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Abstract. In this note, we consider self-affine attractors that are generated by an
expanding n × n matrix (i.e. all of its eigenvalues have moduli > 1) and a finite set
of vectors in Zn. Here we concentrate on the problem of connectedness. Although,
there has been intensive study on the topic recently, this problem is not settled even
in the one-dimensional case. We focus on some basic attractors, which have not been
studied fully, and characterize connectedness.
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1 Introduction

Let S1, ..., Sq, q > 1, be contractions on Rn, i.e., ||Sj(x)− Sj(y)|| ≤ cj ||x− y||
for all x, y ∈ Rn with 0 < cj < 1. Here || · || stands for the usual Euclidean
norm, but this norm may be replaced by any other norm on Rn. It is well
known [4] that there exists a unique non-empty compact set F ⊂ Rn such that

F =

q⋃
j=1

Sj(F ).

Let Mn(R) denote the set of n × n matrices with real entries. We will
assume that

Sj(x) = T−1(x+ dj), x ∈ Rn,

where dj ∈ Rn, called digits, and T ∈Mn(R). Then F is called a self-affine set
or a self-affine fractal, and can be viewed as the invariant set or the attractor
of the (affine) iterated function system (IFS) {Sj(x)} (in the terminology of
dynamical systems). Let Mn(Z) be the set of n× n integer matrices. Further,
if D := {d1, ..., dq} ⊂ Zn and T ∈ Mn(Z), it is called an integral self-affine
set and we will primarily consider such sets in this paper. If, additionally,
|det(T )| = q and the integral self-affine set F has positive Lebesgue measure,
then F is called an integral self-affine tile. We sometimes write F (T,D) for
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F to stress the dependence on T and D. For such tiles, the positivity of the
Lebesgue measure is equivalent to having nonempty interior [2].

There is a demand to develop analysis on fractal spaces, in order to deal
with physical phenomena like heat and electricity flow in disordered media,
vibrations of fractal materials and turbulence in fluids. Without a better un-
derstanding of the topology of fractals, this seems to be a difficult task. There
is a growing literature on the formalization and representation of topological
questions; see [3] for a survey of the field.

One of the interesting aspects of the self-affine sets is the connectedness,
which roughly means the attractor cannot be written as a disjoint union of
two pieces. This property is important in computer vision and remote sensing
[8,20]. We mention that connected self-affine fractals are curves; thus, they are
sometimes referred to as self-affine curves [10]. There is some motivation for
studying connected self-affine tiles because they are related to number systems,
wavelets, torus maps. Recently, there have been intensive investigations on the
topic by Kirat and Lau [12,10], Akiyama and Thuswaldner [1,16], Ngai and
Tang [18,19] and Luo et al. [16,15].

In this note, we consider planar integral self-affine fractals obtained from
2×2 integer matrices with reducible characteristic polynomials, and report our
findings on their connectedness. However, our considerations can be general-
ized to higher dimensions. As for the organization of the paper, in Section 2, we
deal with special cases and state some simple, but unconventional techniques
to check the connectedness. In literature, most of the papers on the connect-
edness have some restrictions on the digit set. Here our aim is to remove such
restrictions in Section 3.

2 Some Unconventional Techniques

Usually, connectedness criteria were given by using a “graph” with vertices in
D [6,12]. In this section, we present graph-independent techniques to check the
connectedness or disconnectedness. Throughout the paper, T−1 is a contrac-
tion. Let #D denote the number of elements in D. We first recall a known
result.

Proposition 1. [12] Suppose T = [±q] with q ∈ N, and D ⊆ R with #D = q.
Then F (T,D) is a connected tile if and only if, up to a translation, D =
{0, a, 2a, ..., (q − 1)a} for some a > 0.

As one may notice q and D are not arbitrary in Proposition 1 since q ∈ N
and #D = q. By using the approach in [9,11], we can remove such restrictions.
For that purpose, we consider the convex hull of F and denote it by K. Also
let K1 =

⋃q
j=1 Sj(K). Then we have the following.

Proposition 2. Let D = {0, d2v, · · · , dqv} ⊂ Rn with v ∈ Rn \ {0} and
T = pI, where p ∈ R and I is the identity matrix. Then F (T,D) is connected
if and only if K = K1.



Chaotic Modeling and Simulation (CMSIM) 2: 187–192, 2014 189

Fig. 1. The Sierpiński tile

Remark 1. A digit set D as in Proposition 2 is called a collinear digit set. It is
easy to check the condition K = K1 in the proposition because K is a closed
interval. If T = ±2I, then F (T,D) is connected for any digit set. A famous
example of this type is the Sierpiński tile (see Figure 1), for which T = 2I and
D = {d1 =

[
0
0

]
, d2 =

[
1
0

]
, d3 =

[
0
1

]
, d4 =

[
−1
−1

]
}.

The disconnectedness of F (T,D) was studied in [13]. Here we want to
mention another unconventional sufficient condition for disconnectedness. In
the rest of the paper, we study attractors F (T,D) in the plane such that
T ∈M2(Z) has a reducible characteristic polynomial. From [10], we know that
such matrices are conjugate to one of the following lower triangular matrices[

n 0
t m

]
, where |n| ≥ |m|, and t = 0 or t = 1. (1)

We also let
S = {

[
i
j

]
: 0 ≤ i ≤ |n| − 1, 0 ≤ j ≤ |m| − 1}.

The attractors of the next proposition can be considered as a generalization of
Sierpiński carpets [17]. Let dimS(F ) be the singular value dimension of F (see
[5]). We call a collinear digit set D with v is an eigenvector of T eigen-collinear.
In that case, F is a subset of a line segment. By using Corollary 5 in [5], we
obtain the following.

Proposition 3. Assume that T is as in (1), D ⊂ S, and D is not eigen-
collinear. Then F (T,D) is disconnected if log|m| r + log|n|(

q
r ) 6= dimS(F ),

where q = #D and r is the number of j so that
[

i
j

]
for some i.

Remark 2. It is easy to check the sufficient condition for the attractors F (T,D)
in Proposition 3 because, in that case,

dimS(F ) =

{
1 + log|n|(

q
|m| ) if |m| < q ≤ |mn|,

log|m| q if q ≤ |m|.
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3 General Digit Sets

In this section, we will present a practical way of checking the connectedness
of F (T,D) with T as in (1) and D ⊂ Z2. Note that it is enough to consider
the case n,m > 0, since F (T,D) = F (T 2, D + TD). By translating D, we will
assume that D has nonnegative entries. Let N = (F − F ) ∩ Z2. Set

∆D = D −D, a1 =
[

n − 1
1

]
, a2 =

[
0

m − 1

]
, a3 =

[
n − 1
m − 1

]
, b1 =

[
n − 1

0

]
,

e1 =
[

1
0

]
, e2 =

[
0
1

]
, e3 =

[
1
1

]
, e4 =

[
1

−1

]
.

First, we begin with the special class of fractals F in Proposition 3, where
D ⊂ S.

Proposition 4. Assume that F is as in Proposition 3, t = 1 and n,m > 0.
Then

(i) if a2 /∈ ∆D, then F is disconnected,
(ii) otherwise,
N = {±ei | i ∈ {1, 2} and ai ∈ ∆D} ∪ {±e4 | a1 − a2 ∈ ∆D}.

Proposition 5. Assume that F is as in Proposition 3, t = 0 and n,m > 0.
Let b2 = a2, b3 = a3. Then

(i) if b1, b2, b3, b1 − b2 /∈ ∆D, then F is disconnected,
(ii) otherwise,
N = {±ei | i ∈ {1, 2, 3} and bi ∈ ∆D} ∪ {±e4 | b1 − b2 ∈ ∆D}.

For a digit set D, an s-chain (in D) is a finite sequence {d1, ..., ds} of s
vectors in D such that di − di+1 ∈ N for i = 1, ..., s− 1. Then we can put the
connectedness criterion in [12] into the following form.

Proposition 6. F is connected if and only if, by re-indexing D (if necessary),
D forms a q-chain.

Fig. 2.
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Remark 3. Note that if D = {d1, ..., dq} after re-indexing, it is possible that
di = dj for i 6= j. In view of Proposition 4 and Proposition 5, Proposition 6 is
quite feasible. That is, the connectedness can be decided by a simple inspection
of D using N in Propositions 4-5. That is, we get a graph-independent way
of checking the connectedness. Two examples are given in Figure 2, for which
T =

[
−3 −1
0 3

]
, and D = {d1 =

[
0
0

]
, d2 =

[
2
1

]
, d3 =

[
−1
1

]
, d4 =

[
1
3

]
, d5 =[

2
0

]
, d6 =

[
2
2

]
, d7 =

[
−2
2

]
, d8 =

[
−1
3

]
}, and for the second fractal on the right

T = 4I and D = {d1 =
[

0
0

]
, d2 =

[
1
1

]
, d3 =

[
2
2

]
, d4 =

[
3
3

]
, d5 =

[
2
1

]
, d6 =[

1
2

]
, d7 =

[
0
3

]
, d8 =

[
3
0

]
}.

We now consider the general case D ⊂ Z2. Let

M1 = {±(ke1 ± le2) | k, l ∈ N and ka1 ± la2 ∈ ∆D},

M0 = {±(ke1 ± le2) | k, l ∈ N and kb1 ± lb2 ∈ ∆D}.

Note that it is possible that M1 = ∅ or M0 = ∅.

Proposition 7. Assume that T is as in (1) with t = 1, n,m > 0 and D ⊂ Z2.
Then

(i) if ka2, ka1 ± la2 /∈ ∆D for all k, l ∈ N, then F is disconnected,
(ii) otherwise, then N = {±kei | k ∈ N, i ∈ {1, 2} and kai ∈ ∆D} ∪M1.

Proposition 8. Assume that T is as in (1) with t = 0, n,m > 0 and D ⊂ Z2.
Let b2 = a2, b3 = a3. Then

(i) if kb1, kb2, kb3, kb1 ± lb2 /∈ ∆D for all k, l ∈ N, then F is disconnected,
(ii) otherwise, then N = {±kei | k ∈ N, i ∈ {1, 2, 3} and kbi ∈ ∆D}∪M0.
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