
 

 
Chaotic Modeling and Simulation (CMSIM) 2: 141-152,  2014 

 

_________________ 

Received: 7 August 2013 / Accepted:  12 April 2014 

© 2014 CMSIM                                                                                ISSN 2241-0503 

Geometry of chaos – the Bernoulli equation for 

ternary and quaternary alloys 
 

E. M. Sheregii 
University of Rzeszow, Center of Microelectronics and Nanotechnology, 

Rzeszow, Poland 

E-mail: sheregii@univ.rzeszow.pl 

 
Abstract: To understand and interpret the experimental data on the phonon spectra of the 

solid solutions it is necessary to describe mathematically the non-regular distribution of 

atoms in its lattices. It occurs that such description is possible in case of the strongly 

chaotically (stochastically) homogenous distribution what require a very great number of 

atoms and a very carefully mixed alloys. These conditions are fulfilled generally in case 

of the high quality homogenous semiconductor solid solutions of the III-V and II-VI 

semiconductor compounds. In this case we can use the Bernoulli equation describing a 

probability to occur a one from n equivalent events what can be apply to the probability 

to find one from n configurations in the solid solution lattice. The results described in this 

paper for ternary HgCdTe and quaternary HgZnCdTe can give affirmative answer on the 

question: whether geometry of chaos e.g. the Bernoulli equation is enough to describe the 

observed phonon spectra. 
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1. Introduction 
The role of  alloys of semiconductors in electronics and optoelectronics 

is constantly increasing;  more and more devices (lasers, convertors, detectors, 

memory elements  etc.) are based on  semiconductor solid solutions – another 

name for alloys. A homogenous high quality solid solution with the substitution 

of a cation or anion (we consider here mainly the semiconductor compounds III-

V and II-VI) should be characterized by the random distribution of atoms in a 

lattice. However, we cannot call this a crystalline lattice because it does not 

possess one very important feature of crystals – long-acted ordering. From the 

point of view of electronic structuring it means some fluctuations of periodic 

potential exist in relation to different atoms (cation or anion) in the structurally 

reproducible basic cell in the lattice – a tetrahedron in the case of a zinc-blend 

structure and wurzit structure. Experiments have shown that electrons having a 

long-length wave function (belonging to the minimum in the center of the 

Brilluoin zone) are practically insensitive to these fluctuations and a k-vector 

can be attributed to electrons as a “good” quantum number. 
 A different situation occurs, in principal, in the case of the phonon 

spectra in mixed crystals. The atom masses (cation or anion) in a structurally 

reproducible cell are not repeated for different cells in the lattice because of the 

chaotic (random) distribution of the “foreign” atoms. This means that 
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definitively different vibration frequencies of the dipole pairs presented in cells 

exist in the case of optical oscillations. Thus, the phonon spectrum of alloys 

behaves ambivalently: usually the optical phonon branches split into several 

modes proper to the mass of the components of the mixed crystal lattice; 

although research contributions about one-mode behavior exist also [1]. The 

principally important question is: whether these vibrations of different dipole 

pairs are connected in the alloy lattice and form a running wave (phonons) with 

dispersion relations or, to the contrary: they are disseminated on a great number 

of local modes? This question is connected with another problem concerning the 

local structure of solid solutions: that which can be described by the random 

distribution of atoms – the geometry of chaos – or is this geometrical factor not 

sufficient and it is necessary to add a thermodynamic factor?  

In this paper we attempt to generalise the experimental results obtained 

from the ternary Hg1-xCdxTe and quaternary ZnyCdxHg1-x-yTe far-infrared 

spectra (FIR-spectra) using synchrotron radiation as source in the far-infrared 

region. Their interpretation based on the Bernoulli equation can, in part, respond 

to the formulated above questions concerning the phonon spectra of these 

materials. 

 

 

2. The Model  
To understand and interpret the experimental data on the phonon spectra of the 

solid solutions it is necessary to describe mathematically the non-regular 

distribution of atoms in its lattices. It occurs that such description is possible in 

case of the strongly chaotically (stochastically) homogenous distribution what 

require a very great number of atoms and a very carefully mixed alloys. These 

conditions are fulfilled generally in case of the high quality homogenous 

semiconductor solid solutions of the III-V and II-VI semiconductor compounds. 

In this case we can use the Bernoulli equation [2] describing a probability to 

occur a one from n equivalent events what can be apply to the probability to find 

one from n configurations in the solid solution lattice.  

The crystalline structure of the most III-V and II-VI compounds (possessed 

zinc-blend or wurzit structure as was mentioned above) is characterized by basic 

cell – tetrahedron – each with a central ion surrounded in the first coordination 

shell by four nearest neighbours (NN) at the vertices. In a A1-xBxZ  ternary solid 

solution with substitution of the cation A by cation B, different tetrahedron 

configurations Tn (n is the number of B-atoms in the tetrahedron) coexist 

simultaneously: 2 strictly-binary ones corresponding to the AZ and the BZ 

compounds, whose lattices are characterized by the tedrahedron units T0 and T4 

(configurations), respectively and 3 strictly-ternary ones actually characterized 

by the configurations T1, T2 and T3.  The similar configurations exist in a 

AYyZ1-y solid solution where anions Z are substituted by anions Y –  the 

tetrahedra will be looked at similarly because in zinc-blend lattice we can 

represent a basic unit as tetrahedron in two versions: centred by anion and 

surrounded by four cations or oppositely: four anions surrounded cation in 

centre.  
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The probability to find the Tn configuration in ideal lattice of the A1-xBxZ  or 

AYyZ1-y ternary solid solution can be find using the Bernoulli polynomial [2]:
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x is a mol composition of BZ compound in the solid solution what is equal to 

the ratio of the B-Z ion pairs per whole number of ion pairs in lattice.  

It is obvious that probability )(xPn  must be function of composition x because 

increasing of x means increasing of the B-atoms number in lattice what leads to 

increasing of the tetrahedron’s number with high value of n (not higher then 4). 

The sum of probabilities to find all configurations in lattice of alloy with 

composition x must be equal to 1: 
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It is necessary to note that (3) and (4) are simultaneously the probabilities to 

find in the solid solution lattice the ion pairs A-Z and B-Z. 

 The oscillator strength of the vibrational mode generated by a A-Z-

dipole in the Tn configuration is [3]: 

  )()( 0 xPNfxS A

nAZ

ZA

n =−           (7) 

where fAZ is the oscillator strength of the single dipole A-Z-pair, N0 is number of 

dipole pairs A-Z in the solid solution crystal, probability )(xP A

n is determined 

by (3).  
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 It is important to remember that three assumption are introduced in 

this consideration: 

1) the role of defects is negligible; 

2) the alloy lattice is ideally homogenous and a random distribution of 

atoms in lattice takes place (stochastic homogeneity); 

3) the oscillator strengths of the single dipole pairs for different 

configurations Tn are the same e.g. fAZ  or fBZ depends not on index n. 

If these conditions are fulfilled, the oscillator sum rule 
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has to be satisfied.    

 Similarly for B-Z dipole pairs:  
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The experimental Im ε(ω)-curves (obtained by Kramers-Kroning 

transformation from experimentally measured R(ω)-curve [4]) enable us to find 

the Si values, to identify that with certain 
ZA

nS −
 or 

ZB

nS −
and to verify the sums 

(9) or (10) what means the proportionality of the oscillator sum to the contain of 

the each component in alloy (N0x is equal to molar percent of the BZ component 

and N0(1-x) – to the molar percent of the component AZ).  

We consider here also the four-component solid solution AxBy C 1-x-yZ 

with three kinds of cations A, B and C and with the same anion Z. The lattice of 

quaternary alloy contents 15 basic units (tetrahedra): three binary AZ, BZ, CZ 

and nine strictly ternary ABZ, ACZ, BCZ . If quaternary alloy have x mol part of 

AZ compound and y mol part of BZ we can determine the probability to find in 

lattice the tetrahedron Tnm with n A-cations and m B-cations. This probability is 

equal to: 
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for cation C. 

By this way the Eqns. (3,4,7,8, 10, 12 – 14) [5] represent the complete 

description of the random atom distribution in the ternary AxB1-xZ and 

quaternary AxBy C 1-x-yZ solid solutions with substitution of cations. The four-

component solid solution AxByC 1-x-yZ  in ideally random case described by 

relations (11) and (12-14) consists from fifteen structural units – tetrahedra – 

which can generate 66 optically active phonon (vibrational) modes. These 

number of modes arose by next way: three strictly binary tetrahedra generate 

three vibrational  modes AZ-like, BZ-like and CZ-like, nine (3x3) strictly 

ternary tetrahedra generate 9x6=54 vibrational modes and three strictly 

quaternary tetrahedra generate 3x3=9 vibrational modes: in sum 66 vibrational 

modes. In practice the most of these modes are degenerated (have the same 

frequencies): for example, the AZ-like modes generated in tetrahedra ABZ 

could have the same frequencies as AZ-like modes in tetrahedra ACZ. The same 

concerns the BZ-like and CZ-like modes. By this way the number of 

distinguished modes should be 30.  

The expression for the oscillator strengths are similar as for ternary 

alloys:  
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where probability ( )yxP A
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expression for 
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 The role of these oscillator sum rules (16-18) would be the same as in 

ternary alloys (8,10) but in the practice it is more difficult to relies the 

verification of the random distribution of atoms because the number of 

theoretically possible modes is very large and this factor prevent calculation of 

the oscillator sum rule. 

 

3. Experimental results and interpretation 
Here will be presented the results on FIR-spectra for ternary and 

quaternary alloys in order to illustrate application of presented above model for 

interpretation these experimental spectra. The optical reflection spectra in the 

region from 10 to 10 000 cm
-1

 where the phonon frequency values (100 – 400 

cm
-1

) of semiconductor’s compounds are located, were measured in the wide 

temperature interval and composition regions. Experiments were performed at 

the DAFNE-light laboratory at Frascati (Italy) using the experimental set-up 

described in
 
paper [6].  
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Fig.1. Reflectivity spectra for Hg1-x CdxTe (x is changing from 0.06 to 0.7) obtained    
at 300K  .  

The high-resolution reflection FIR-spectra obtained for the ternary  

Hg1-xCdxTe  for compositions from x=0.06 to x=0.7 at a temperature 300K and 

in the spectral range from 100 cm
-1 

to 200 cm
-1 

are shown in Fig.1 as reflectivity 

curves R(ω). Two bands which shift weakly with the composition, are observed: 

first one around 118-128 cm
-1

and second one around 145-155cm
-1

. The 

amplitude of first band increases when the content of HgTe increases and 

amplitude of second band increases when the CdTe content increases. The first 

band corresponding to the HgTe-like sub-band and second sub-band is the 

CdTe-like one. This type of a reflectance spectrum again shows according to 

previous works [7,8,9]
 
a

 
two-mode behavior of the optical phonons in the  

Hg1-xCdxTe alloys from one hand. From other one, the subtle structure of both 

sub-bands is clearly observed too what undoubtedly indicates on multi-mode 

character of the phonon spectra (above two modes). Authors [10] interpreted 

these subtle structure in frame of the random model but they limited 

consideration of the FIR-spectra in the spectral region 118 – 160 cm
-1

. Whereas, 

in the region 90 – 116 cm
-1

 are observed additional lines (we can call them as 

Additional Phonon Modes (APM) whereas the main sub-bands we can called as 

Canonical Phonon Modes (CPM)), registered earlier in the above mentioned 

References.  
Optical reflectivity from surface of  ZnxCdyHg1-x-yTe. The 

measurements of reflectivity were performed in temperature region from 30 K 

to 300 K. In Fig. 2 are presented reflectivity FIR-spectra obtained for  

composition x=0.05, y=0.23  for three temperatures: 30 K, 100K and 300 K. 

These curves are similar to typical reflection spectra but these curves have a 

much richer structure of spectra, as were observed for ternary alloys. It is seen 

three main bands at 130 cm
-1

, 160 cm
-1

 and 180 cm
-1

 which can be point out in 

the reflective spectra.
 
However, each of these sub-bands has additional subtle 
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structures, which point to the superposition of a greater number of lines. With 

increasing of temperature from 30 K to 300 K the subtle structure of observed 

sub-bands becomes  more smooth. 
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 Fig.2. Reflectivity Spectra  of  Zn0,05Cd 0,23 Hg0,72Te. 
  

The lines corresponding to phonon modes are clearly observed on the 

Im[ε(ω)] curves calculated by Kramers-Kroning analyses from the experimental 

FIR reflectivity curves R(ω).In an attempt to treat  the measured reflection 

spectra R(ω,y) of semiconductor materials (such as MCT with a considerable 

concentration of free carriers) in a reproducible way, as well as minimizing 

uncertainties due to subjective manual intervention, we have strictly abided by 

the rough  procedure described in [4]. In Fig. 3 and 4 are shown 

Im[ε(ω)]−curves for p-Hg0.8Cd0.2Te obtained for temperature 300 K and for 

Zn0,05Cd 0,23 Hg0,72Te, respectively. The dispersion analysis of the CPMs and 

APMs was performed by approximating  the Im[ε(ω,Τ)]  curves by the 

Lorentzian sum  

∑
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22222 )(
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where Si, ωTOi and γi  are the oscillator strength, frequency and damping 

parameter of the i-phonon mode, respectively.  

The results of spectral analysis for p-Hg0.8Cd0.2Te are presented in Fig.3 

and for n-Hg0.8Cd0.2Te in Fig. 4. Parameters of Lorentzian’s oscillators used for 

fitting the Im[ε(ω,Τ)]-curves are shown in Table 1.  

 



E. M. Sheregii 148 

80 100 120 140 160 180
0

5

10

15

20

25

30

 

 
Im

 ε
(ω

)
ε(

ω
)

ε(
ω

)
ε(

ω
)

Hg
1-x

Cd
x
Te 

x=0.2, p-type

Wavenumber,cm
-1

 

 

 after KK

 Sum

 L1

 L2

 L3

 L4

 L5

 L6

 L7

 L8

 L9

 L10

T=300K

 

Fig.3. Imaginary part of the dielectric function od Hg0,8Cd0,2Te p- type in the 
temperature  300K. 
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 Fig. 4. Spectral analysis  for sample  Zn0,12Cd 0,13 Hg0,75Te . 

 

To identify observed lines, the probability to find the atoms Hg and Cd 

in the particular tetrahedra Tn (n is number of the Cd-atoms in tetrahedral) in the 

Hg0.8Cd0.2Te lattice should be taken into account using formulas (3) and (4). If 

x=0.2 the values of )(xP Hg

n  for different n are equal to: 0.410 (n=4), 

0.307(n=2), 0.077(n=3) and 0.006(n=4) while the )(xP Cd

n values are: 

0.102(n=1), 0.077(n=2), 0.192(n=3) and 0.002(n=4). 
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Table 1. Parameters of Lorentzian’s oscillators used for fitting the 

Im[ε(ω,Τ)] −curves of the p- Hg0.8Cd0.2Te for the temperature  300K. 

∑SHgTe ∑SCdTe Number  
of Line  

S ω  γ  

CPM 
 

AVM CPM 
 

AVM 

1  4200  103.7  8.6   

2  4200 110.0  8.1   11400 
3   6100  115.0  7.7   

    

4 21100  121.3  7.7   

5     830  125.0  7.0 31300  

6   1000 127.0  7.0    

  

8   1200 135.0  7.0     1000 

9   1300  146.1  8.9   

10    3500  148.3  7.0    
11   4890 152.0 7.4   

 
9690 
 

 

At T=30 K all HgTe-like CPMs oscillate at the same frequency because 

tetrahedra with different number n are not deformed and we observed a 

degeneration of vibrational modes (Hg-Te and Cd-Te bonds have the same 

length). If T=300 K the splitting of the mode frequency takes place: the most 

strong line at 122.6 cm
-1

 should be generate by Hg-Te dipoles in the T0 

tetrahedron while the line at 125.0 cm
-1

 – by this dipoles in the T1 one and very 

small line at 128.6 – in the T2. So, the frequency consequence takes place for 

HgTe-like modes: 
HgTeω0 <

 HgTeω1 <
 HgTeω2 <

 HgTeω3 according with work of 

Kozyrev et al. [10]. Analogical analyses for CdTe-like modes shown that the 

line at 151.5 cm
-1

 is generated by Cd-Te dipoles in T1 tetrahedron and the line at 

147.3 cm
-1

 – by the same dipoles in T2 one. The frequency consequence for 

CdTe-like modes is: 
 CdTeω1 >

 CdTeω2 >
 CdTeω3 >

 CdTeω4 what agree with the data of 

work [10] also. It allow to find to what basic cells (tetrahedra) belongs each 

observed vibrational mode generating by Hg-Te and Cd-Te dipoles: 

corresponding tetrahedra are shown in Fig. 5 for CPM (Tn) as well as for APM 

(Tnv).  

The general description of the phonon spectra is based on Fig. 5 where the 

composition dependences of the mode frequencies at the room temperature are 

present. In the MCT lattice there are two positions for Hg-atoms: stable one 

(Hg
I
) and metastable one (Hg

II
 ) [4]. If temperature increase, the number of Hg-

atoms occupied the meta-stable positions (Hg
II
 ) increases also and the 

deformation of crystal lattice rises, respectively. The last factor can cause the 

removing of degeneracy of the HgTe-like CPMs in n-Hg0,8Cd0,2 Te when the 

temperature increases over the 100 K: the AVMs appear simultaneously, too. 

Indeed, the AVM at 112 cm
-1

 (beside very weak from 30 K at 108 cm
-1

) take 

place after 100 K in n-type Hg0.8Cd0.2Te and after 200 K appear additionally one 
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AVM at 115-116 cm
-1

. The presence of Hg
II
 in a tetrahedron leads to the 

stretching of bonds which in its turn causes the shift of the Hg-Te oscillation 

frequency towards smaller frequencies. This effect can occur in three kinds of 

tetrahedra: 1) containing 3 Hg-atoms in stable position (Hg
I
)  and one Hg

II
 ; 2) 

containing two Hg
I
, one Cd-atom and one Hg

II
; 3) containing one Hg

I
, two Cd-

atoms and one Hg
II
. The frequencies of Hg-Te oscillations in these tetrahedra 

should be arranged in the next sequence: the lowest frequency corresponds to 

the Hg-Te oscillations in the tetrahedron of first type and most higher 

corresponds to the oscillations  in the tetrahedron of third type.  
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Fig.5.The composition dependencies of the phonon mode frequencies for 
 p-Hg1- xCdx Te, at temperature  300K. 

 

The lines in the range of 135 -137cm
-1

 are generated as could be 

assumed, by the oscillation of Cd -Te pair in the tetrahedra containing two Hg
I
, 

one Cd-atom and one Hg
II
.  

Therefore, the Figure 5 enable us to assume that the phonon spectra in 

MCT are reproduced in two versions: first one is realized  in the lattice consisted 

only from the Hg
I
-atoms ( that are CPM) and second one occurs in the lattice 

included the Hg
II
-atoms too (that are APM). 

 In Fig. 6 are shown the values of the oscillator strengths sums (OSS) 

for the Hg-Te dipoles and for Cd-Te dipoles for each samples investigated. The 

data are presented in two way: i) only OSS for CPMs are included (open circles 

and squares), for x=0.2 there are two open circles because first one (upper open 

circle) is regarded to n-Cd0.2 Hg0.8Te and lower open circle – to p-Cd0.2 Hg0.8Te ; 

ii) in the OSS are included the APM OSS also (filled circles and squares). That 

enable us to obtain the dependencies of the OSS on composition. As follow 

from Fig. 6 if the oscillator strengths of APM are included in the sum of the 

oscillator strengths for the modes generated by Hg-Te dipoles as well as Cd-Te 

dipoles the OSS are proportional to the contain of correspond compound: to the 
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x in case of Cd-Te dipoles and to the 1-x in case of Hg-Te ones. As was 

mentioned above (see Eqns. (8) and  (10)) these dependences are considered as 

a criterion of applying the Bernoulli equation to the phonon spectra 

interpretation of the ternary solid solutions.   
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Fig.6. The oscillator strength sum dependence on composition for the HgCdTe alloys   

By this way,  the same model developed for the quaternary alloys 

enable us successfully explain observed structure of the sub-bands for the 

ZnxCdyHg1-x-yTe alloys [11].  

Table 2. The oscillator strength sum for Zn-Te dipoles in measured samples of 

ZnxCdyHg1-x-yTe. 

x, mol OSS for Zn-Te 

0.02 0.065 

0.05 0.197 

0.07 0.211 

0.12 0.769 

0.18 0.907 

The next step is calculation of the OSS for certain dipole pairs. It is 

reason to consider the dependence on composition of the OSS for Zn-Te dipoles 

(the ZnTe contain is changed from 0.05 to 0.18). In Table 2 are shown 

calculated OSS for this dipoles. From Table 2 follow that really OSS for Zn-Te 

dipoles approximately is proportional to contain x of ZnTe in the ZnxCdyHg1-x-

yTe alloys. Therefore, this important consequence of the random model  

(Eqn.17) is fulfilled.  

4. Conclusions 
The results described above for HgCdTe and HgZnCdTe can give 

affirmative answer on the question: whether geometry of chaos e.g. the 

Bernoulli equation is enough to describe the observed phonon spectra of ternary 

and quaternary alloys. The main criterion of the random distribution of atoms in 

the solid solution lattice – proportionality of the oscillator strength sum for the 
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each dipole pair to the content of the corresponding component – is fulfilled if 

the observed additional modes will be involved in sums of the oscillator 

strengths.  

Application of the Bernoulli equation to the ternary and quaternary 

alloys enable us to decipher the tangled phonon spectra in these case of 

semiconductor solid solutions. 
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