a) reports the whole toroidal attractor, whereas plot (b) allows for a deeper
observation of the narrow toroidal structure of the attractor itself. Finally, plots
(c), (d) and (e) reports the Poincaré map obtained by sectioning the attractor
with the planes orthogonal to each of the axis in correspondence of the mean
value of respective variable in the considered observation window. From the
analysis of the plots in Fig. 3 it is possible to draw a further clear proof of
the existence of the quasiperiodic behaviour, manifested in the state space by
the torus and in the Poincaré maps by the elliptical traces. Notice that in plot
(c) two partly superimposed elliptical traces appears as a consequence of the
intersection of the two branches of the torus in the chosen Poincaré plane.

It is worthy to mention that further analyses, omitted here for brevity,
revealed that the quasiperiodic torus appears Ra = 1.740 · 105, bifurcating
from the stable limit cycle which represents the solution at Ra = 1.735 · 105,
while it disappears, for Ra = 1.795 · 105, giving rise to the period-doubling
route described in the following. Such observations contribute to shed light
on the proper bifurcation path in the range Ra = 1.740 ÷ 1.795 · 105, which
therefore redefines the simple period doubling assumed in [6].

3.2 High order period doublings

A further refinement of the Ra steps of the simulation in the range Ra =
1.9÷ 2.0 · 105 allowed for the determination the critical values of Ra at which
higher order period doublings occur. In particular, the progressive increase
from Ra = 1.8 · 105, for which a period 8 limit cycle exists, it has been possible
to determine the birth of the limit cycles characterised by 16, 32, 64 and even
128 periods, which anticipate the appearance of chaos.

From the analysis of the extensive simulations performed for very narrow
step of Ra in the range Ra = 1.9÷ 2.0 · 105, completed with the observation of
the window of quasiperiodic behaviour, it has been possible to summarise the
complete bifurcation path from period-2 limit cycle to chaos according to the
limits reported in Tab. 3.2. There, the notation introduced in [3] is used to
identify the different flow regimes.
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Fig. 3. Phase plots of the quasiperiodic dynamical behaviour at point P1 for Ra =
176875 : (a) attractor in the state space T -u-v; (b) particular evidencing the structure
of the narrow torus; (c), (d), (e) Poincaré maps.

P1 QP2 P2 P4 P8

Ra · 10−5 ≤ 1.735 1.74 ÷ 1.79 1.795 ÷ 1.8975 1.898 ÷ 1.9367 1.93675÷1.94730

P16 P32 P64 N

Ra · 10−5 1.94735 ÷ 1.9495 1.94955÷1.94985 1.9499 > 1.95

Table 1. Sequence of flow regimes encountered and correspondent ranges of Ra.

Fig. 4 reports the Poincaré maps for some characteristic values of the
Rayleigh number falling within the ranges of limit cycles of high-order period
(from P4 to P64) as well as for one value in the chaotic range, Ra = 1.9625 ·105.
In each map it is possible to observe the existence of four clusters of points, each
of which can be considered generated by the four intersections of the original
P1 limit cycle existing for Ra ≤ 1.735 · 105. In order to achieve a deeper detail
on the phenomenon, the encircled clusters in Fig. 4 are reported in Fig. Fig.
5, where the series of doubling of each point can be better observed. As a final
remark, it is possible to observe that the period doubling bifurcation path is
responsible for the birth of bands in the chaotic attractor, characterised by a
marked attitude to stretching and folding typical of fractal sets, as it can be
deduced by the ordered distribution of the intersections in the Poincaré maps.
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Fig. 4. Poincaré maps for characteristic Ra-values, for limit cycles of high-order pe-
riod (from P4 to P64) and chaos.

4 Concluding remarks

The sequence of bifurcations leading to deterministic chaos in natural convec-
tion from a horizontal cylindrical source, centred in a square enclosure of aspect
ratio A = 2.5, was analysed in detail by numerical means.

The set of long term simulations revealed further remarkable aspects of
the route to chaos of the system, for increasing the main parameter Ra. In
first instance, a window of quasiperiodic behaviour was observed over a wide
range of Ra-values, originating from the first limit cycle and giving rise to the
subsequent the period-doubling cascade.

Furthermore, the refinement of the parameter range allowed for the detec-
tion of additional stages in the sequence of period doublings of the system, up
to the observation of a P64 orbit, before the final appearance of chaos.
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Abstract. An analysis is made of the hyperchaotic behaviour of a triple plane pen-
dulum. It is shown that there are only eight physically distinct equilibrium config-
urations for the pendulum and that the types of eigen solutions obtained, for the
Jacobian matrix evaluated at each equilibrium configuration, are independent of the
system parameters. A new method for extracting the periodic orbits of the system
is also developed. This method makes use of least-squares minimisation and could
possibly be applied to other non-linear dynamic systems. As an example of its use,
four periodic orbits, two of which are numerically unstable, are found. Time series
plots and Poincaré maps are constructed to investigate the periodic to hyperchaotic
transition that occurs for each unstable orbit.
Keywords: Triple pendulum; hyperchaos; fixed points; periodic orbits.

1 Introduction

The present work is motivated by recent interest in studying pendulum systems
for possible exploitation in various technological applications. There have been
a number of experimental and theoretical investigations aimed at understanding
the stability of human gait (manner of stepping) through the use of inverted
pendulum models [1,2]. Experimental investigations of either simple or coupled
electro-mechanically driven pendulums have been undertaken with the view of
developing more precise conditions for the onset of chaos in such systems [3,4].
Also, a triple pendulum suspension system has been developed to seismically
isolate optical components on the GEO 600 interferometric gravitational wave
detector [5]. The latter development has allowed the detector to achieve a
seismic noise sensitivity level which is well below the level from thermal noise.

Coupled pendulums with obstacles have been used to model real mechanical
systems that exhibit nonlinear phenomena such as resonances, jumps between
different system states, various continuous and discontinuous bifurcations, sym-
metry breaking and crisis bifurcations, pools of attractions, oscillatory-rotational
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attractors, etc. [6–9]. In Ref. [9], for example, it has been shown that a triple
pendulum model can provide insight into the real, highly-complicated dynamics
of a piston connecting-rod crankshaft system.

An experimental triple pendulum has been constructed by Awrejcewicz et
al. [10]. This pendulum has been analysed numerically and experimentally, and
good agreement has been obtained between the mathematical model and the
real system. In the present work, higher order effects that pertain to specific ex-
perimental systems, like [10], are neglected. For example, we have not included
finer details of the frictional forces that act on the joints of the pendulum, or
asymmetries in its driving mechanism. One of the motivating factors for ne-
glecting such higher order effects is the correspondence that exists between the
equations for a damped simple pendulum, driven by a constant torque, and the
well-known phenomenological model of a superconducting Josephson junction
[4,11]. It is thought that our somewhat simplified model of the triple pendu-
lum could, with minor modifications, serve as a useful mechanical analogy for
a series system of three resistively coupled Josephson junctions.

This paper is organised as follows. In Section 2, the basic model and equa-
tions are described. The system is linearised at its equilibria in Section 3. In
Section 4 a new method is developed for finding the periodic orbits of the sys-
tem, based on least-squares minimisation. Four examples of found periodic or-
bits are discussed, including their time series and Poincaré maps. In two of the
examples interesting periodic-hyperchaotic transitions are observed. Section 5
concludes with a discussion of the main advantages and possible disadvantages
of the new method.

2 Description of model and equations

The current work is a continuation of our previous work [12], in which a three-
dimensional animation of a model triple plane pendulum was created by using
the Visual module in the Python programming language [14]. As shown in Fig.
1, the model consists of a series of absolutely rigid bars which form the three
links of the pendulum (shown in red, green and blue). Additional point-like
masses are attached to the bottom of each link (shown as yellow cylindrical
disks).

Fig. 1. Visualisation of the triple plane
pendulum. The pendulum is made of
rigid bars (two of length `1, two of
length `2 and one of length `3) to which
point-like masses may be attached (two
of mass m1

2
, two of mass m2

2
and one of

mass m3). The pendulum is assumed
to be under the influence of gravity
(g = 9.81 ms−2) and in vacuum. Also
shown is the trajectory followed by the
centre of m3.
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The equations for the pendulum have been derived in a very general form
which allows each link in the pendulum to have an arbitrary moment of inertia
[8]. In the present work we consider the equations for a pendulum consisting
of three point masses, i.e. we neglect the moments of inertia of the three links
shown in Fig. 1. The equations for this special case are given in Appendix A
of Ref. [12] in the form,

dx

dt
= f (x, α, t) . (1)

In Eq. (1), α ≡ (m1,m2,m3, `1, `2, `3, c1, c2, c3), represents the system pa-
rameters, where c1−3 model the viscous damping in each joint. The vector
x ≡ (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3), where θ1−3 are the angles made between the vertical
and each of the three links.

3 Linearisation at the equilibria

The spatial distribution and local dynamical characteristics of the equilibria of
a system greatly influence its nonlinear dynamics. Since the un-damped pen-
dulum is conservative, having only time independent constraints, its equilibria
are defined by the vanishing of the generalised forces Qi [13], i.e. by,

Qi =
∂V

∂xi
= 0 (for i = 1, 2, 3) , (2)

where V (x1, x2, x3) = (m1 +m2 +m3) g`1 cosx1+(m2 +m3) g`2 cosx2+m3g`3 cosx3
is the potential energy. The solutions to Eq. (2) produce eight physically dis-
tinct equilibria, as shown in Fig. 2.

Fig. 2. The eight physically distinct equilibrium configurations of the pendulum.
Configurations (i) to (vii) are unstable. Configuration (viii) is stable.

To characterize the linearised dynamics of the system near each equilibrium,
we calculate the Jacobian matrix of the system and determine its eigenvalues
at the equilibria. The Jacobian matrix, evaluated at any of the equilibria, has
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the form

J =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

±J1 ±J2 0 0 0 0
±J3 ±J4 ±J5 0 0 0

0 ±J6 ±J7 0 0 0

 , (3)

where J1 = g (m1 +m2 +m3) / (`1m1), J2 = g (m2 +m3) / (`1m1), J3 =
g (m1 +m2 +m3) / (`2m1), J4 = g (m1 +m2) (m2 +m3) / (`2m1m2), J5 =
gm3/ (`2m2), J6 = g (m2 +m3) / (`3m2) and J7 = g (m2 +m3) / (`3m2). To
evaluate J at any particular equilibrium, the signs preceding J1−7 in Eq. (3)
must be chosen according to the convention given in Table 1.

Equilibrium config. J1 J2 J3 J4 J5 J6 J7

(i) (π, π, π, 0, 0, 0) + - - + - - +

(ii) (π, π, 0, 0, 0, 0) + - - + - + -

(iii) (π, 0, π, 0, 0, 0) + - + - + - +

(iv) (π, 0, 0, 0, 0, 0) + - + - + + -

(v) (0, π, π, 0, 0, 0) - + - + - - +

(vi) (0, π, 0, 0, 0, 0) - + - + - + -

(vii) (0, 0, π, 0, 0, 0) - + + - + - +

(viii) (0, 0, 0, 0, 0, 0) - + + - + + -

Table 1. The choice of signs pre-
ceding J1−7 in Eq. (3) for each
of the eight possible equilibrium
configurations listed in the left
hand column. These combina-
tions of signs should also be used
in the definitions of b, c and d in
Eq. (4).

The eigenvalues η of the Jacobian matrix were determined by solving the
characteristic equation det(J − η1) = 0, where 1 is the 6 × 6 identity matrix.
By choosing all the signs in Eq. (3) to be positive, we found the characteristic
equation,

0 = aη6 + bη4 + cη2 + d , (4)

where a = 1, b = J1J4J7−J1J5J6−J2J3J7, c = J1J4−J2J3−J1J7−J4J7+J5J6
and d = J7−J1−J4. In the expressions for b, c and d the correct combination
of signs, for a particular equilibrium, must once again be chosen from Table
1. For example, for the second equilibrium, row (ii) in Table 1, one obtains
d = (−) J7 − (+) J1 − (+) J4.

Since Eq. (4) is a cubic polynomial in η2, its solutions could be written al-
gebraically [15]. The discriminant of each eigen solution was then used to prove
that the type of solution associated with a particular equilibrium configuration
is independent of the system parameters. These results are presented in Table
2. To present the complete analysis of the fixed points associated with each
equilibrium in Table 2 is beyond the scope of the present article. Briefly, our
analysis reveals that (i) to (vii) may be associated with various types of saddle
points (depending on the parameter values) and that (viii) will always remain
a nonlinear centre.
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Table 2. The various types of eigenvalues obtained by solving Eq. (4) at each of the
eight possible equilibrium configurations.

Equilibrium config. Stability Eigenvalues of J

(i) (π, π, π, 0, 0, 0) unstable all real

(ii) (π, π, 0, 0, 0, 0) unstable 4 real, 2 imaginary

(iii) (π, 0, π, 0, 0, 0) unstable 4 real, 2 imaginary

(iv) (π, 0, 0, 0, 0, 0) unstable 2 real, 4 imaginary

(v) (0, π, π, 0, 0, 0) unstable 4 real, 2 imaginary

(vi) (0, π, 0, 0, 0, 0) unstable 2 real, 4 imaginary

(vii) (0, 0, π, 0, 0, 0) unstable 2 real, 4 imaginary

(viii) (0, 0, 0, 0, 0, 0) stable all imaginary

4 New method for locating periodic orbits

Knowledge of the periodic orbits and their stability is an important aspect of
understanding chaotic systems and therefore a great deal of research has already
gone into developing more efficient methods for discovering the periodic orbits
and periods of non-linear dynamic systems. See, for example, Refs. [16–18],
and references therein. In this section we will develop a new method for finding
the periodic orbits by making use of the Levenberg-Marquardt algorithm for
least-squares estimation of nonlinear parameters [19].

Assume that the system has a periodic orbit with principle period T . As
pointed out by Li and Xu [17], it is convenient to use T as one of the optimi-
sation parameters. We therefore re-write Eq. (1) in terms of a dimensionless
time parameter τ , by setting t = Tτ . This substitution produces the equivalent
equation,

dx

dτ
= T f (x, α, T τ) . (5)

Since τ is measured in units of T , Eq. (5) has the advantage that it can be
integrated over exactly one period, by letting τ run from zero to one.

In order to search for periodic orbits we define the residual (error vector),

R = (x (1) − x (0) , x (1 +∆τ) − x (∆τ) , . . . , x (1 + n∆τ) − x (n∆τ)) , (6)

where ∆τ is the integration step size. In Eq. (6), n is an integer which must be
chosen large enough to ensure that R has a greater number of components than
the number of quantities which are to be optimised simultaneously. This choice
is required by the Levenberg-Marquardt algorithm, which is used to locate the
global minimum in R (note that R = 0 for periodic orbits). In the case of the
un-damped pendulum, for example, if all possible quantities are to be optimised
simultaneously, i.e. six initial conditions, plus six parameters, plus the period
(13 quantities); then one must choose n ≥ 2. The smallest possible choice for
this case is n = 2, which produces a residual with 6(n + 1) = 18 components
(see Eq. 6).

The definition of R requires the system to be integrated from τ = 0 to
τ = 1 + n∆τ . In the present work we have used a fourth-order Runge-Kutta
integration scheme with n = 3 and ∆τ = 1/N , where N = 2000. We have
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implemented the method in the Python programming language [14]. The mod-
ule Scipy.optimize contains the function leastsq, which makes use of a modified
Levenberg-Marquardt algorithm [20].

When applied to the triple pendulum, the method produces a surprisingly
large number of (numerically) stable and unstable periodic orbits. Many of
the found orbits at first appear to be qualitatively similar (when viewed on
a screen), but are in fact quantitatively different, when studied numerically.
In Fig. 3 we have plotted four examples of different periodic orbits that were
found. Figure 3 (a) shows a stable symmetric orbit of period T = 3.0363595 s.

Fig. 3. Four different periodic orbits followed by the centre of m3, i.e. here Y =
−`1 cosx1 − `2 cosx2 − `3 cosx3 is plotted against X = `1 sinx1 + `2 sinx2 + `3 sinx3,
for the first 10 s. (a) Symmetric and stable. (b) Broken-symmetric and stable. (c)
Broken-symmetric and unstable. (d) Symmetric and unstable. The colour of each
orbit represents the speed of m3 in the range zero (red) to 2 ms−1 (blue).

One point on the orbit is (−0.20813379, −0.47019033, 0.80253405, −4.0363589,
4.42470966, 8.3046730), with the parameters
m1−3 = 0.1 kg, `1 = 0.15 m and `2−3 = 0.1 m. Figure 3 (b) shows a stable
broken-symmetric orbit of period T = 2.78866884 s. One point on the orbit is
(−0.22395671, 0.47832902, 0.22100014, −1.47138911, 1.29229544, −0.27559337),
with the parameters m1 = 0.1 kg, m2 = 0.2 kg, m3 = 0.1 kg, `1 = 0.15 m,
`2 = 0.2 m and `3 = 0.3 m. The Lyapunov exponents for the orbits shown in
Figs. 3 (a) and (b) confirm that the orbits are periodic.

Figure 3 (c) shows an unstable broken-symmetric orbit of period
T = 3.23387189 s. One point on the orbit is (−0.78539816, 0.79865905, 0.72867705,
0.74762606, 2.56473963, −2.05903234), with the parameters
m1 = 0.35 kg, m2 = 0.2 kg, m3 = 0.3 kg, `1 = 0.3 m, `2 = 0.2 m and `3 =
0.25 m. The Lyapunov exponents, sampled every 0.0005 s for 2000 s, confirm
that this orbit is hyperchaotic, with λ1 = 0.90, λ2 = 0.19 and λ3 = 0.002.
Figure 3 (d) shows an unstable symmetric orbit of period T = 3.44620156 s.
One point on the orbit is (1.30564176, 1.87626915, 1.13990186, 0.75140557,
1.65979939, −2.31442362), with the parameters m1 = 0.35 kg, m2 = 0.2 kg,
m3 = 0.3 kg, `1 = 0.3 m, `2 = 0.2 m and `3 = 0.25 m. The Lyapunov exponents,
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sampled every 0.0005 s for 2000 s, confirm that the orbit is also hyperchaotic,
with λ1 = 2.95, λ2 = 1.10 and λ3 = 0.004.

To investigate the rapid transition that occurs from periodic to hyperchaotic
the time series and Poincaré maps of each orbit have been studied. Figure 4(a)
shows the time series of x6 for each of the four orbits.

Fig. 4. (a) Time series of x6 for the orbits discussed in connection with Figs. 3 (a)
magenta (top), (b) red, (c) green and (d) blue (bottom). (b) The corresponding
Poincaré maps. Parameter values and initial conditions are as for Fig. 3.

The corresponding Poincaré maps, shown in Fig. 4 (b), were constructed
by sampling the trajectories every 0.001 s, for 100 s. For this relatively short
time interval the periodic parts of the two unstable orbits are still clearly visible
within the surrounding (so-called) stochastic layer that is thought to replace
the region of destroyed separatrices [21].

5 Discussion and conclusion

The equations for a triple plane pendulum, consisting of three point masses
connected by massless links, have been analysed. It was shown that there
are only eight physically distinct equilibrium configurations for the pendulum
and that the type of eigen solutions obtained for the linearised system at each
equilibrium is independent of the system parameter values. A new method
for extracting the periodic orbits of the system was also developed. The new
method exploits the high-efficiency of the modified Levenberg-Marquardt al-
gorithm. It is simple to implement and does not require the computation of
the Jacobian matrix. In addition, the minimisation algorithm may easily be
constrained in order to restrict the search to specific regions of the phase space;
for example, to a constant energy surface. One possible disadvantage of the
method is that it does not discriminate between unstable and stable periodic
orbits. However, this aspect of the method may in fact be an important ad-
vantage, since it enables the method to be used for studying the coexistence of
both regions of stable dynamics and hyperchoas within the phase space.
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Abstract: Aircraft amphibian (SA), as a control object, has an extremely complex
structure consisting of a set of subsystems including exchange processes of force, energy,
matter and information. This control object operates in the complex environments as
atmosphere as well as adjoining surface of water and air.
The problem is to design a regulator that to control the flight modes with impact on the
surrounding environment. Requirement to designed regulator is quick responsibility to
adapt to the impact of chaotic disturbances of environments. In this report we consider a
method synthesis nonlinear control system of aircraft amphibian motion with state
observers of harmonic disturbances based on synergetic approach in modern control
theory
Keywords: Synergistic, system’s synthesis, regulator design, chaotic disturbances,
aircraft amphibian, nonlinear dynamic modeling.

1. Introduction
The solution of the various control tasks based on using of a control object state
vector. In real conditions of full state vector measurement for one reason or
another is not feasible. For this purpose, the control system introduces a
subsystem of state estimation - a state observer.
For linear systems, it is distinguished full-order state observers (Kalman
Observer), which have a dimension of the state vector as same as that of the
control object, reduced order observers (Luenbergera Observer) and observers
of increased order (adaptive observers) [1, 2]
Proposed in this article, the nonlinear observer can be referring to the reduced
order observers. Even more challenging is a problem of estimating the
unmeasured external disturbances. The basic idea of perturbation estimation is
as follows: To construct a model of external influences, which is in the form of
a homogeneous differential equation system with known coefficients and
unknown initial conditions. The model is combined with the perturbation model
and with this received enhanced system observer is constructed. Obtained with
it estimates include the estimates of object state variables, and evaluation of
external influences.
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The asymptotic observer design methods are applicable for a wide class of
nonlinear systems proposed in [3, 4, 5]. In this work, a new version of an
amphibian control methods and problems, which are solved by the dynamic
synergistic regulators to such observers, is described. These observers have
carried out a unmeasured harmonic external disturbance evaluation effecting on
the amphibian. The nonlinear external perturbation observers (NEPO) consist of
a monitoring contour and a control circuit that operates in parallel.

2. The Problem Statement
Suppose that the control object's behavior and an external disturbances effecting
on it could be described by the differential equations system:

 
 .,,

;,,
uzxhz
uzxgx







Where n vector x и m vector z – components of state vector; u – a control
vector; (.)g и (.)h – continuous nonlinear functions. Vector x  is assumed
observable, and vector z – unobservable.
Then the observer synthesis problem can be formulated as follows. Need to
synthesize NEPO with form:

   
   ,,ˆ

;,
wxKtz
wxRtw




where w – observer state vector; ẑ – unmeasured external disturbances
evaluation vector.
In this case, NEPO must provide:

• a closed system asymptotic stability;
• stabilization of the pitch angle, altitude and flight speed;
• assessment of unobserved external perturbations;
• compensation of external disturbances.

The NEPO synthesis procedure is divided into three stages:
a) Synthesis of control laws iu to ensure implementation of the required

technological problem (in this case assume that all control object state
variables are observable);

b) Synthesis of an observer for the unobservable state variables and
unmeasured disturbances.

c) Replacement of unobservable variables in the synthesized controls by
their evaluations.

3. The synergistic procedure of the control laws for the
longitudinal motion with harmonic disturbances
a). Synergistic synthesis procedure of control laws iu
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Common model of SA’s space movement is present by 12th order differential
equations system through Euler angles. In SA’s movement on water or in taking
off, it’s rational to consider longitudinal motion model:

 
 
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
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


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(1)

Where: 21, xx – the projections of velocity vector yx VV ,  on corresponded the

intertwined coordinate system axes; 3x – longitudinal angular velocity z ;

4x , 6x – projections coordinate SA’s center of gravity cc xy ,  on corresponded

axes Oy  and Ox ; 4x – pitching angle  ; m – SA’s weight;

   mmmm yx 21 1,1   – SA’s «attached» weights; ayax FF , –
projections total vector of aerodynamic forces on corresponded intertwined
coordinate system axes Ox  and Oy ; hyhx FF , – projections total vector of
hydrodynamic and hydrostatic forces on corresponded intertwined coordinate
system axes Ox and Oy ; Oy ; h

z
a
z MM , – longitudinal aerodynamic

moment and longitudinal moment formed by hydrodynamic and hydrostatic
forces; )(tM i – disturbances;

;;; 1
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In control the SA’s longitudinal motion elevator, flaps and engine thrust control
lever are the active control organs. Technical solutions that provide basing and
operation of the aircraft on the water surface, effectively determine its shape -
the seaplane aerodynamic scheme. Consequently, controls in the model (2) will
be the engine thrust, depending on the deviation of the engine thrust control
lever; the total aerodynamic forces and the total longitudinal moment,
depending on changes in the flaps and elevator deflection.
For control the SA’s longitudinal motion there are some strategies: controlling
individual channels or all channels simultaneously. Of course that the vector
strategy requires a more complex algorithmic structure of the regulator, but it
allows more flexible three-channel control of SA.
The problem of controlling the longitudinal motion is finding the control vector.

      зврурzзврурyзврурx MFFu  ,,;,,;,, ............ as a coordinate
function of the system states, which provides SA’s longitudinal short-period
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movement (2) at a given speed 0V , height 0H and pitching angle 0 , i.e. the
following invariants:

050401 ;;  xHxVx (2)
Rewriting the mathematic model of the control object following:
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where гxаxx FFPu 1 , гyаyy FFPu 2 , гzaz MMu 3 – are
control acts.
For model (3), the goal is implementation of desired invariants (2), we
formulate the first set of macro-variables 321 ,,  ,

),,,,,(
);,,,,(

;

32154233

32154122

011

zzzxxx
zzzxxx

Vx










(4)

which must satisfy the solution of following functional equations:
  ,31,0,0   iTtT iiii  ; (5)

At the intersection of invariant manifolds, 3,,1,0  ii , there is a
dynamic “phase space compression”, and the dynamics of closed-loop system
will be described by decomposed model:














;sincos)(
;)(

;cossin)(

51506

25

51504

xxVtx
tx

xxVtx












(6)

Now to introduce a second set of macro variables

044 Hx  ; 055   x . (7)
The set of macro variables introduced by (7) must satisfy solutions of functional
equation systems:

  5,4,0,0  iTtT iiii  . (8)
And to solve jointly equations from (6) to (8) for determining “inner” controls

21, in form of functions depending on state variables:
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.;
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5
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2

54

04504
1 T

x
xT

HxxVT 






 (9)

Further external control vectors iu is found by solving simultaneously
functional equation systems (4) and equation model (1):

   .1
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;sin1

3

3
05353
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2
2

43212

1
1
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5

1
1
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u
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a
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z
T
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a

u













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




(10)

Where indicated:
524

5
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sin

xaT
xA  ;
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42
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TTB 

 ;

5
2

42

0450

5
2

42

54
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VTxH
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1

xTTa
D 
 ;

2

5

5422

5040 cos
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a

xg
xTTa

xVTHE 


 .

Whereas synthesized control laws, 1u , 2u , 3u , of object (1), provide
implementation required technological problems, it is necessary to move to
description of the observer synthesis procedure.
b) The observer synthesis procedure
According to the method of Analytical Design of Aggregated Regulators, in
synergistic synthesis procedure of observers it should be used following an
extended system model (11) [3, 4]:
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

(11)
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Where i – harmonic disturbance angular frequencies, 321 ,, zzz – the
projections of indignant linear, longitudinal and angular accelerations
respectively.
The last six equations in system (11) is dynamic model of harmonic

disturbances, and 3..1,, isz ii  are state variables.
The state variable observer design is based on the synergistic approach
principles in the control theory, videlicet on the ADAR method, which is
described in works [3, 4]. In particular case, when 1)(dim t , the
expression

    yLt  (12)
Could be present in following form:

  .0,0  iiii LLt  (13)
To conduct the synthesis of the observers for the object (1), let
  5,...,1,  ixy i ,   3,2,1,,  jszv jj . To determine the assessments

of the state variables 11, sz , choosing forms of 21, :

   
   .ˆˆ

,ˆˆ

112211212

111211111

sszz
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
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(14)

Where 0ij – constants, 021122211   . In this the valuations

11 ˆ,ˆ sz  of the state variables 11, sz  could be formed by

.)(ˆ
,)(ˆ

2121

1111

wxfs
wxfz



(15)

where )(),( 1211 xfxf – unknown functions. Then to put (14) into the equation
in formed (13):
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while subject to the equations (15), receiving
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 With the equations (17) subject to the object equations (11), receiving:
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In the equations of the observer (18) must not be present at unobserved
coordinators 11, sz . In order to exclude them out of system, choosing
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Subject to (19), to solve the system of equations (18), finding
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And the valuations 11 ˆ,ˆ sz  of the state variables 11, sz are
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Similarly, to define the estimations 22 ˆ,ˆ sz , 22 ˆ,ˆ sz of the state variables 22 , sz ,

22 , sz , choosing following the macro variables
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The assessments of state variables 22 , sz , 22 , sz can be defined
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The macro variables (22) must be satisfy functional equations
  6,...,3,0,0  iLLt iiii  . (24)

With received equations formed by putting (22) in to (16) object to model (11),
we need to choose functions )(),(),(),( 36352423 xfxfxfxf , 6,...,3, iLi

so that the expressions of the observers must not consist in itself the unobserved
state variables. Choosing
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Consequently the equations of the observer is formed
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And expressions of state variable evaluations 3232 ,,, sszz  is described
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Thus, combining equations (20) and (27), we obtain a nonlinear state observer
for the external harmonic wave disturbances. Note that the unobserved variable

321 ,, zzz in the synthesized controls (10) should be replaced by its estimates

321 ˆ,ˆ,ˆ zzz (15) and (28).

4. Simulation
The results of computer simulation of closed-loop system (11) with the
synthesized NEPO are shown in figure 1 to figure 17.
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Fig. 1 Transient process relatively
horizontal speed xV

Fig. 2 Transient process relatively
vertical speed yV

Fig. 3 Transient process relatively
angular speed z

Fig. 4 Transient process relatively
flight height H

Fig. 5 Transient process relatively
pitch angular speed 

Fig. 6 Transient process relatively
flight distance X
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Fig. 7 Transient process relatively
control 1u

Fig. 8 Transient process relatively
control 2u

Fig. 9 Transient process relatively
control 3u

Fig. 10 Projection of system phase
trajectory on surface  tx1 &  tx6

Fig. 11 Projection of system phase
trajectory on surface  tx2 &  tx4

Fig. 12 Projection of system phase
trajectory on surface  tx3 &  tx5
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Fig. 13 Phase portrait in space
 tx4 ,  tx5 ,  tx6

Fig. 14 Phase portrait in space
 tx5 ,  tx1 ,  tx2

Fig. 15 Transient process relatively
disturbance )(1 tz and its estimation

Fig. 16 Transient process relatively
)(2 tz and its estimation

Fig. 17 Transient process relatively )(3 tz and its evaluation

5. Conclusion
This work is described the synergistic approach to problem of synthesis of
effective correlated control laws of longitudinal motion SA under sea wave
conditions, particularly in taking off process from water surface.
In conducting the simulation showed that the SA’s longitudinal motion control
objectives are achieved and using synthesized control laws can significantly
improve motion performance: decreasing pitch angle oscillation, angular rate
fluctuations and SA’s gravity center oscillation. The observers estimate the
unobserved disturbances with high measurement accuracy (fig.15-fig.17).
Thus, using synergetic control theory enable to create new classes of SA’s
motion control systems.
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Abstract: A device is designed for in vitro modeling of the directed flow of a nutrient
medium similar to the fluid flow in the eyeball. The primary culture of human fibroblasts
was cultivated in the permanent directed flow of the medium for 24 and 48 h. Under
dynamic conditions, an increase in the intracellular fermentative activity of cells of the
fibroblastic population and the acceleration of the process of their differentiation into
mature forms were observed.
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Implementation of morphofunctional capabilities of cells
intermediating the initiation, development, and outcome of any pathological
process depends significantly on the modulating influence of microenvironment
factors. In the eyeball, the microenvironment consists of the interacting system
of anatomico-physiological features and extrastromal regulation components.
Anatomico-physiological features are determined by the presence of the directed
flow of the intraocular fluid and by the fibrillar structure of the vitreous body.
Extrastromal components are represented by cellular elements migrating into the
vitreal cavity (cells of the retinal pigment epithelium, monocytes/macrophages,
lymphocytes, etc.) and by humoral factors (cytokines, growth factors). Of
particular interest, in our opinion, is the directed flow of fluid in the eyeball
induced by the pressure gradient.

The aim of this work was to study the influence of the directed fluid
flow on the morphofunctional state of human fibroblasts.

A device has been designed for the in vitro modeling of the flow of a
nutrient medium similar to the fluid flow in the eyeball. The device is a closed
system with a chamber equipped with a semipermeable filter. The system was
first filled with the nutrient medium with the aid of a vessel. The nutrient
medium contained 200.0 ml of the DMEM nutrient medium in the Iscove
modification and the 4% gentamicin solution (0.02 ml gentamicin per 10.0 ml of
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the nutrient medium). For the study, we used the fibroblast culture of human
lung after 3 to 4 passages in a concentration of 5104 cells/ml.

The cellular material came to the chamber through a valve hole. The
chamber was connected to the vessel containing the nutrient medium through a
roller pump equipped with a maintaining valve.

The roller pump generated the uniform directed flow of the nutrient
medium with a rate of 2.1-2.4 mm3/min. The primary culture was incubated in
the permanent flow of the nutrient medium under the cultivation conditions kept
unchanged for 24 and 48 h. For control purposes, fibroblasts were cultivated on
a semipermeable filter placed in a Petri dish with the nutrient medium at the
strict observance of temperature conditions (37 C), СО2 content (5-7%), and
the humidity level (100%).
The cellular material was examined by cytochemical methods.

At the flow cultivation of fibroblasts, the following results were
obtained.

Twenty four hours after the beginning of the experiment, the
cytochemical analysis revealed the moderate activity of α-naphtylacetatesterase
(22.56+/-0.90) and alkaline phosphatase (10.23+/-1.05) in cultivated cells. The
area of the cell surface averaged 238.94+/-5.36.

Forty eight hours later, the activity of the both ferments in the
described cells increased compared to the initial indices and to cells cultivated
under standard conditions (pZ0.01). In this case, the level of α-
naphtylacetatesterase was 26.98+/-0.87, while that of alkaline phosphatase was
14.67+/-1.21. The area of cell surface of fibroblasts averaged 179.43+/-7.81
(pZ0.001).

When fibroblasts were cultivated under standard (stationary)
conditions, in the entire series of experiments the cytochemical analysis
revealed the low activity of α-naphtylacetatesterase in cells. This activity
increased gradually during the cultivation (pZ0.05). No alkaline phosphatase
was observed in cultivated cells. The area of cell surface was 307.19+/-6.02 24
h later and 211.66+/-5.29 (pZ0.001) 48 h later.

The utmost discovery of the 19th century – the discovery of a cell in a
living organism – stimulated the intense study of various pathologies from the
position of the cellular structure of organs and tissues. R. Virchow in his
classical paper “Die cellular Pathologie in ihrer Begrundung auf physiologische
und pathologische Gewebelehre”, systematizing voluminous experimental data,
for the first time presented a complex organism as a system of cell or a “cell
nation.”

However, during the whole era of optical microscopy in morphology, a
cell was thought to be a so stable component of a tissue and organ structure that
its functional and morphological changes observable in an optical microscope
seemed to be not related to the dynamics of cellular structures. The idea of a cell
as a versatile and unchangeable unit of tissues and organs dominated.

Only new methods of morphological investigations, first of all,
electronic microscopy, changed radically the idea of a cell and dynamics of its
changes. The cell culture technique, which allows cells to be studied in their
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living state, actual action, and interaction with the microenvironment, has
helped significantly in the understanding of the integration and interpenetration
of the structure and functions. Intracellular structures and biochemical processes
occurring in them, as well as the permanent energy flow in a cell are in a deep
and close relation with each other, and together they complete the integral
pattern of the united structural-functional system, namely, a cell.

One of the main functions of the cell surface and the plasmatic
membrane is the perception and transfer of external regulatory signals into a
cell. Just this function is responsible, to a great extent, for the interaction
between the function of the cell membrane, its permeability, and the activity of
intracellular metabolism processes. Now a significant progress is achieved in the
understanding of molecular mechanisms of information reception, processing,
and transfer from the plasmalemma to intracellular organelles. It is established
that modulating factors of the extracellular medium act as exogenous regulatory
signals contacting with receptors of the cell surface. Under the conditions of our
experiments, the permanent directed flow of the nutrient medium and the
extracellular matrix can be such an exogenous signal for fibroblasts adhesed to
the filter.

We can assume that after the interaction of the external signal with cell
receptors, a cascade mechanism of certain intracellular processes is initiated.
Thus, for example, changes occur in the structure of receptor-related membrane
ferments, which catalyze the synthesis of endogenous regulatory molecules. As
a result, their concentration changes, and the cell permeability changes too.
Variations of the membrane potential also play an important role.

It should be emphasized that the plasmatic membrane not only serves a
mechanic barrier, but also regulates the consecutive income of substances to a
cell. Diffusion into tissue complies with Fick's law that reads as follows: as soon
as differences in concentration of one or another substance appear in the
medium, there is a flux of this substance leading to decrease in its concentration,
which is proportionate to the concentration gradient.

This equation applies to describe movement of molecules as well as
microparticles if their concentration is small.

Liposoluble low-molecular substances, first of all oxygen and carbon
dioxide – also penetrate easily through endothelial cells.

All macromolecules, such as proteins, nucleic acids, polysaccharides, and
lipoproteid complexes, come to a cell through the vesicle formation and joining
process, that is, endocytosis. The higher is the speed of the directed fluid flow
through a cell, the more intense is the endocytosis process, and,
correspondingly, the greater amount of substances comes into the cell. This, in
its turn, determines the degree of the metabolic activity of the cell, which is
confirmed by the results of fibroblast cultivation under the flow conditions.

The speed of the movement of water molecules inside the cell is also caused
by physical forces: gradients of the osmotic and hydraulic pressures on the both
sides of a cell. The higher the gradient, the faster is the intracellular motion of
water molecules and, correspondingly, transport vesicles, which transport
nonliposoluble substances, moving from one compartment to other.
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The directed movement of transport vesicles results in the reconstruction of
cellular compartments and the cell surface, as well as the retention or
destruction of intercellular units. One can assume that the content and
components of the donor compartment would ultimately disappear in the
process of transportation and the donor compartment (endoplasmic reticulum in
this case) would decrease in size, while the size of the acceptor (Golgi complex)
would, correspondingly, increase. However, this does not occur, because in the
cell there homeostatic mechanisms, regulating and maintaining the composition
of every organelle, for example, with the aid of the membrane return
mechanism. As transport vesicles of the endoplasmic reticulum fuse with the
acceptor membranes of the Golgi complex, certain proteins return from the
Golgi back to the endoplasmic reticulum. This process is known as a retrograde
transport. In contrast to it, at the anterograde transport, proteins continue to
move along the secretory pathway, namely, intercisterna coated vesicles
transport them through cisternae of the Golgi complex.

At the most part of the Golgi trans-network, proteins are sorted, and,
leaving this compartment, they are distributed over primary lysosomes,
constitutive vesicles, and secretory granules depending on their designation: in
the plasma membrane, in the cell, or outside.

In addition, from indices of intracellular metabolism, it is possible to judge
the state of cells and the direction and intensity of their activity. Thus, for
example, every stage of differentiation is intimately connected with the
activation of additional ferment systems and the formation of new biosynthesis
mechanisms. The data of cytochemical investigations of fibroblasts cultivated
under the flow conditions compared to indices under the stationary conditions
indicate that the activity of both specific (alkaline phosphatase) and nonspecific
(α-naphtylacetatesterase) ferment systems increases, which is indicative of the
acceleration of the cell differentiation process. This is confirmed by the more
significant (compared to the stationary case) decrease in the area of cell surface
of fibroblasts cultivated under the flow conditions as a reflection of the degree
of fibroblast mature.

Thus, at the cultivation of human fibroblasts in vitro under the
conditions of the directed nutrient flow, the increased intracellular fermentative
activity of fibroblasts is observed. Under the modulating influence of
microenvironment factors (directed fluid flow, extracellular matrix), the process
of cell differentiation into mature forms accelerates.

The data obtained extend the idea of the microenvironment influence
on the morphofunctional state of cells of a fibroblast population and allow
cellular mechanisms of development of fibrovascular proliferation in the eyeball
to be studied from new positions.
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Abstract: In the framework of the Fitzhugh Nagumo kinetics and the oscillatory
recovery in excitable media, we present a new type of meandering of the spiral waves,
which leads to spiral break up and spatiotemporal chaos. The tip of the spiral follows an
outward spiral-like trajectory and the spiral core expands in time. This type of
destabilization of simple rotation is attributed to the effects of curvature and the wave-
fronts interactions in the case of oscillatory damped recovery to the rest state. This model
offers a new route to and caricature for cardiac fibrillation.
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1. Introduction

Rotating spiral waves are ubiquitous in excitable media. They have been
observed in chemical reactive solutions [1, 2], in slime-mold aggregates [3] and
most importantly in cardiac muscle [4].Such wave patterns have been studied
using reaction-diffusion equations models. For some values of the system
control parameters, they undergo simple rigid rotation around a circular core.
However, as the control parameter is varied, the spiral tip deviates from circular
trajectories [5-11]. This non-steady rotation is known as meandering and it has
been observed essentially in chemical systems such as in the Belouzov-
Zhabotinsky (BZ) reaction [12]. Experiments with this reaction have also
demonstrated spiral breakup [13, 14]. This later is of interest in cardiology since
it is the prelude to cardiac fibrillation, the commonest cause of sudden cardiac
death [15, 16], and has been observed in models that show wave trains
spatiotemporal instabilities [17-18]. It is characterized by spatiotemporally
chaotic or irregular wave patterns in excitable media and remains a challenging
problem in nonlinear science.

We present in this paper a new type of meandering leading to spiral breakup and
offering a new route to spatiotemporal irregularity or chaos in excitable media.
Spiral core expansion occurs here as the spiral free end or tip follows an
outward motion along a path that looks itself like a spiral. This core expansion
was previously expected by the theory of non-local effects [6, 9, 10], and was
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attributed to effect of curvature on the velocity of propagation coupled to the
effects of the interaction of successive wave-fronts due to refractoriness. The
dependence of the normal velocity of propagation on curvature is given
by kDvv  0 , where k  is the local curvature, D  is the diffusion coefficient

and 0v  is the plane wave velocity of propagation [11]. Due to this velocity
gradient, small wavelength perturbations on the segments away from the tip
would decay, which would stabilize wave propagation away from the tip and
maintains the rotational motion of the spiral. On the contrary, perturbations
straightening a small segment containing the tip would reduce curvature, and
consequently the normal velocity of wave propagation is enhanced as the
gradient of the normal velocity becomes weaker. This means that the tip would
have a less tendency to curl but it tends to advance further. Therefore, further
straightening of this segment containing the tip is expected. Thus, the spiral tip
undergoes an outward forward motion instead of simple rigid rotation. If the
recovery is non-oscillatory but monotonic, this destabilizing effect of curvature
would be counteracted by the repulsive wave-front interaction due to the
refractory period imposed on the medium after the passage of the preceding
wave. In that case, circular rigid rotation would be sustained.

This outward motion of the tip along a spiraling trajectory was predicted by
Ehud Meron in his theory of non-local effects [6, 10]. He proposed an
approximate spiral wave solution of the reaction diffusion system in the form of
a superposition of solitary wave-fronts parallel to each other, and then derived
an evolution equation using a singular perturbation approach. The numerical
solution of this equation, for the case of an oscillatory recovering excitable
medium, was a spiral wave whose core expands in time and whose tip moves
itself along a spiraling path. However, no observation of this type of spiral wave
meandering and core expansion was obtained by Meron in reaction diffusion
systems.

2. The Model

Here, we present a new model showing for the first time this predicted core
expansion. We use a modified Barkley’s model [19, 20] given by:

uavbuuutu 2)]/)(()[1(1



,

vutv  3 ,                                                     (1)
where u  and v  are the excitation and recovery variables respectively. The
parameter b  determines the excitation threshold. The inverse of  ,
characterizing the abruptness of excitation, determines the recovery time. In the
standard Barkley’s model where the local kinetics in the second equation is
given by )( vu  , propagation cannot be maintained upon increasing  . Here
propagation is maintained due to the delay in the production of v .
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Numerical simulations were performed on square grids using the explicit Euler
integration method with a 9-point neighborhood of the Laplacian and no-flux
boundary conditions. The space and time steps are respectively dx = 0.51 and dt
= 0.052.
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Fig. 1. (a) Phase diagram illustrating the dynamics of the PDE-system with u
and v recorded at the point (40,40) in a grid size of 220. Parameters: a =0.75,
b = 0.06, 5.131  . Shown are the nullclines: 3uv  , thuu  , 0u ,

and 1u . (b) The time variation of u  and v  corresponding to one
excursion along the phase diagram in (a).(c) The time variation of u  and v
in the standard model.

Fig. 1(a) illustrates the nullclines.The time signals of the two variables when the
threshold of excitation is exceeded are shown in Fig. 1(b). In the standard
Barkley’s model where the local kinetics in the second equation of (1) is given
by )( vu  , propagation cannot be maintained upon increasing  . Here
propagation is maintained due to the delay in the production of v  as shown in
Fig. 1(b), compared to the production of v  or the time at which v  starts
increasing in the standard model as shown in Fig. 1(c). Also the rate of recovery
of the medium is made slower (in Fig. 1(b)) compared to rate of recovery in the
standard model where u goes to zero more rapidly (in Fig. 1(c)).
A spiral wave was initiated using the coarse gradient cross-field method, that is
by setting u = 0 in the left half of the medium and u = 1 in the right half; v = a/2
in the upper half and v = 0 in the lower half. The subsequent evolution of the
system at different times is shown in snapshots in Fig. 2. The simple rigid
rotation of the spiral is destabilized because of the relatively high value of  .
The spiral tip defined as the intersection of the two isolines u = 0.5 and v = 0.5u
– b, starts meandering, the spiral core expands as shown in Fig. 2, and the tip
follows an outward motion along a spiraling path as shown in Fig. 3(a). The
type of meandering is different for a different value of   in Fig. 3(b). The
meandering shown in Fig. 3(a) offers a demonstration that agrees with the
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Fig. 2. Snapshots showing the core expansion with dt = 0.052, dx = 0.51,
L = 48, grid size: 95. (Time intervals between snapshots are not equal).

prediction of the theory of non-local effects by Meron in the case of oscillatory
recovery in excitable media. The type of recovery actually depends on the value
of the control parameter  . For low values of , perturbations near the spiral
core are quenched by repulsive wave-fronts interactions in the monotonically
recovering medium. If the value of   is increased and for appropriate values for
the other parameters, the tip undergoes this interesting outward motion along a
path that looks like a spiral while the core grows in size due to oscillatory
recovery to the resting state. The distance between the tip segment and the one
ahead of it is determined by one of the maxima of the oscillatory tail. This
corresponds to one of the minima of the excitation threshold.

In Fig. 3(a), the distance between the points denoting the tip positions increases
as the tip moves outward implying that the tip motion is accelerated. In Fig.2,
the spiral core expands until spiral breakup occurs. This happens because the
spiral period changes as the spiral drifts and meanders, until at some point
within the excitable medium, it reaches the minimum period needed for plane
wave propagation. This change in the spiral period as the tip moves outward and
forward is due to Doppler shift since the core is seen as the source of waves.
This means that conduction would be blocked since the spiral rotates more
rapidly than plane waves can propagate when the spiral period and the minimum
period compatible with plane wave propagation merge for this critical value of
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Fig. 3. Trajectory of the spiral tip defined as the intersection of the isolines u = v
= 0.5, and following an outward spiral trajectory in (a) and meandering in (b).
Parameters are the same as in Fig. 1 in (a), and in (b) 0.181  .

 [22]. The spiral becomes unstable and breaks into newly born broken waves
which will soon evolve into spirals waves since they have broken ends. This
leads to spatiotemporal chaos or irregularity within the excitable medium as
shown in Fig.4 where the time variations of the excitatory and the recovery
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Fig. 4 Time variation of the excitatory and the recovery variable recorded in the
medium at the location (10,10). The dotted one is the variation of v .

variables are recorded at point (10,10) in the excitable medium of size L = 100.
This phenomenon can be attributed to an unstable focus by considering a
traveling wave solution of (1), )()( ctxuzu   where c  is the wave speed.
Substituting this solution into (1) reduces the reaction-diffusion equations to the
following ODE system:

)]/)(()[1()/1(/ avbuuucwdtdw  
wdtdu /

))(/1(/ 3 vucdtdv  ,                                                (2)

Using parameter values a=0.75 and b=0.06, 5.131  , the numerical solution
shown in Fig.5 approaches the resting state in an oscillatory manner. For those
values of the parameter, the system can have complex eigenvalues implying that
the fixed point (0,0,0) is an unstable focus for 032.42 c . This condition
is satisfied for some range of the spiral period as it can be seen in the dispersion
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Fig. 5. Recovering solitary traveling solution u(z)=u(x+ct) of Eqs.(2),
illustrating damped oscillatory ( 5.131  , 14.5) and monotonic recovery
( 0.201  , 50.0).

Fig. 6. Dispersion curve: Instantaneous wave speed as a function of period for
5.131  , 14.5, 50.0 respectively from bottom to top, computed by

repetitively stimulating at one of the ends of an open line.

curve in Fig. 6. That justifies the oscillatory behavior of the numerical solution
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of (2). For other values of the parameter  , the solution approaches the resting
state (0,0,0) in a non-oscillatory manner if 0.501   for which the spiral
rotates rigidly around a circular core. If 0.201  , the recovery is also
monotonic, but that does not necessarily imply rigid rotation. Actually, the
spiral tip meanders following an epicycle-like orbit as shown in Fig. 3(b). On
the other hand, if 5.131   or 5.141  , the solution returns to the
resting state in an oscillatory manner as seen in Fig. 5; the system undergoes a
succession of super and subnormal periods until complete recovery is achieved.
However, for 5.141  , unlike the case for 5.131   (shown in Fig. 3(a)
and Fig. 2) and despite the oscillatory type of recovery, core expansion does not
occur and the tip does not follow an outward spiraling trajectory. It traces loops
like those of an epicycle as the spiral wave rotates and drifts away. Actually, we
found that the tip moves along a spiraling path in the range 13.0< 1 <13.8. For

1 >13.9, it meanders but not along a spiraling trajectory. Thus, we note the
important conclusion that oscillatory recovery does not necessarily lead to core
expansion and spiraling tip.
This oscillatory recovery can be further investigated by writing the solution of
the reaction-diffusion system as a superposition of two solitary waves with a
small perturbation term R  which vanishes in the limit of infinite spacing
between the two waves:

Rzzuzzuzu  )()()( 21                           (3),

where ctxz  11  and ctxz  22 , 1x  and 2x  denote the waves

positions. For large 1z and 2z , the tail of the wave determines the manner in
which the medium recovers to the resting state is: When the recovery is damped

oscillatory, the tail of the wave )cos()(   zezu z ; when it is

monotonic, zezu )( . In both cases, the leading edge of the wave is

assumed to be of the form zezu )( . Equations for 1x  and 2x  are derived
using the solvability conditions which remove singularities from R  [21]:

)(1 21 xx
Reac

t
x  




                                             (4)

))(cos( 21
)(2 21 


    xxeac

t
x xx

L     (5),

where c  is the propagation speed of a solitary wave. The second term on the
right hand side of (4) represents the effect of the second wave on the
propagation of the first one. It is usually negligible in excitable media. The
second term on the right hand side of (5) represents the effect exerted on the
second wave by the refractory wake of the first one. Using (4) and (5), the
spacing between the two waves 21 xx  obeys the equation:
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)cos( 
   ea

dt
d

L                                (6).

If 0 , the excitable medium recovers in an oscillatory way. Then, according
to (6) an infinite number of steady state solutions exist. This means that the
distance between the wave-fronts takes one of possible fixed values.

Those oscillations in the way of recovery to the resting state would imply
oscillations in the dispersion. This is shown here by considering the times when
wave-fronts pass through a given location x . The solution of (5) is then
approximated by widely spaced impulses:

 
k

iki Rxtutxu ))((),( ,                               (7)

where )(xt i  is the instant at which the ith impulse is at x , and R  is a small
perturbation term which vanishes in the limit of infinite spacing between the
waves. Using (7) in (1), we get

)(
1

)(
0

11 '])(cos[')/1(/ iiii tt
ii

tt
i ebttveacdxdt 


    

(8)
where η is the rate at which the wave-fronts tail off. The second term on the
right hand side of (8) represents the effect exerted on the ith impulse by the
refractory wake of the preceding impulse. The last term represents the effect of
the succeeding impulse and is negligible in excitable media. The coefficients 'a
and 'b  require the evaluation of certain integrals which are not shown here.
Let Ticxxt i )1()/()(  , where T is the period of a constant speed wave-
train. Then we get to leading order,

]cos['2
00    Teaccc T                                                            (9)

For ν ≠ 0 in (9), damped oscillations occur in the dispersion curve. For
monotonic recovery (ν = 0, a>0), the wave speed is a monotonic increasing
function of wave spacing. If ν = 0 and a<0, the recovery is said to be non-
monotonic and could exhibit one supernormal period [10, 19]. In Fig. 6, there
are damped oscillations in dispersion curve of the system (1) for

5.131  and 5.141  . The first supernormal period during which the
excitability is higher than that of the rest state is very pronounced. However,
for 0.501  , as expected, the monotonically recovering system is
characterized by a dispersion curve with monotonic increase in the propagation
velocity until the limit set by the solitary wave velocity is reached.

3. Conclusions
This oscillatory behavior and the occurrence of supernormal periods in the
dispersion curve were observed in wave train solutions of the one-dimensional
FitzHugh-Nagumo model [23]. But, no core expansion has ever been reported
before. Also, the observation of expanding cores and spiraling tips here answers
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the query of Meron [6, 9, 10] and Winfree [24, 25] about the possible
observation of core expansion and oscillations in the dispersion curve. Using
FitzHugh-Nagumo kinetics with parameters chosen such that the equilibrium
point is nearly a center, Winfree showed that the medium can then support two
stable rotors of different periods. The dispersion curve exhibited a damped
oscillatory behavior. However, core expansion was not observed, and
meandering along a spiraling path was not obtained.
This occurrence of 'supernormal' periods of excitability during which the
threshold of excitation is diminished was reported in electrophysiological
measurements in stimulated cardiac muscle [26]. The current that was needed to
re-excite the Purkinje fibers was reduced. We could attribute it to the faster
recovery of the threshold potential compared to the slower recovery of the
action potential that we have seen here. We have also verified that than a
smaller additional depolarization is needed to reach the threshold potential and it
was brought about by a weaker depolarizing current.
Our results would imply that core expansion could be one possible route to
spiral breakup.
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Abstract: Sn-Ag-Cu (SAC) alloys are considered as the best replacements of Sn-Pb
alloys which are banned due to the toxic nature of Pb. But, SAC alloys have a coarse
microstructure that consists of β-Sn rich and eutectic phases. Nanoindentation is a useful
technique to evaluate the mechanical properties at very small length scale. In this work,
CSM nanoindentation setup is used to determine the individual phase mechanical
properties like Young’s modulus and hardness at high temperatures. It is demonstrated
that these properties are a function of temperature for both β-Sn rich and eutectic phases.
Loadings starting from 500 µN upto 5000 µN are used with 500 µN steps and average
values are presented for Young’s modulus and hardness. The loading rates applied are
twice that of the loadings. High temperatures results in a higher creep deformation and
therefore, to avoid it, different dwell times are used at peak loads. The special pileup
effect, which is more significant at elevated temperatures, is determined and incorporated
into the results. A better agreement is found with the previous studies.

Keywords: SAC alloys, Nanoindentation, Young’s modulus, Hardness, Pileup effects

1. Introduction
Good set of entire mechanical, electrical, chemical and thermal properties are
the key elements before classifying any solder to be good for current solder
joints. All of these properties were well set for Sn-Pb solder until no restrictions
were taken by RoHS and Environmental Protection Agency (EPA), which
identified Pb as toxic to both environment and health. This is because Pb and
Pb-containing compounds, as cited by EPA, is one of the top 17 chemicals
posing the greatest threat to human beings and the environment [1]. Moreover,
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current consumer demands and strict governmental legislations [2-4] are
pushing the electronics industry towards lead-free solders.
Many lead-free solder alloys are studied by different researchers with wide
range of applications. In Abtew’s report [2], almost 70 lead-free solders are
proposed to replace their lead based counterparts. Most of the newly defined
lead-free solders are binary and tertiary alloys [5], out of which, SAC tertiary
alloys are considered as the best substitutes [6]. As like many other alloy
systems, SAC has also certain limitation due to their coarse microstructure. Iron
(Fe), cobalt (Co) and nickel (Ni) are used as potential additives to overcome
these limitations [7]. In some studies, indium (In), bismuth (Bi), copper (Cu)
and silver (Ag) are used as alloying elements [5]. Before classifying SAC as
good substitute, extensive knowledge and understanding of the mechanical
behaviour of this emerging generation of lead-free solders is required to satisfy
the demands of structural reliability.
Electronic devices once subjected to severe conditions during service exposes
solder joints to elevated temperatures. This causes significant evolution of the
microstructure of SAC alloys. SAC alloys consists of β-Sn, eutectic Sn phases
and Ag-Sn and Cu-Sn InterMetallic Compounds (IMCs). These IMCs are
generally hard and brittle in nature which dictates the entire mechanical
properties of the solder joints. Exposures to high temperatures causes thermal
coarsening due to which the size of these IMCs grow and further deteriorate the
solder joints and hence alters the structural reliability of the whole assembly.
Rare-earth elements, known as the vitamins of metals, are used in different
studies to control this thermal coarsening with significant results [8-11]. All
these elements refine the grain size leading to a fine microstructure which
ultimately improves the mechanical properties of SAC lead-free solders
including yield stress and tensile strength [10-11].
The fast introduction of lead-free solders without deep knowledge of their
behaviour has caused many problems in the current electronics industry.
Therefore, good understanding of SAC alloys is required to explore the
mechanical properties and enhance the solder joint reliability. The main focus of
this work is to measure the individual phase properties like Young’s modulus
and hardness of SAC alloys for eutectic Sn and β-Sn phases. Many researchers
have already attempted to determine the mechanical properties of Sn-Ag and
SAC alloys [12-13]. The indenter causes piling up inside the soft Sn-matrix
which has been neglected in many studies which makes the results unreliable. In
this study, the piling up effect is considered for both phases and evaluated using
semi-ellipse method and incorporated into results. Both results, before
modification and after modification are provided for comparison.

2. Experimental
Solder alloy used in this study is Sn3.0Ag0.5Cu with 96.5 wt % of Sn, 3 wt %
of Ag and 0.5 wt % of Cu. Since sample preparation for any kind of
experimental study is crucial. Therefore a casting die is used to make the
samples using “cast by melt” process with many advantages. This die gives
almost final shape to the samples with minimum of final machining required.
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Almost voids-free surface is achieved which is very important for the
nanoindentation testing. During casting the microstructure of the testing samples
is controlled using specified cooling rate which is about 3°C/s. A temperature of
260°C was kept in the oven and the die was heated for about 45 minutes before
putting the molten metal into it. The 200g ingots were put in a crucible and then
placed in the oven at 260°C for about 25 minutes. Water at a temperature of
15°C was used for quenching; the cooling rate of the specimens was measured
with a K-type thermocouple. Only a small part of the die was dipped in the
water to get a slow cooling rate of about 3°C/s, which is close to the actual
soldering process. The dog-bone shape specimen is shown in Figure 1 with a
thickness of 2mm.

Fig. 1. Dog-bone specimen (all dimensions in mm)

Specimens were mechanical polished with silicon discs and 1 micron diamond
paste. Chemical etching was performed for a few seconds using a 5%
hydrochloric acid and 95% ethanol solution in order to distinguish between
different phases. Figure 2 shows an SEM micrograph and Optical microscope
(OM) micrograph taken before the nanoindentation. An Oxford EDS system
placed in the SEM enabled to realize elemental mappings for every specimen.
Nanoindentation tests were carried out by using a nanoindenter XP equipped
with a Berkovich-84 diamond indenter. The resolutions of the loading and
displacement systems are 50 nN and 0.01 nm, respectively. Both of the standard
deviation errors of the measured hardness and reduced modulus values for the
standard are well less than 1%. The hardness value and reduced modulus values
were also extracted from the unloading part of load–depth curves by using
Oliver and Pharr method [14].
An acquisition frequency was 10 Hz and poison ratio, assumed, was 0.33. The
load applied were 100 µN to 5000 µN with steps of 500 µN. The loading and
unloading rates (mN/min) were two times that of load applied (mN). An
approach speed of 3000 µN/min was used. As the lead free solders exhibit
severe creep deformation, even at room temperature [15], the dwell time at the
peak load is defined as 60 seconds in order to completely relieve the creep
deformation and also avoid the famous “bulge” or “nose” effect during
unloading [16].
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Fig. 2. (a) SEM and (b) Optical Microscope micrographs before nanoindentation

The selection of position to indent was controlled under a high-resolution
Optical Microscope (OM), by which various phases can be distinguished. OM
was also applied after the indentation to confirm the indenter location and avoid
the grain boundary effects. For each specimen, 9 points (3X3 arrays) were
tested. Both phases, eutectic and β-Sn, were selectively indented by the visual
matrix method. Same tested zones were studied after the indentation testing with
Atomic Force Microscope (AFM).

Afterwards, Scanning Electron Microscope (SEM) and Energy Dispersive
Spectroscopy (EDS) were used to confirm the chemical composition of each
phase. Further, because the Young’s modules and hardness for each phase is
different, curves for eutectic phase and β-Sn phase can be distinguished from the
test array.

3. Results and discussion
This is well known in the nanoindentation testing that the typical load-depth
curve has significant importance for extracting the overall results. Most
importantly, the slope of the unloading portion of the curve is used in almost all
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calculations. As discussed earlier, SAC alloys are famous for their low creep
resistance and hence quite vulnerable to creep, due to which the pile-up effects
happens which causes the “bulge effect” in both β-Sn and eutectic-Sn phases. It
is important to avoid this “bulge effect” as it may alter the credibility of final
results. Different loads were tested to avoid this effect but it still exists as shown
in Figure 3.
Moreover, in order to investigate the creep effects on the mechanical properties,
different holding times were used. In comparison to Sn matrix, the IMCs are
expected to be resistant to the creep effect. In some cases, there is some bulge
effect, but it can be concluded that this is because of the Sn matrix in which
these particles are finally embedded.

Fig. 3. Load-displacement curves with no holding time

Both β-Sn and eutectic Sn phases were subjected to indentation testing. The
load-time history for the entire testing is shown in Figure 4.At a peak load of
5000µN, a 60 seconds dwell time was used to avoid the bulge effect. Solder
joints are exposed to high temperatures during service. This causes thermal
coarsening of IMCs, due to which, their size grows as the diffusion rate of Ag
and Cu into Sn increases at elevated temperatures. It is of utmost importance to
understand and explore the individual phase mechanical properties up to a
homologues temperature of at least 0.4Tm, where Tm is the melting point of SAC
alloy.
The Load-Depth curves for individual phases at 20°C, 45°C and 85°C are given
in Figures 5-7 respectively. In this case, the bulge effect is negligible. Quite
useful information can be extracted from these curves. It is important to
visualize that the elastic deformation in both phases is quite small which makes
the unloading curve almost straight (vertical). Moreover, as also described by
the other researchers, indentation depth in eutectic phase is significantly smaller
than the β-Sn phase [15]. This effect was also confirmed when the hardness of
both phases were compared, eutectic phase being harder than β-Sn phase. This
could be the effect of diffusion of Ag and Cu in Sn in the eutectic zone. For
confirmation of the testing zone, the tested specimens were taken under the
AFM. High resolution images were collected as provided in Figure 8 for the
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testing performed over eutectic zone in SAC alloy. Different size of indentation
represents different loadings applied during testing.

Fig. 4. Load-time history during indentation testing with 60 seconds dwell time

Fig. 5. Load-displacement curves for Eutectic and β-Sn phases at 20°C
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Fig. 6. Load-displacement curves for Eutectic and β-Sn phases at 45°C

Fig. 7. Load-displacement curves for Eutectic and β-Sn phases at 85°C
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Fig. 8. AFM image after nanoindentation over eutectic zone

3. Oliver and Pharr Model
Oliver and Pharr Model (OPM) is extensively used for the solder alloys [14].
Both Young’s modulus and hardness are easily extracted using OPM after
calculating the reduced modulus Er as described in equation (1),

1 . ...........(1)
2r o p

S
E A






where S is the contact stiffness calculated from the slope of the unloading
portion of the curve, β is a constant related to the geometry of the indenter, and
Aop is the oliver-pharr area projected during indentation. At the same time, the
reduced Young's modulus could be formulated as,

22 11 1 .........(2)i

r i

vv
E E E


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where E and υ are the Young’s modulus and Poisson’s ratio of the tested
material and Ei, υi are the Young’s modulus and Poisson’s ratio for the diamond
tip. The values of Ei and υi used in this study were 1141 GPa and 0.07,
respectively as used in most of the studies [8] and the Poisson’s ratio of each
phase, i.e., β-Sn and eutectic Sn phase was approximated to be 0.33 which was
consistent with the previous studies [8]. Hardness (H) of the material, on the
other hand, can be determined by (3) where Fmax is the peak indentation load and
Aop is the projected contact area

max ........(3)FH
Aop

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Table I. Constant “C” values for berkovich-BK indenter tip

C0 C1 C2 C3 C4 C5
24.5 10.31 -16.03 24.45 -7.32 5.12

where C is the constant depending on the indenter type and shape and are given
in Table I for Berkovich-BK indenter tip. hc is the contact depth which is
smaller than the theoretical depth due to the sinking effect of the specimen
under indenter.
Both Young’s modulus and hardness are determined and provided for eutectic
and β-Sn phases in Table II. These are the results before pile-up effects. Almost
no change was investigated with varying loading and loading rates. This is
consistent with other studies [15].

Table II. Individual phases Young’s modulus and hardness before pileup effects
Phase Young’s modulus (Gpa) Hardness (Gpa)

Eutectic-Sn 60±3 0.35±0.04

β-Sn 54±4 0.30±0.045

4. Pileup area calculations
Assuming that the projected contact area, Ac, determined at contact depth, hc,
traces an equilateral triangle of side b, then for a perfect Berkovich tip,

There are semi-elliptical portions at each side of the triangle as shown in Figure
9. The area of each semi-elliptical pile-up projected contact area is and the
total pile-up contact area is, therefore,

.......(6)
4pu i
bA a

 
where the summation is over three semi-elliptical projected pile-up lobes and ai
being the measurement of piling up width on three surface (sides) of the
equilateral triangles [2]. The AFM images are analyzed in image-plus to trace
the surface profiles and are given in Figure 10. Knowing then the contact area
from the Oliver–Pharr method, the total or true contact area for an indent can be
obtained as:

18
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

   
Incorporating this new pileup area into the original OPM as presented in
equations (1) and (3) becomes,
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The hardness and indentation modulus measured for eutectic and β-Sn phases
are shown in Table III after incorporating the pileup effects. These results are in
a better agreement with the previous studies [12]. This collection of data allows
for comparison of mechanical properties of different phases, where all of the
samples were prepared and tested in the same manner.

Fig. 9. (a) Pileup schematic and (b) equilateral triangles after testing
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Fig. 10. Pileup profiles for equilateral triangles

Table III. Young’s modulus and hardness after pileup effects
Phase Young’s modulus (Gpa) Hardness (Gpa)

Eutectic phase 49±2 0.25±0.05

β-Sn phase 45±3 0.20±0.06

Both Young’s modulus and hardness were also determined along the indentation
depth with experiencing only small variations which is also consistent with [12].
The average values for the Young’s modulus for eutectic phase, along the
indentation depth, are determined to be 51 GPa whereas for β-Sn it is 48 GPa.
Similarly, the average values for hardness, along the depth, for eutectic phase
are determined to be 0.26 GPa whereas for β-Sn it is 0.22 GPa. The average
values are taken from 100 nm to 500 nm depth. These values are taken after
considering the pileup effects.
Similarly, summarized results for β-Sn and eutectic phases for Young’s modulus
and hardness at elevated temperatures are given in Tables IV-V respectively.

Table IV. Mechanical properties for β-Sn phase at different temperatures

Temperature (° C) Young’s modulus (GPa) Hardness (GPa)

45 37.42 ±2.1 0.10 ±0.03

65 36.21 ±3.2 0.095 ± 0.025

85 34.85 ±3.5 0.087 ± 0.027

Table V. Mechanical properties for Eutectic phase at different temperatures
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Temperature (°C) Young’s modulus (GPa) Hardness (GPa)

45 42.83 ±2.7 0.19 ±0.040

65 43.72 ±2.2 0.17 ± 0.025

85 51.85 ±4.5 0.11 ± 0.027

Like the other phases of SAC alloys, the nanoindentation setup is also used for
IMCs. These IMCs are hard and brittle as compare to the other phases in the
same specimens. The EDS elemental mapping is used to verify the compositions
of these IMCs before implementing the nanoindentation.
The AFM micrograph is given in Figure 11 in which the indentation is carried
out on IMCs. These images are collected just after the indentation process. The
results for Young’s modulus and hardness for both Ag3Sn and Cu6Sn5 IMCs are
provided in Table VI, with good comparison to the previous studies [17]. This is
important to mention that the pileup effect is very small for these particles
which is consistent with previous studies and therefore is neglected for IMCs.

Fig. 11. AFM image for nanoindentation over IMCs

Table VI. Mechanical properties for IMCs
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IMCs Young’s Modulus (GPa) Hardness (GPa)

Ag3Sn 74 3 3.32 0.2

Cu6Sn5 91 5 5.8 0.6

5. Conclusions
A detailed study was carried out to explore the individual phase mechanical
properties using nanoindentation for the SAC alloy which is considered as
potential substitute for SnPb solder. Varying loads and loading rates were used
to avoid the typical “bulge effects” and hence make the results more reliable.
Piling effect, already ignored by many researchers, is calculated and
incorporated into the Oliver-Pharr model. Image-Plus software is used to treat
the indentation images taken with AFM after testing and hence plot the
individual surface profiles to better explain the material behaviour. It is
concluded that this pileup area play a major role in calculating the real results
particularly for the soft Sn phase which has more pileup than the eutectic phase.
Young’s modulus and hardness were also determined along the indentation
depth and almost no change was observed which is consistent with previous
studies. Different temperatures are used and the load-depth curves are plotted
for individual phases. It is noticed that both Young’s modulus and hardness
reduces with increasing temperatures for both phases.

References
1. E.P. Wood, K.L. Nimmo, “In search of new lead-free electronic solders” J. Elect. Mat.
Vol. 23 No. 8 (1994) 709–713
2. Y. Sun et al. “Nanoindentation for measuring individual phase mechanical properties
of lead free solder alloy” J.  Mat. Sci: Mater Electron 19: (2008) 514–521
3. K.N. Tu, A.M. Gusak, M. Li, “Physics and materials challenges for lead-free solders”
J. Appl. Phys. Vol. 93 No. 3, (2003) 1335-1353
4. M. Abtew, G. Selvaduray, “Lead-free solders in microelectronics” Mater. Sci. Eng.
Vo. 27 No. 5 (2000) 95-141
5. D. Q. Yu, J. Zhao, L. Wang, “Improvement on the microstructure stability, mechanical
and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth
elements” J. alloys and compounds Vol. 376 No. 1-2 (2004) 170-175
6. M. A. Rist, W. J. Plumbridge, S. Cooper, “Creep-constitutive behavior of Sn-3.8Ag-
0.7Cu solder using an internal stress approach” J. Elect. Mat. Vol. 35, No. 5 (2006)
1050-1058
7. I. E. Anderson et al. “Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for
improved microstructural stability” J. Elect. Mat. Vol. 30 No. 9, 2001, 1050-1059
8. Anon, “Rare-Earth solders Make Better Bounds”, Photonics Spectra, Vol. 36, No. 5
(2002), 139
9. M. Pei and J. Qu, “Effect of Lanthanum Doping on the Microstructure of Tin-Silver
Solder Alloys” J. Elect. Mat. Vol. 37 No. 3 (2008) 331-338



348 Sadiq et al.

10. X. Ma, Y. Qian, F. Yoshida, “Effect of La on the Cu-Sn intermetallic compound
(IMC) growth and solder joint reliability” J. alloys and compounds, Vol. 334 No. 1-2
(2002), 224-227
11. C. M. L. Wu, Y. W. Wong, “Rare-earth additions to lead-free electronic solders” J.
Mater Sci. Mater Electron Vol. 18 No. 1-3 (2007) 77–91
12. X. Deng, et al., “Deformation behavior of (Cu, Ag)-Sn intermetallics by
nanoindentation” Acta Mater. Vol. 52 No. 14, (2004) 4291-4303
13. H. Rhee, J.P. Lucas, K.N. Subramanian, “Micromechanical characterization of
thermomechanically fatigued lead-free solder joints” J. Mater. Sci. Mater. Electron. Vol.
13 No. 8 (2002), 477-484
14. W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and
elastic modulus using load and displacement sensing indentation experiments” J. Mater.
Res. Vol. 7 No. 6 (1992) 1564–1583
 15. Gao F., Takemoto T., “Mechanical properties evolution of Sn-3.5Ag based lead-free
solders by nanoindentation” , Materials Letters Vol. 60 No. 19 (2006) 2315–2318
16. Y.T. Cheng, C.M. Cheng, “Scaling, dimensional analysis, and indentation
measurements” Mater. Sci. Eng. R Rep. 44 (2004) 91-149
17. R. R. Chromik, R. P. Vinci, S. L. Allen and M. R. Notis “Nanoindentation
measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints”
Journal of Materials Research 18 (2003), 2251-2261



Chaotic Modeling and Simulation (CMSIM) 2: 349-356, 2013

_________________
Received: 12 June 2012 / Accepted: 17 October 2012
© 2012 CMSIM  ISSN 2241-0503

Synchronization of semiconductor lasers with
complex dynamics within a multi-nodal network

Michail Bourmpos, Apostolos Argyris and Dimitris Syvridis

National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia,
15784, Greece
E-mail: mmpour@di.uoa.gr , argiris@di.uoa.gr , dsyvridi@di.uoa.gr

Abstract: Semiconductor lasers are non-linear devices that exhibit stable, periodic,
complex or chaotic dynamics, and in coupled configurations - under strict conditions -
can be efficiently synchronized. Applications in communications using such devices for
increased security usually employ a twofold system, the emitter and the receiver. In this
investigation we examine the potential of this synchronization property to extend to
communication networks with as many as 50 or 100 users (nodes) that are coupled to
each other through a central node, in a star network topology.
Keywords: Chaos synchronization, mutual coupling, network synchronization,
semiconductor lasers.

1. Introduction
Over the past decades a lot of effort has been put into exploiting chaotic
dynamics of signals in areas like communications [1-3], control systems [4],
artificial intelligence [5] and more. Chaotic signals emitted from semiconductor
lasers (SLs) have been frequently used in security applications for data
encryption [6], random number generation [7] etc. A usual configuration that the
above types of applications employ consists of two elements - the emitter and
the receiver - whose outputs are efficiently synchronized. More complex
configurations have been adopted in recent works, where the idea of building a
network of coupled SLs emitting synchronized chaotic signals has been
proposed [8]. More specifically, Fischer et al [9] have demonstrated isochronal
synchronization between two SLs relayed through a third SL, even in cases of
large coupling time delays. Zamora-Munt et al [10] have shown operation in
synchrony of 50 to 100 distant lasers, coupled through a central SL in a star
network topology. In the above work, couplings between distant lasers and the
central one are symmetric and the time delays (distances) from the central to the
star lasers are assumed equal. The optical injection effect is based on moderate
coupling strengths while little attention has been paid on the complexity and the
spectral distribution of the signals.
In our work we use a large population -50 to 100- distant lasers which proves to
be a sufficient number for good synchrony of the optical signals emitted, as
discussed in [10]. Strong optical injection and asymmetric mutual couplings are
adopted, enabling the increase on the effect that lasers have to each other
through mutual coupling, while preserving the level of output optical power in
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logic values (up to a few mW). Although intrinsic laser characteristics are
selected to be identical in our simulations, different laser operational frequencies
were assumed in terms of detuning values from a reference frequency ω0.
2. Network Architecture and Rate Equations
We first consider a star network topology with Ν=50 semiconductor lasers,
which from now on we will refer to as 'star lasers', relayed through a central
similar semiconductor laser, called 'hub laser'.

Figure 1. Star network architecture of N 'star' lasers, relayed through
mutual couplings with a central 'hub' laser

A rate equation mathematical model is used to describe the operation and
dynamics of the above system of devices. This model is based on the Lang
Kobayashi rate equation model [11], originating from the representation used in
[9] and including frequency detuning terms as in [10].  The complex optical
fields and carrier numbers for the star and hub lasers can be calculated from:

(1)

(2)

(3)

(4)

(5)
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All laser have identical intrinsic parameters, with values as follows:
TABLE 1

INTRINSIC LASER PARAMETERS
α linewidth enhancement factor 5
tph photon lifetime 2psec
ω0 reference laser frequency 2·π·λ0
λ0 reference laser wavelength 1550nm
D noise strength 10-5 nsec-1

e electronic charge 1.602·10-19 C
ts carrier lifetime 1.54nsec
gn gain coefficient 1.2·10-5 nsec-1

N0 carrier density at transparency 1.25·108

s gain saturation coefficient 5·10-7

ξj(t) and ξH(t) are uncorrelated complex Gaussian white noises for the star and
hub lasers respectively. The star lasers are biased at Ij=25mA, while the hub
laser is biased at IH=9mA, well below the solitary lasing threshold (Ith=17.4mA).
Each laser is detuned with respect to the reference laser frequency ω0, at
variable values Δωj (star lasers) and ΔωH (hub laser). Especially for the hub
laser detuning, we can assume ΔωH =0 without loss of generality. Delay times
(τj=τH=5ns) and coupling strengths kj=kH=k are identical. Coupling asymmetry is
achieved through the asymmetry coupling coefficient β. While each star laser
receives a single injection field from the hub (kH), the hub laser receives the sum
of injection fields (kj) of the N star lasers, which could be rather large. To
counteract for this large value, β receives values smaller than 1, decreasing the
overall injected optical field into the hub, keeping it within a realistic range of
values.

3. Simulations and Numerical Results
Simulations were performed for the set of rate equations presented, using the 4th

order Runge-Kutta method, with a time-step of 0.8psec. Optical power is
deducted from the complex optical field using the appropriate conversion [12].
First we have evaluated the behavior of N=50 star lasers with detuning values
±1GHz around the reference frequency, following a Gaussian distribution, for
different values of coupling strength and coupling asymmetry coefficient. Star
lasers are ordered based on their detuning, so the 1st laser has the most negative
detuning, while the 50th has the largest positive one. Based on these simulations,
a mapping of mean and minimum zero-lag cross-correlation between the 50 star
lasers was built.  As we can see in figure 2, two different yellow-white areas of
high correlation exist, one for low and one for high values of the product of
coupling strength and coupling asymmetry coefficient (k·β).
Moving along the diagonal from lower left to upper right corner of figure 2(i) -
that is from lower to higher values of the product k·β - we encounter the
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following areas:  first a small area in black, where correlation is low, the star
lasers operate in CW mode with noise and the hub is not receiving enough
coupling in order to emit in lasing mode.

Figure 2. Mean (i) and minimum (ii) zero-lag correlation for 50 lasers
with ±1GHz detuning values

Then we come across a white area, where k·β product has small values; the star
lasers are characterized with periodic dynamics and the hub laser emits just
above threshold. A further increase of k·β leads to star laser emission with
chaotic dynamics (yellow-orange area). The hub laser now emits in the order of
few hundreds μW but the mean correlation experiences significant decrease. As
the product k·β increases optical injection becomes large enough to drive the star
lasers into emitting signals of high correlation (small yellow-white stripe). The
complexity of these signals slightly decreases and the hub laser now emits in the
order of several mW. Finally the hatched area is an uncharted region where
optical injection and emitted optical powers are unrealistically large and the rate
equation model does not converge.

Figure 3 Time traces (i) and spectra (ii) of a single laser for network of 50 lasers
with ±1GHz detuning values, coupling strengths kj=kH=60nsec-1 and coupling
asymmetry coefficients (a) β=0.15, (b) β=0.2, (c) β=0.4, (d) β=0.8 and (e) β=1.
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Time traces and spectra of the different cases we have just described are shown
in figure 3(ii), for a fixed coupling strength value of k=60nsec-1. It is evident
that for larger values of the product k·β we have faster oscillations attributed to
bandwidth enhancement, as has been commonly reported in cases of strong
optical injection [13-14].

Figure 4. Mean (a) and maximum (b) synchronization error for 50 lasers
with ±1GHz detuning values

Another useful parameter we have estimated to evaluate the star lasers output
waveforms is the zero-lag synchronization error. Synchronization error is
normalized in the mean value of the ith and jth laser, averaged in the duration
Tav and is thus expressed in the form:

(6)

As expected, small values of synchronization error between the ith and jth laser
are achieved in the same areas where good zero-lag cross-correlation exists
(figure 4 vs figure 2). Based on figure 4 we can identify (k,β) pairs where the
maximum synchronization error, which indicates the worst behavior in our
network, is minimal. One such pair is k=60nsec-1, β=0.5. For this case of
parameters we depict the zero-lag correlation between the ith and jth laser (figure
5i). The worst case of synchronization - in which we encounter the minimum
correlation - occurs for the pair of lasers with the far most frequency detuning,
that is between lasers 1 and 50. We can also observe that lasers with similar
detuning values have good correlations with respect to each other, even when
possessing large absolute detuning values.
The superimposed time traces of the 50 star lasers for the above pair of
parameters are shown in figure 5(ii). We can observe highly synchronized
signals at zero lag  for  the  biggest  part  of  the  time window  depicted.
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However  we can identify small periods of time where synchronization may be
lost.

Figure 5. (i) Zero-lag correlation between 50 lasers with ±1GHz detuning values,
coupling strengths kj=kH=60nsec-1 and coupling asymmetry coefficient β=0.5.
(ii) Time traces of 50 superimposed star laser outputs ±1GHz detuning values, for
he parameter pair k=60nsec-1 , β=0.5

The star lasers rapidly synchronize again after a few ns. This phenomenon is
repeated in the complete time series and is mainly responsible for the
synchronization error calculated, since the synchronization error in the rest of
the time window is almost zero.
By increasing the frequency detuning range of the star lasers from ±1GHz to
±10GHz, the system necessitates much larger values of the product k·β in order
to force the hub laser into lasing emission (figure 6i). As a result, the first area
examined, where the star lasers emit in CW mode, is enlarged. The area of non-
convergence remains almost the same, while areas of complex dynamics and
large cross-correlation values are minimized.
To counteract the increase in the detuning values we attempt to increase the
number of star lasers in the network from N=50 to N=100. It is apparent in
figure 6ii that inserting more lasers in the network leads to more optical power
injected in the hub laser, which now emits for smaller values of the product k·β.
However, small increase in the areas of good cross-correlation is observed.
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Figure 6. Mean zero-lag correlation for (i) N=50 and (ii) N=100 lasers
with ±10GHz detuning values

Another attempt to counteract the increase in detuning values is to lower the
pump current of the star lasers to I=18mA near the lasing threshold. This
reduces the effect the star lasers dynamics have in the network. In figure 7 we
can observe significant increase of the areas of good cross-correlation.

Figure 7. Mean zero-lag correlation for N=50 and pump current I=18mA for the
star lasers

Finally, a small analysis was carried out on the type of synchronization
occurring in the network and the role the hub laser plays on it. Figure 8 clearly
shows that the hub lasers dynamics lag behind the dynamics of the star lasers by
exactly the time delay between star and hub lasers, that is τj=τH=5ns. As a
deduction we can say that the hub laser holds a passive role in the network,
operating solely as a relay between the star lasers. The internal parameters of the
star lasers, the time delay, coupling strength, asymmetry and driving current
seem to be solely responsible for the dynamics of the system.

Figure 8. (i) Time traces of hub(red) and one random star (blue) delayed by
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5nsec lasers, (ii) Cross-correlation time lag of hub and one random star laser

4. Conclusions
A star network topology with multiple nodes consisting of typical
semiconductor lasers has been presented and investigated. Two general areas of
good synchronization have been identified, each one with different
characteristics in terms of dynamics. The first one, for small values of total
optical injection (k·β product), produces optical signals of simpler dynamics,
while the second one, for large values of k·β, produces signals with high
complexity dynamics. An increase in the number of nodes in the network has
proved to enlarge these areas and provide synchronization improvement.
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