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N.L., México. (allansori@gmail.com, miguel.platasg@uanl.mx,
cornelio.posadascs@uanl.edu.mx)

2 Engineering Faculty, Baja California Autonomous University (UABC)
Carretera Ensenada-Tijuana Km. 103, C.P. 22860, Ensenada, B.C., México.
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Abstract. In this paper by using chaotic Cellular Neural Networks (CNNs), authors
investigate the synchronization of a complex network that displays the small-world
property. We consider two different models of chaotic CNNs to compose the complex
network. Newman-Watts algorithm is used to generate the long-range connections in
an arrangement of N -coupled chaotic CNNs, which will allow a faster communication
between the CNNs of the whole network. Authors will show how the small-world prop-
erty allows us to synchronize a complex network by using a small coupling strength.
Chaotic synchronization is achieved by using the complex systems theory. Numerical
simulations are provided to show the effectiveness of this method.
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1 Introduction

The so-called Cellular Neural Networks have been extensively studied since
their beginning three decades ago. The main interest on this systems was and
still is their ability for information or signal processing. The best features of
these systems are: on one hand, their ability of real-time signal processing; on
the other hand, their local interconnection makes them tailor-made for mono-
lithic implementation [1,2]. The acronym CNN for Cellular Neural Network
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was first introduced by L.O. Chua and L. Yang in 1988 [1]. Since its inven-
tion, many applications for CNNs have been proposed in literature [1–8], with
special interest for image-processing tasks [9].

We are interested in the application that interpreted CNN as Cellular Non-
linear Networks. This interpretation was a extension of the original paradigm
of CNN [2] proposed by Chua and Roska [10] in 1993. In this way, CNNs were
considered for generating chaotic and hyper-chaotic signals [2,11–13], auto-
waves, spiral waves and spatial-temporal chaos [14,15]. In this work, we are
interested in two different CNN that exhibit chaotic behavior, they will be
briefly explained later on.

In addition to the complexity generated by locally coupled nonlinear dy-
namical systems to generate a specific behavior (in this case chaotic), we ar-
range the resulting CNN in certain way to generate a small-world network to
be synchronize. Synchronization of complex networks has also been widely
studied; nowadays the two most important results derived from this intense
research are the following: firstly, the discovery that the behavior of biolog-
ical and non-biological systems can be modeled by the dynamics of complex
networks: modeling of economic systems [16], modeling of a community for en-
gineering purposes [17,18], the spread of epidemics in a population [19,20] and
modeling of the human brain [21]. Secondly, the influence or effect of topology
on the realization of system processes: spreading of rumors [22], generation of
memory capacity in a system [23] and fast transmission of information between
individuals [23,24] for instance. The previously mentioned papers show results
of complex networks arranged in small-world topology.

The small-world networks have their beginning in the 1960’s. Stanley Mil-
gram distributed letters to people in Nebraska to be sent to Boston by people
who might know the consignee. Milgram found that it had taken an average
of six steps for a letter to get from Nebraska to Boston [25,26]. The per-
formed experiment led to the well-known concept of six degrees of separation
[27]. Such networks became very popular after D.J. Watts and S.H. Strogatz
published the pioneering algorithm to introduce the small-world property to
a regular network. They showed that the network main characteristics were:
high clustering coefficient and short average path length [26].

This paper is organized as follows: In Section 2 a brief review on complex
networks and their synchronization is given. We also explain the Newman-
Watts small-world algorithm in this section. The models of the chaotic Cellular
Neural Networks (CNNs) which will be used as chaos generators are given in
Section 3. Synchronization of N -coupled chaotic CNNs is provided in Section
4. Some conclusions are given in Section 5.

2 Complex networks

In the present paper we will use the definition of a complex network as suggested
by Wang [28].
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Definition 1 A complex network is defined as an interconnected set of os-
cillators (two or more), where each oscillator is a fundamental unit, with its
dynamic depending of the nature of the network.

Each oscillator is defined as follows

ẋi = f(xi) + ui, xi(0), i = 1, 2, . . . , N, (1)

where N is the network’s size, xi = [xi1, xi2, . . . , xin] ∈ <n represents the state
variables of the oscillator i. xi(0) ∈ <n are the initial conditions for oscillator
i. ui ∈ <n establishes the synchronization between two or more oscillators and
is defined as follows [29]

ui = c

N∑
j=1

aijΓxj , i = 1, 2, . . . , N. (2)

The constant c > 0 represents the coupling strength. Γ ∈ <n×n is a constant
matrix to determine the coupled state variable of each oscillator. Assume that
Γ = diag(r1, r2, . . . , rn) is a diagonal matrix. If two oscillators are linked
through their k-th state variables, then, the diagonal element rk = 1 for a
particular k and rj = 0 for j 6= k.

The matrix A ∈ <N×N with elements aij is the coupling matrix which
shows the connections between oscillators, if the oscillator i-th is connected to
the oscillator j-th, then aij = 1, otherwise aij = 0 for i 6= j. The diagonal
elements of A matrix are defined as

aii = −
N∑

j=1,j 6=i

aij = −
N∑

j=1,j 6=i

aji i = 1, 2, ..., N. (3)

The dynamical complex network (1) and (2) is said to achieve synchroniza-
tion if

x1(t) = x2(t) = . . . = xN (t) as t→∞. (4)

In this paper networks with N chaotic CNNs as nodes are considered to be
synchronized.

2.1 Newman-Watts small-world algorithm

After Watts and Strogatz published their pioneering algorithm to generate
small-world networks in 1998, a revised version of that algorithm emerged one
year later. In 1999, M.E.J. Newman and D.J. Watts proposed a modified ver-
sion of the original small-world model [30,31]. Newman-Watts algorithm also
starts from the nearest-neighbor topology, which is a ring lattice with periodic
boundary conditions. The algorithm introduces the small-world property by
adding links to pairs of CNN randomly chosen. Restrictions are: a CNN cannot
have multiple links with another CNN or a link with itself. In Fig. 1 an example
of a small-world network created with this model is shown. Here, as mentioned
before N is the network’s size, k is the periodic boundary condition of the
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nearest neighbor topology, the i-th CNN is connected with i±1, i±2, . . . , i±k;
p is the probability to add a link and N(N − (2k + 1))p/2 are the number of
long-range link.

The characteristics most affected by the small-world property will be: the
clustering coefficient C, which is defined as Ci = 2Ei/ki(ki − 1), where Ei
are the actual edges that exist between ki CNNs of the total possible number
ki(ki−1)/2; the average path length L, which is defined as the distance between
two oscillators averaged over all pairs of oscillators [28]. Due to the existence of
long-range links, the small-world network has high clustering coefficient C(p),
and a short average path length L(p).

In this paper we will use the Newman-Watts algorithm because as revised
version of the original Watts-Strogatz algorithm, it prevents from the genera-
tion of isolated clusters.

3 Cellular Neural Networks (CNNs) models

In this section the models of chaotic Cellular Neural Networks (CNNs) will be
presented and briefly described.

First of all, authors resort to the following definition of a Cellular Neural
Network (CNN) [1].

Definition 2 A standard CNN architecture consists of an M ×N rectangular
array of cells. Each cell is a dynamical system which has an input and a state
evolving according to some prescribed dynamical laws. Each cell is coupled only
among the neighboring cells lying within some prescribed sphere of influence
with radius r, i.e., the r-neighborhood of the cell. The cell in row i and column
j is denoted as C(i, j) and it is said to be isolated if it is not coupled to any
other cell.

The variables for an isolated cell are [1]: input u(t) ∈ <u, threshold z(t) ∈
<z, state x(t) ∈ <x and output y(t) ∈ <y. An example of an isolated cell is
given in Fig. 2. For this particular case, we used the following models.

Fig. 1. Small-world network created adding some links between randomly chosen pair
of chaotic CNNs. The solid lines are all the existing links. The dash-dot lines are the
links randomly added.
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3.1 Chaotic 3D CNN model

The chaotic 3D CNN [32] is described by the following equation

ẋ = −x + T tanh(x), (5)

where the state vector x ∈ <3, tanh(x) = [tanh(x1) tanh(x2) tanh(x3)]T and

T =

T11 T12 T13T21 T22 T23
T31 T32 T33

 =

1.49 2 1
−2 1.7 0
4 −4 2

 . (6)

The 3D CNN described in Eqn. (5) exhibits chaotic behavior for parameters
given in Eqn. (6) [32]. An example of the chaotic attractor and state variables
are shown in Fig. 3 (a) and Fig. 3 (b) respectively. They were obtained by
using the initial conditions x(0) = [−0.2, 0.1, 0.1]T .

3.2 Standard CNN model

In this work, we also consider the standard CNN model proposed in [1], which
is widely used for M×N arrays. The standard CNN equations are the following

ẋij = −xij+zij+
∑

kl∈Nr(i,j)

aklykl+
∑

kl∈Nr(i,j)

bklvkl, i = 1, . . . ,M ; j = 1, . . . , N,

(7)

yij = f(xij), (8)

where zij is a scalar for simplicity, Nr(i, j) is the sphere of influence with radius
r, i.e., the r-neighborhood of the cell.

∑
kl∈Nr(i,j)

aklykl and
∑

kl∈Nr(i,j)

bklvkl are

the local couplings, and

f(xij) =
1

2
(|xij + 1| − |xij − 1|) . (9)

For the particular case where M = 3 and N = 4, the Eqns. (7)-(8) assume
the simpler form of a 3× 4 CNN array [1]

Fig. 2. A two-dimensional isolated cell: input uij(t) ∈ <u, threshold zij(t) ∈ <z,
state xij(t) ∈ <x and output yij(t) ∈ <y
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Fig. 3. (a) View x− y − z for the chaotic attractor of the 3D CNN in Eqn. (5). (b)
x(t), y(t) and z(t) states variables obtained with x(0) = [−0.2, 0.1, 0.1]T .


ẋ1 = −x1 + a00f(x1) + a01f(x2) + b00v1(t),
ẋ2 = −x2 + a0,−1f(x1) + a00f(x2) + b00v2(t),
y1 = f(x1),
y2 = f(x2),

(10)

where a00 = 2, a0,−1 = 1.2, a01 = −1.2, b00 = 1, v1(t) = 4.04sin
(
π
2 t
)

and
v2(t) = 0; then the set of equations (10) becomes{

ẋ1 = −x1 + 2f(x1)− 1.2f(x2) + 4.04sin
(
π
2 t
)
,

ẋ2 = −x2 + 1.2f(x1) + 2f(x2), (11)

with the nonlinear function

f(x1,2) =
1

2
(|x1,2 + 1| − |x1,2 − 1|) . (12)

Fig. 4 (a) and Fig. 4 (b) show an example of the chaotic attractor and the
state variables respectively generated with Eqns. (11)-(12).

In the remainder of the paper, complex networks with small-world topology
composed by the previously described CNN models will be synchronized.

4 Synchronization of N chaotic CNNs via coupling
matrix

In this section, synchronization of complex networks composed of N -coupled
chaotic CNNs is achieved. Firstly, necessary conditions to achieve synchroniza-
tion are provided. Then, at the end of the section synchronization results are
shown.
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Fig. 4. (a) View x1 − x2 for the chaotic attractor of the standard CNN in Eqn.
(11)-(12). (b) x1(t) and x2(t) state variables obtained with x(0) = [−0.2, 0.1]T .

4.1 Conditions for synchronization by using the coupling matrix

Suppose that there are no isolated clusters in the network, then the coupling
matrix A, obtained as explained in Section 2, is a symmetric irreducible matrix,
so one eigenvalue of A is zero and all the other eigenvalues are strictly negative,
this means, λ2,...,N (A) < 0.

Theorem 1 ([28]) Consider the dynamical network (1). Let

0 = λ1 > λ2 ≥ λ3 · · · ≥ λN , (13)

be the eigenvalues of its coupling matrix A. Suppose that there exist an n× n
diagonal matrix D > 0 and two constants d̄ < 0 and τ > 0, such that

[Df (s (t)) + dΓ ]
T
D + D [Df (s (t)) + dΓ ] ≤ −τIn, (14)

for all d ≤ d̄, where In ∈ <n×n is an unit matrix. If moreover,

cλ2 ≤ d̄, (15)

then the synchronization state (4) is exponentially stable.

The coupling strength c determines the stability of the synchronization state
(Eqn. (4)) through the control law (Eqn. (2)). It is obtained as follows

c ≥
∣∣∣∣ d̄λ2

∣∣∣∣ . (16)

4.2 Synchronization results

In this section two complex networks of identical chaotic Cellular Neural Net-
works will be synchronized. The original topology of the network is similar to
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Fig. 5. Lowest boundaries of c corresponding to λ2(p) for a complex network com-
posed of N = 100 CNN with a periodic boundary condition k = 3.

the one illustrated in Fig. 1 with N = 100 and a periodic boundary condition
k = 3. The long-range connections will be added as p grows according to the
Newman-Watts small-world algorithm. Every node in the network will be ei-
ther a chaotic 3D CNN described by Eqns. (5)-(6) or a chaotic standard CNN
described by Eqns. (11)-(12).

Considering a synchronization scheme of N -coupled chaotic CNN, the cou-
pling matrix is obtained as explained in Section 2. All its eigenvalues are
0 = λ1 > λ2 ≥ λ3 . . . ≥ λ100. For Case 1 and Case 2, initial conditions were
randomly generated for each oscillator within the range [−5, 5] without repeat-
ing them. The Gamma matrix is defined as Γ = diag(1, 0, 0) also for both
cases. This means that the synchronization is achieved by the first state vari-
able. According to Eqn. (2), the control laws ui1 for i = 1, . . . , 100 are given
by the A matrix nonzero elements.

For the computation of the coupling strength, we will use the data depicted
in Fig. 5. Firstly, we provide the second largest eigenvalue (“x”-mark in blue)
as a function of the probability p. Secondly, for each λ2, we computed the
coupling strength c value according to Eqn. (16). The obtained ratio is the
lowest boundary necessary for each type of CNN to reach synchrony and it
decreases as the probability increases.

Case 1: Synchronization of N chaotic 3D CNN By using d̄ = −1 we
stabilize the states of a single chaotic 3D CNN. Now, we compute from Eqn.
(16) that c ≥ |−1/λ2|. Note that we have only to determine λ2, which will
vary as the network varies through the probability p. In Fig. 5 the coupling
strength lowest boundary corresponding to each λ2 is given with “x”-mark in
black.

The equations that describe the complex network are given as follows

ẋi = −xi + T tanh(xi) + ui, i = 1, . . . , 100, (17)
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Fig. 6. View x− y − z for the chaotic attractor of the 3D CNN of Eqns. (17)-(18).

and

T =

T11 T12 T13T21 T22 T23
T31 T32 T33

 =

1.49 2 1
−2 1.7 0
4 −4 2

 . (18)

For this case by using p = 0.15 and coupling strength at c = 1, the fol-
lowing synchronization results were obtained: In Fig. 6 the chaotic attractor
of the final dynamic of Eqns. (17)-(18) is shown. In Fig. 7 (a) the time
evolution of the state variables is shown. Fig. 7 (b) provides the phase por-
traits between some state variables to verify synchronization, here the condition
x1(t) = x2(t) = . . . = xN (t) as t→∞ holds.

Case 2: Synchronization of N standard CNN By using d̄ = −10 the two
state variables x1(t) and x2(t) of a single standard CNN are stabilized. The
same way that in the previous case, we compute from Eqn. (16) the coupling
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Fig. 7. (a) State variables xj(t), yj(t) and zj(t) for j = 24, 49, 53, 63, 68 randomly
chosen. (b) Phase portrait between xi vs. xj ; i = 1, 50, 100; j = 10, 40, 70 state
variables.
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strength. In Fig. 5 the coupling strength lowest boundary corresponding to
each λ2 is given for this case with “x”-mark in magenta.

The equations that describe the complex network are given as follows{
ẋi1 = −xi1 + 2f(xi1)− 1.2f(xi2) + 4.04sin

(
π
2 t
)

+ ui1,
ẋi2 = −xi2 + 1.2f(xi1) + 2f(xi2), i = 1, . . . , 100, (19)

with the nonlinear function

f(xi1,2) =
1

2
(|xi1,2 + 1| − |xi1,2 − 1|) . (20)

For this case by using p = 0.8 and coupling strength at c = 0.5, the following
synchronization results were obtained: In Fig. 8 the chaotic attractor of the fi-
nal dynamic of Eqns. (19)-(20) is shown. The time evolution of some state vari-
ables randomly chosen is shown in Fig. 9 (a). In Fig. 9 (b) synchronization can

0 1 2 3 4 5
−4

−2

0

2

4

x
j
1
(
t
)

 

 

0 2 4 6 8 10

−1

0

1

2

3

t (sec)

x
j
2
(
t
)

(a)

−10 0 10
−10

0

10

x
8
9

−10 0 10
−10

0

10

x
9
4

−10 0 10
−10

0

10

−10 0 10
−10

0

10

x
23

x
1
0
0

−10 0 10
−10

0

10

x
59

−10 0 10
−10

0

10

x
72

(b)

Fig. 9. (a) State variables xj1(t) and xj2(t) for j = 23, 59, 72, 89, 100 randomly
chosen. (b) Phase portrait between xi vs. xj ; i = 23, 59, 72; j = 89, 94, 100 state
variables.
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be verified by the phase portraits between some state variables. As in the previ-
ous case, the synchronization condition x1(t) = x2(t) = . . . = xN (t) as t→∞
holds.

We highlight the fact that synchronization of complex networks of chaotic
CNN was achieved by using a small coupling strength c in small-world topology.

5 Conclusion

In this work the synchronization of small-world networks composed by chaotic
Cellular Neural Networks (CNNs) was achieved. We highlight that it was
possible to synchronize chaotic CNN arrays disposed in a small-world topology
by using the Complex Systems Theory. A remarkable thing in this paper is the
fact that the complex networks under consideration, either composed by the 3D
CNN or the standard CNN, can achieve synchrony by using a small coupling
strength c. Numerical simulations showed that the bigger the probability p,
the easier to synchronize the complex network.
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