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Abstract. Since mathematical models describing the work of transmitting-receiving units 

of modern chaotic information systems have become more complex, modeling of 

information properties of deterministic chaos is becoming more topical. The paper 

presents the results of a wide range of works related to the modeling of dynamic chaos 
usage in modern telecommunication systems - from generating chaotic sequences to their 

application for information security and as the actual information media. 
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1  Introduction 
 

Nowadays, there is a rapid development of both new methods of information 

transmission and security, and new means of processing analog and digital 

information flows that come in opened or closed state. Deterministic chaos is 

one of the new elements which is recently started to be frequently used in 

modern communication systems Banerjee et al.[1]. In short, this phenomenon is 

complex nonperiodic oscillations that occur under certain conditions 

(parameters) and are the inner nature of the so-called chaotic dynamical systems 

Cvitanovic et al.[2]. This paper presents generalized complex results on the 

dynamic chaos usage in modern communication systems, which are carried out 

in the laboratory for the study of chaotic processes in radio-engineering of the 

Physical, Technical and Computer Science Institute of Chernivtsi National 

University.  

The paper has the following structure. In the second section the relation between 

the Lyapunov exponents and information properties of chaotic oscillations is 

analyzed. The third section is devoted to the modeling of hyperchaotic systems 

in the environment LabView. In the fourth section some topical issues of the 

dynamic chaos usage for information security are discussed, namely the 

formation of pseudorandom generators based on two chaotic systems. The fifth 

section presents the studies of models of information systems using 

deterministic chaos and also some obtained numerical characteristics. 

mailto:kushnirnick@gmail.com
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2  Lyapunov exponents and information properties of chaotic 

signals 
 

For practical use of chaotic signals it is necessary to use criteria of signals 

complexity. The characteristics of chaotic signals, allowing them to be 

compared include: fractal dimensions (correlation dimension, information 

dimension), Fourier spectrum, Poincare section, Lyapunov exponents, 

topological entropy, etc  Francis C. Moon[3]. Fractal dimension of the attractor 

allow to evaluate the metric complexity of its trajectories in phase space. Fractal 

characteristics of chaotic attractors are invariant to the time scale of chaotic 

systems. The information properties of signals are important for communication, 

cryptography and other applications. Visual image of a dynamic system is its 

attractor. 

Informational properties of chaotic oscillations can be estimated using the 

Lyapunov exponents. In the theory of dynamical systems the Lyapunov 

exponent is a quantitative measure of the exponential divergence of initially 

close trajectories. If the initial distance between the trajectories is d0 then at time 

t the average distance between them will be   tedtd 
0 , where λ – Lyapunov 

exponent. In terms of information theory, the largest Lyapunov exponent is 

numerically equal to the average information created by a dynamic system. 

Next, we show that the Lyapunov exponents are dependent on the time scale of 

the dynamic system. 

Consider the Rossler system, described by the system of three differential 

equations Rossler[4]: 
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where x, y, z – state variables, a = 0.15, b = 0.2, c = 10 – system parameters for 

which there is a chaotic regime. 

The values of the Lyapunov exponents of the system (2.1) are as follows:         

λ1 = 0.09, λ2 = λ3 = -9.82. We will change time scale in the system (2.1) by 

replacing t = ktʹ, where k > 0, and obtain a system (2.2):  
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Systems (2.1) and (2.2) have the same chaotic attractors and fractal dimensions, 

but the Lyapunov exponents of the system (2.2) are linearly dependent on the 

parameter k as shown in Figure 2.1. 



Chaotic Modeling and Simulation (CMSIM)  2:  117-128, 2015 119 

 

By varying the time scale of chaotic systems (2.2) by changing the parameter k 

it is possible to control the speed of generating information. This is a practical 

method of information properties management of dynamical systems. At the 

same time, the change of time scale of chaotic systems is equivalent to the 

change of width of the oscillations spectrum in k times. This means that the 

value of the senior Lyapunov exponent and the width of the signal spectrum are 

interconnected. For example, consider two chaotic flow systems – the Rossler 

system (2.1) and the Lorenz system Lorenz[5]: 
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where σ = 10, r = 28, b = 8/3 – system parameters. 

  
а b 

Fig. 2.1. Dependence of the Lyapunov exponent on parameter k: λ1, λ2 – a;        

λ3 – b. 

 

For the Lorenz system for the given parameters the values of the Lyapunov 

exponents are as follow: λ1 = -9.82, λ2 = 0.9, λ3 = -14.57. The value of the 

largest Lyapunov exponent of the Lorenz system is greater than the largest 

Lyapunov exponent of the Rossler system in 10 times. As shown in Figure 2.2 

and Figure 2.3 the signal spectrum of the Lorenz system is more complex and 

broader than in Rossler system. 
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Fig. 2.2. Normalized spectrum of the 

variable x of the Rossler system (2.1) 

Fig. 2.3. Normalized spectrum of the 

variable z of the Lorenz system (2.3) 
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In general, the signal complexity is a composit concept and includes spectral, 

information and metric data. Therefore, we can conclude that the Lyapunov 

exponent characterizes the signal complexity in terms of its information 

properties, but contains little information regarding the complexity of the metric 

structure of the signal. This means that it is incorrect to compare in general the 

signals complexity of continuous dynamic systems using only the value of the 

largest Lyapunov exponent. 

 

3  Modeling of information properties of the hyper-chaotic 

Lorenz system 
 

Hyper-chaotic Lorenz system is described by equations: 
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where cba ,,  – system parameters, zyx ,,  – initial conditions, k  – constant that 

determines the attractor, which in some senses can be chaotic, and in particular 

– controlled Tiegang Gao et al.[6]. 

For modeling of information properties of the hyper-chaotic Lorenz system we 

used LabView programming environment [7]. 

Figure 3.1 shows the block scheme that implements of hyper-chaotic Lorenz 

system. The main functional part is a formula node, in which would include the 

equation (3.1). In the input formula node fed values of system parameters 

( cba ,, ) and the value of the initial conditions ( zyx ,, ). At the output assigned 

equations (3.1). Also, the output is an opportunity to demonstrate the solution of 

equations in three dimensions. 

When changing the system parameters and initial conditions we can be analyzed 

in detail and investigate the behavior of a hyper-chaotic Lorenz system, which 

in many cases is a basic element of the functional blocks of chaotic secure 

communication systems. 
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Fig. 3.1. Block scheme of hyper-chaotic Lorenz system 

 

Figure 3.2 shows the software interface which shows these information 

modeling properties as temporal distributions of the values of the coordinates X, 

Y, Z, three-dimensional map of hyper-chaotic attractor and phase portraits in the 

planes XY, XZ, i YZ, when the number of iterations 5000N , the system 

parameters 10a , 28b , 3/8c , 1,0k , and initial conditions 

1 zyx . 

 
Fig. 3.2. Software interface which shows modeling of information properties 

 

Figure 3.3 shows the spectral analysis of chaotic coordinates X, Y, Z with the 

number of iterations 5000N  which was conducted using fast Fourier 

transform. The value 0.01 corresponds to 100 Hz. 
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Fig. 3.3. Fourier spectral analysis when the number of iterations 5000N  

 

Developed block diagram in LabView programming environment allows the 

program to explore the hyper-chaotic Lorenz system. 

 

4  The use of dynamic chaotic systems in cryptography 
 

Since with the development of information technology there is as well the 

development of means of data interception, there is a need in the development 

of new algorithms of information encryption. Dynamic systems are sensitive to 

the initial conditions and control parameters, which makes them good 

candidates for use in the development of encryption algorithms. 

We have proposed a method of generating pseudorandom sequence of bits using 

two dynamic chaotic systems and operations XOR Shahtarin et al.[8]. The first 

dynamic system – the Lorenz system described by equation (4.1), the second – a 

logistic mapping described by equation (4.2). 
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where x, y, z – dynamic variables; a, b, c – parameters of the Lorenz system, 

which usually possess the values a = 10, b = 8/3, c = 28. 

),1(1 nnn r                    (4.2) 

where νn and r – system variable and system parameter respectively, n – 

iteration number. The system parameter r is a significant part of the equation 

and if the values 3.57 < r <4 the system is characterized by chaotic behavior. 

Both dynamic systems were used to generate values of dynamic variables 

Arvind et al.[9]. The values of dynamic variables x, y and z of the Lorenz 

system were compared with the generated value  of logistic mapping. If the 

value of Lorenz system variable was larger than the value of the variable of 

logistic mapping, a decision was made that the generated logical «1» otherwise 

logical «0». Thus three sequences of bits are being generated k1, k2 and k3 that 
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are joined together using XOR operation thus forming total pseudorandom 

sequence of bits. Then the obtained sequence can be used for information 

encryption. 

However, for the correct operation of such generator it is necessary to 

coordinate the range of output values of the Lorenz system with the range of 

output values of logistic mapping. This is done by mapping the obtained value 

of the variable within the interval (0;1). 

We have performed simulation of the proposed generator operation in the 

environment LabView, block diagram of the generator is shown in Figure 4.1. 

Simulation has shown that the proposed generator can be easily implemented by 

software and is quite quick Kosovan[10]. 

 
Fig. 4.1. Block diagram of the generator based on two dynamic systems 

 

Also, we have implemented the proposed generator in the programming 

language Delphi 7 an external view of the program is shown in Figure 4.2. 

 
Fig. 4.2. An external view of implementation program of the bit sequences 

generator, where x0, y0, z0 and ν0 – initial conditions of dynamic systems; a, b, c 

and r – control parameters; dt – integration step; n – the length of generated 

sequence. 
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To check whether the proposed generator has the properties of a pseudo 

randomness, the sequence of bits with the length of 16000000 bits was 

generated. The sequence generation was performed when the values of initial 

conditions were the following: for the Lorenz system x0 = 0.1347, y0 = 0.9573, 

z0 = 0.3681, a = 10, b = 2.67, c = 28 and integration step dt = 0.05741 for cubic 

mapping ν0 = 0.1562 and r = 3.9979. In this algorithm the integration step dt  

and control parameter r play a significant role in keys forming, so it is necessary 

to carefully select their values to be able to obtain the generated pseudorandom 

sequence of bits of large length. 

The obtained sequence was tested using a set of statistical tests NIST STS-1.6. 

15 of 16 tests passed. 

On the basis of obtained results we can conclude that the generated sequence is 

really pseudorandom and the proposed generator can be used in the 

development of algorithms of information encryption. Also the proposed 

generator has a large number of keys (initial conditions and parameters), namely 

9 of which 6 can change their values over the sufficiently wide range. If you set 

keys with an accuracy of 5 decimal places a number of their possible 

combinations will be approximately 10
35

. Such a large number of keys 

complicates their selection and makes brute-force attack more complex and 

costly. 

 

5  The research of the possibility of information recovery, its 

hiding and noise immunity in information systems using 

deterministic chaos 
 

Nowadays, the development of digital systems of hidden communication using 

chaotic signals is a topical issue. Numerous works offer analog communication 

systems that use the synchronization of transmitter and receiver for data 

recovery Politansky et al., Eliyashiv et al.[11-12]. The research has found that 

such systems possess low noise immunity caused by high sensitivity of chaotic 

synchronization to the noises in the communication channel and by the 

parameters detuning of drive and response generators. The use of digital 

systems provides both the rise of noise immunity level of data transmission 

process, compared to the analog ones, and the possibility of encoding Bollt, Lai 

[13] and cryptographic security methods Baptista[14] application. 

The most widely used scheme for hidden digital communication is the chaotic 

switching scheme using full synchronization phenomenon Koronovskii[15]. 

Among the systems of hidden transmission of analog information the most 

widely used is the circuit with the use of chaotic masking Downes, Ivanyuk et 

al.[16-17] that is analytically defined by the system of differential equations 

(5.1). The principal of system operation is as follows. One of the output chaotic 

oscillations of the generator x(t) is summed up with an analog data signal m(t) 

followed by transmission to channel. Security of the data transmission process 

through the channel is ensured by complete overlap of the data signal spectrum 

by chaotic oscillation spectrum. The receiver contains one chaotic generator 
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u(t), identical to transmitter generator. Recovered signal can be obtained after 

passing through subtractor as the difference between the receiver input signal 

and the response generator output signal. The control parameters variety of 

drive and response generators and the presence of noises in communication 

channel results in arising of synchronization error that equals the error of data 

signal recovery. Desynchronization of transmitter and receiver generators 

eliminates the possibility of data recovery, transmitted through the channel. 

Besides, it is necessary to ensure the ratio signal/noise no less than 35 dB for 

accurate data recovery, which is its principal disadvantage Vovchuk et al.[18]. 
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where x, y, z, u, v, w – dynamic variables; e – coupling coefficient. 

When using the circuit of chaotic masking in digital systems of data 

transmission, the hiding of transmission process through the channel will be low 

as in the intervals, that are equal to the duration of data bit transmission, a strong 

constant component will take place. In order to eliminate this defect we offer a 

modification of analog circuit of chaotic masking for digital communication 

[18]. In contrast to the circuits of analog data transmission it contains a 

subsidiary generator G, the signal of which is modulated by digital data signal 

and added to the chaotic signal. The modulation is carried out with the aid of a 

key which is turned on or off depending on the value of data bit. The 

implementation of preliminary modulation and ensuring the identity of statistic 

and spectral characteristics of signals generated by the generator G and the 

masking oscillation x(t) enables to match the parameters of carrying and chaotic 

signals. Both harmonic and chaotic signal can be used as a signal G(t) [18]. The 

receiver model remained unchanged. Mathematic model differ only by the 

presence another component in the fifth equation that describes the type of 

modulated carrier oscillation, namely m(t)Asin(2πft) or m(t)y(t), when using the 

harmonic or chaotic oscillation, respectively. 

If the chaotic oscillation is used as carrier then it is sufficient for hidden 

communication that its spectrum is completely offset by masking oscillation 

one. There is other situation using harmonic signal as carrier. In this case, the 

hiding in the channel depends on its frequency and amplitude values. 

The harmonic signal hiding decreases with increasing the value of its amplitude. 

But the decrease in harmonic signal amplitude leads to the decrease in power of 

desynchronization signal of drive and response systems and consequently to the 

decrease in noise immunity of information transmission in general. Thus, for 

reliable operation of the system with chaotic masking it is necessary to choose a 

compromise between the chaotic and harmonic signal values.  

In the modeling process the amplitude A and frequency f were varied. The 

curves family (Figure 5.1) of a dependence )(
ms

hs

ms

desyn

P

P

P

P
, where 

)()( tutSdesyn PPP   - power of a desynchronization signal, )(tSP  - signal power 
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in the channel, )(tuP  - power of response generator output signal, hsP  - 

harmonic signal power, msP  - masking signal power. The figure analysis 

showed that increasing of harmonic signal amplitude leads to increase in value 

desynP . The dependence is linear when the values f are up to 1 kHz, while desynP  

does not exceed 20 % of msP . An increase f leads to the complication of 

dependence. When f are increasing closer to the upper frequency spectrum of a 

chaotic signal f7 = 3,2 kHz та 04.0
ms

hs

P

P
, the value desynP  practically does not 

depend on A and has 80-90 % of msP . If f goes beyond the chaotic oscillation 

spectrum, the dependence )(
ms

hs

ms

desyn

P

P

P

P
 gets more complicated and even when 

12.0
ms

hs

P

P
 the value desynP  increases significantly. 

 
Fig. 5.1. The dependence of the normalized power of the 

desynchronization signal on the normalized power of the harmonic signal by 

changing the values of the amplitude and frequency of the harmonic signal 

 

 
Fig. 5.2. Dependence of the probability of incorrect bits recovery on the value of 

signal/noise ratio in communication channel (1 – with harmonic oscillation used 

as a carrier signal; 2 –chaotic switching scheme; 3 – with chaotic oscillation 

used as a carrier signal) 
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Therefore, for the improvement of quality of information recovery it is 

reasonable to use the harmonic signal with a frequency close to the upper 

frequency of the chaotic signal. The obtained results can also be used for analog 

communication systems, where the harmonic oscillation is the information.  

The dependence of error probability of the received data on the value of 

signal/noise ratio in communication channel is shown in Figure 5.2. The 

obtained results show that the system of data transmission based on the usage of 

harmonic oscillation as a carrier signal yields to the chaotic switching scheme 

by its noise immunity (Figure 5.2 - curve 1 and curve 2 respectively). 

The system based on the usage of chaotic oscillation as a carrier signal is more 

resistant to noise impact in the channel (curve 3). The error probability of 

recovery when using the modified circuit with the ratio S/N0 of the order 10 dB 

is 10
-3

, whereas its value constitutes 10
-2 

while using the chaotic switching 

scheme. 

 

Conclusions 
 

  The results given in this paper once again demonstrate the importance of 

the extensive use of deterministic chaos in modern secure communication 

systems - both as a basic component for information encryption and encoding 

and as the actual information carrier. Since the behavior of information systems 

models is being studied in the various software environments, then on our 

opinion the special attention in future researches should be focused on the 

analysis of pseudorandom properties of chaotic sequences and the ability to 

control the behavior of chaotic systems. Speaking about the choice of one or 

another software environment, we would advise to pay attention to the system 

LabView, which makes it possible to analyze both software and hardware 

solutions in a very wide circuit range (from analog circuits to FPGAs). 
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