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Abstract. Thermoyphons, in the engineering literature, is a device composed of a
closed loop containing a fluid who motion is driven by several actions such as gravity
and natural convection. Their dynamics are governing for a coupled differential non-
linear systems. In several previous work we show chaos in the fluid, even with a bynary
fluid ( Jiménez-Casas and Ovejero[6], Jiménez-Casas and Rodŕıguez-Bernal[5,8]). In
this work I prove some result about the asymptotic behaviour for solutions of above
system with binary fluids (water and antifreeze) when we consider a prescribed heat
flux. These results are the generalizing of those obtained by Rodŕıguez-Bernal and
Van Vleck[17] for a thermosyphon model with one-component fluid.
Keywords: Thermosyphon, Asymptotic behaviour, Inertial Manifold.

1 Introduction

In the engineering literature a thermosyphon is a device composed of a closed
loop containing a fluid where some soluble substance has been dissolved. The
motion of the fluid is driven by several actions such as gravity and natural
convection. In particular, we will consider the convective movements caused
by inner solute fluctuations generated by a temperature gradient; this fact is
known as the Soret effect, and it has been studied experimentally by Hart,
Hurle[2,4] between others. We study the evolution of the velocity of the fluid
v, of the temperature T of the fluid and of the solute concentration S.

We assume that the section of the loop is constant and small compared with
the dimensions of the physical device, so that the arc length coordinate along
the loop (x) gives the position in the circuit. The velocity v of the fluid is as-
sumed to be independent of the position in the circuit, i.e. it is assumed to be
a scalar quantity depending only on time, v = v(t). The other relevant quanti-
ties, namely temperature, T (t, x), and concentration of the solute, S(t, x), are
assumed to depend on time and position along the loop.

We assume that the average circulation is generated by the net buoyancy
torque exerted by both solute concentration and temperature, and is retarded
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by viscous drag at the wall, i.e. by friction forces. In addition we assume that
the variations of temperature are independent on the solute concentration. We
consider the distribution equation of solute into the loop as in Hart[2] and
Keller[12], where has been used the conservation of mass for the solute and has
been assumed that the fluid also transports the solute, and be generated by
Soret diffusion and reduced by molecular diffusion.

The evolution of the above quantities is given by the following ODE/PDE
system (cf. Jiménez-Casas and Ovejero[6], Jiménez-Casas and Rodŕıguez-
Bernal [5,8], Jiménez-Casas[7],Velázquez[18] for further details)

dv

dt
+G(v)v =

∮
(T − S).f, v(0) = v0

∂T

∂t
+ v

∂T

∂x
= h(x) + ν ∂

2T
∂x2 , T (0, x) = T0(x)

∂S

∂t
+ v

∂S

∂x
= c

∂2S

∂x2
− b∂

2T

∂x2
, S(0, x) = S0(x)

(1)

It is important to note that all functions considered are 1-periodic respect
to the spatial variable. The function f, describes the geometry of the loop
and the distribution of gravitational forces, so note that

∮
f = 0 where

∮
=∫ 1

0
dx denotes integration along the closed path of the circuit. We consider

the general geometries as in Velázquez[18]. In the sequel we assume that G
and h, are given continuous functions, such that G(v) ≥ G0 > 0, and h is a
prescribed heat flux as the heat transfer law across the loop wall. The functions
G(v), which specifies the friction law at the inner wall of the loop (Keller[12],
Liñan[13], Rodŕıguez-Bernal and Van Vleck[16],Velázquez[18]), and h which
prescribes the heat flux at the wall of the loop (cf.Liñan[13]), are given by
different forms. The diffusion coefficients b, c are positive constants and we
note that b is proportional to the Soret coefficient, therefore if we assume it to
be zero, i.e. if we neglect the Soret effect, and we start with an homogeneous
initial concentration of solute, then S remains constant in time and space in
Eq. (1) and, since

∮
f = 0, then Eq. (1) reduces exactly to the model in

Rodŕıguez-Bernal and Van Vleck[16],Velázquez[18] and Rodŕıguez-Bernal and
Van Vleck[17] when we consider a prescribed heat flux h as the heat transfer law
across the loop wall instead of Newton’s linear cooling law, i.e. h = k(Ta − T )
where k is a positive quantity, sometimes depending on the velocity, and Ta is
the (given) ambient temperature distribution Welander[19].

The contribution in this paper (Section 3) is to prove that, under suitable
conditions, any solution either converges to the rest state or the oscillations of
velocity around v = 0 must be large enough. This result, generalizes the one
proposed in Rodŕıguez-Bernal and Van Vleck[17] for a thermosyphon model
including a two-component fluid.

2 Previous results about well posedness and global
attractor

First, we note that in this section we consider the case in which all periodic
functions in Eq. (1) have zero average, i.e. we work in Y = IR × Ḣ1

per(0, 1) ×
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L̇2
per(0, 1), where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+ 1) = u(x)a.e.,

∮
u = 0},

Ḣm
per(0, 1) = Hm

loc(IR) ∩ L̇2
per(0, 1).

In effect, we observe that, for ν > 0, if we integrate the equation for the
temperature along the loop, i.e. intregating the second equation of Eq. (1)
with respect to x, we have that d

dt (
∮
T ) =

∮
h and then

∮
T (t) =

∮
T0 + t

∮
h.

Therefore, the temperature is unbounded, as t→∞, unless
∮
h = 0. However,

taking θ = T −
∮
T and h∗ = h−

∮
h reduces to the case

∮
θ =

∮
θ0 =

∮
h∗ = 0,

since θ would satisfy:

∂θ

∂t
+ v

∂θ

∂x
= h(x) + ν

∂2θ

∂x2
, θ(0) = θ0 = T0 −

∮
T0 (2)

Moreover, integrating with respect to x the third equation of Eq. (1) and
taking into account the periodicity of T and S, we have

∮
∂S
∂t = −v

∮
∂S
∂x −

b
∮
∂2T
∂x2 + c

∮
∂2S
∂x2 = 0. Therefore, d

dt [
∮
Sdx] = 0 and

∮
S is constant respect to

t, i.e.
∮
S =

∮
S0 = m0.

Therefore, if we consider now θ = T −
∮
T and σ = S−

∮
S0, then from the

second and third equation of system Eq. (1), we obtain that θ and σ verify the
equations (2) together with (3)

∂σ

∂t
− c∂

2σ

∂x2
= −v ∂σ

∂x
− b∂

2τ

∂x2
, σ(0) = σ0 = S0 −

∮
S0. (3)

Finally, since
∮
f = 0, we have that

∮
(T−S)f =

∮
(θ−σ)f, and the equation

for v reads
dv

dt
+G(v)v =

∮
(θ − σ).f, v(0) = v0. (4)

Thus, from Eqs. (2), (3) and (4) we have (v, θ, σ) verifies system Eq.(1) with
h∗, θ0, σ0 replacing h, T0, S0 respectively and now

∮
θ =

∮
σ =

∮
h =

∮
σ0 =∮

θ0 = 0.
We note that to obtain the original dynamics we put v, T = τ+

∮
T, S = σ+

m0, wherem0 =
∮
S0, which shows that the dynamics is essentially independent

of m0. Thus, using again variables v, T and S instead of v, θ and σ we consider
the system Eq. (1) with

∮
T0 = 0,

∮
S0 = 0,

∮
h = 0 and

∮
T (t) =

∮
S(t) = 0

for every t ≥ 0.

Also, if ν > 0 the operator −ν ∂2

∂x2 , together with periodic boundary condi-
tions, is an unbounded, self-adjoint operator with compact resolvent in L2

per(0, 1)

that is positive when resctricted to the space of zero-average functions L̇2
per(0, 1).

Hence, the second equation in Eq. (1) is of parabolic type for ν > 0, as is the
third equation in Eq. (1). Thus, we can apply the result about the sectorial
operator of Henry[3] to prove the existence of solutions of system Eq. (1), such
that we get the following result on Jiménez-Casas and Ovejero[6].
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Proposition 1. If we assume that G∗(r) = rG(r) is locally Lipschitz, and
f, h ∈ L̇2

per. Then, given (v0, T0, S0) ∈ Y = IR × Ḣ1
per × L̇2

per there exists a
unique solution of Eq. (1) satisfying

(v, T, S) ∈ C([0,∞],Y) ∩ C(0,∞, IR× Ḣ3
per(0, 1)× Ḣ2

per(0, 1)),

(v̇,
∂T

∂t
,
∂S

∂t
) ∈ C(0,∞, IR× Ḣ3−δ

per (0, 1)× Ḣ2−δ
per (0, 1))

for every δ > 0. In particular, Eq. (1) defines a nonlinear semigroup S∗(t) in
Y, which is defined by S∗(t)(v0, T0, S0) = (v(t), T (t, ·), S(t, ·)).

Moreover, Eq. (1) has a global compact and connected attractor, A , in Y.
Also if h ∈ ×Ḣm

per(0, 1) with m ≥ 1, the global attractor A ⊂ IR×Ḣm+2
per ×Ḣm+2

per

and is compact in this space.

Proof. This result has been proved in Theorem 2.1,Theorem 2.2 and Corollary
2.1 from Jiménez-Casas and Ovejero[6].

3 Asymptotic behaviour for solutions under
orthogonality condition

In previous works, like Jiménez-Casas and Rodŕıguez-Bernal[8,5], Jiménez-
Casas and Ovejero[6], the asymptotic behaviour of the system Eq.(1) for large
enough time is studied.

In this sense the existence of a inertial manifold associated to the functions
f (loop-geometry) and h (prescribed heat flux) have proved. The abstract
operators theory (Henry[3], Foias et al. [1] and Rodŕıguez-Bernal[15,14]) has
been used for this purpose.

In this section we prove in Proposition 2 the results which rise an important
consequence: for large time the velocity reaches the equilibrium - null velocity
-, or takes a value to make its integral diverge, which means that either it
remains with a constant value without changing its sign or it will alternate an
infinite number of times so the oscillations around zero become large enough
to make the integral diverge.

3.1 Previous results and notations

In this section we assume also that G∗(r) = rG(r) is locally Lipschitz, and
f, h ∈ L̇2

per are given by following Fourier expansions

Ta(x) =
∑
k∈IZ∗

bke
2πkix; f(x) =

∑
k∈IZ∗

cke
2πkix; where IZ∗ = IZ − {0} , (5)

while T0 ∈ Ḣ2
per and S0 ∈ L̇2

per are given by

T0(x) =
∑
k∈IZ∗

ak0e
2πkix, S0(x) =

∑
k∈IZ∗

dk0e
2πkix.
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Finally assume that T (t, x) ∈ Ḣ2
per and S(t, x) ∈ L̇2

per are given by

T (t, x) =
∑
k∈IZ∗

ak(t)e2πkix and S(t, x) =
∑
k∈IZ∗

dk(t)e2πkix IZ∗ = IZ−{0} (6)

We note that āk = −ak (d̄k = −dk) since all functions consider are real and
also a0 = d0 = 0 since they have zero average.

Now we observe the dynamics of each Fourier mode and from Eq. (1), we
get the following system for the new unknowns, v and the coefficients ak(t) and
dk(t). 

dv
dt +G(v)v =

∑
k∈IZ∗(ak(t)− dk(t))c−k

ȧk(t) +
[
2πkiv(t) + 4νπ2k2

]
ak(t) = bk

ḋk(t) +
[
2πkiv(t) + 4cπ2k2

]
dk(t) = 4bπ2k2ak(t)

(7)

• Assume that the prescribed heat flux h ∈ Ḣm
per, are given by

h(x) =
∑
k∈K

bke
2πkix,

and bk 6= 0 for every k ∈ K ⊂ IZ with 0 6= K, since
∮
h = 0. We denote by

Vm the clousure of the subspace of Ḣm
per generated by {e2πkix, k ∈ K}. Then

we have from Theorem 2.3 in Jiménez-Casas and Ovejero[6] the set M =
IR×Vm×Vm−1 is an inertial manifold for the flow of S∗(t)(v0, T0, S0) =
(v(t), T (t), S(t)) in the space Y = IR×Ḣm

per×Ḣm−1
per . By this, the dynamics

of the flow is given by the flow inM associated to the prescribed heat flux
h. This is

dv
dt +G(v)v =

∑
k∈K(ak(t)− dk(t))c−k

ȧk(t) +
[
2πkiv(t) + 4νπ2k2

]
ak(t) = bk, k ∈ K

ḋk(t) +
[
2πkiv(t) + 4cπ2k2

]
dk(t) = 4bπ2k2ak(t), k ∈ K

(8)

• Moreover, we assume that the function associated to the geometry of the
loop f , are given by

f(x) =
∑
k∈J

cke
2πkix

and ck 6= 0 for every k ∈ J ⊂ IZ with 0 6= K, since
∮
f = 0.

We note also that on the inertial manifold∮
(T − S)f =

∑
k∈K∩J akc−k −

∑
k∈K∩J dkc−k. Thus, the dynamics of the

system depends only on the coefficients in K ∩ J .
• Herafter, we consider de functions h and f are given by following Fourier

expansions

h(x) =
∑
k∈K

bke
2πkix; f(x) =

∑
k∈J

cke
2πkix; (9)

where

K = {k ∈ IZ∗/bk 6= 0} , J = {k ∈ IZ∗/ck 6= 0}with IZ∗ = IZ − {0} ,
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First, from the equations Eq. (7) we can observe the velocity of the fluid is
independent of the coefficients for temperature ak(t) and the salinity dk(t)
for every k ∈ IZ∗ − (K ∩ J). That is, the relevant coefficients for the
evolution of the velocity are only ak(t) and dk(t) with k belonging to the
set K ∩ J. This important result about the asymptotic behaviour has been
proved in Corollary 2.2 from Jiménez-Casas and Ovejero[6].

We also note that 0 /∈ K ∩ J and since K = −K and J = −J then the set
K ∩ J has an even number of elements, wihch we denote by 2n0. Therefore
the number of the positive elements of K ∩ J , (K ∩ J)+ is n0. Moreover
the equations for a−k and d−k are conjugates of the equations for ak and dk,

and therefore we have
∑
k∈K∩J akc−k = 2Re(

∑
k∈(K∩J)+

akc−k) and analogously

∑
k∈K∩J dkc−k = 2Re(

∑
k∈(K∩J)+

dkc−k). Thus∮
(T − S)f = 2Re(

∑
k∈(K∩J)+

akc−k)− 2Re(
∑

k∈(K∩J)+

dkc−k). (10)

The aim is to prove the Proposition 2 which generalize the result of ther-
mosyphon model without solute of Rodŕıguez-Bernal and Van Vleck[17] in the
case of a prescribed heat flux, i.e. h = h(x). To do so we examine which are
these steady-state solutions, also called equilibrium points.

We have to make the difference between equilibrium points (constants re-
spect to the time) null velocity, called rest equilibrium, and equilibrium points
with non-vanishing constant velocity.

Equilibrium conditions.
i) The system Eq. (7) presents the rest equilibrium v = 0, ak = bk

4νπ2k2

and dk = b
cak = b

c
bk

4νπ2k2 ∀k ∈ K ∩ J under the assumption of the following
orthogonality condition:

I0 = Re(
∑

k∈(K∩J)+

bkc−k
k2

) = 0. (11)

ii) Any other equilibrium position will have a non-vanishing velocity and
the equilibrium is given by:

G(v)v = 2Re(
∑

k∈(K∩J)+

akc−k)− 2Re(
∑

k∈(K∩J)+

dkc−k)

ak = bk
4cπ2k2+2πkiv

dk = 4bπ2k2

4cπ2k2+2πkiv
bk

4cπ2k2+2πkiv

(12)

3.2 Asymptotic behaviour

Lemma 1. If we assume that a solution of Eq. (7) satisfies
∫∞
0
|v(s)|ds <∞,

then for every η > 0 there exists t0 such that∫ t

t0

e−4νπ
2k2(t−r)(e−

∫ t
r
2πikv − 1)dr ≤ η with t ≥ t0. (13)
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Moreover

limsupt→∞|
∫ t

t0

(ak(r)e−
∫ t
r
2πkiv − b∗k)e−4cπ

2k2(t−r)dr| ≤

≤ limsupt→∞|ak(t)− b∗k|+ η|b∗k| with b∗k =
bk

4νπ2k2
and t ≥ t0 (14)

Proof: If
∫∞
0
|v(s)|ds < ∞, then for all δ there exits t0 > 0 such that for

every t0 ≤ r ≤ t we have |
∫ t
r
v| ≤ δ. Then, for any η > 0 we can take t0 large

enough such that

|e−
∫ t
r
2πikv − 1| ≤ η for all t0 ≤ r ≤ t. (15)

Therefore, we get∫ t

t0

e−4νπ
2k2(t−r)(e−

∫ t
r
2πikv − 1)dr ≤ η

4νπ2k2
(1− e−4νπ

2k2(t−t0)) ≤ η

4νπ2
≤ η

with t ≥ t0 and taking into account that η → 0 for t → ∞ and ν > 0, we get
Eq. (13).

To prove Eq. (14), we write∫ t

t0

(ak(r)e−
∫ t
r
2πkiv − b∗k)e−4cπ

2k2(t−r)dr =

=

∫ t

t0

(ak(r)−b∗k)e−
∫ t
r
2πikve−4cπ

2k2(t−r)dr+

∫ t

t0

b∗k(e−
∫ t
r
2πikv−1)e−4cπ

2k2(t−r)dr

and taking modulus in this expression the first term in the right member re-
mains

|
∫ t

t0

(ak(r)− b∗k)e−
∫ t
r
2πikve−4cπ

2k2(t−r)dr| ≤

≤
∫ t

t0

|ak(r)−b∗k|e−4cπ
2k2(t−r)dr ≤ limsupt→∞(|ak(t)−b∗k|

(1− e−4cπ2k2(t−t0))

4cπ2k2
.

Now, for the second term in the right, considering the previous result together
with Eq. (15), we have

|
∫ t

t0

b∗k(e−
∫ t
r
2πikv − 1)e−4cπ

2k2(t−r)dr| ≤ η|b∗k|
(1− e−4cπ2k2(t−t0))

4cπ2k2

and taking into account that (1−e−4cπ2k2(t−t0))
4cπ2k2 ≤ 1, we get Eq. (14).
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Proposition 2. i) We assume that I0 = Re(
∑

k∈(K∩J)+

bkc−k
k2

) = 0, with K ∩J

finite set, and that a solution of Eq. (7) satisfies
∫∞
0
|v(s)|ds < ∞. Then the

system reaches the rest stationary solution, that:
v(t)→ 0, as t→∞

ak(t)→ bk
4νπ2k2 , as t→∞

dk(t)→ b
c

bk
4νπ2k2 , as t→∞

ii) Conversely, if I0 = Re(
∑

k∈(K∩J)+

bkc−k
k2

) 6= 0 then for every solution∫∞
0
|v(s)|ds =∞, and v(t) does not converge to zero.

Proof: i) First, we study the behaviour for large time.
The distance between the coefficients that represents the solution of the

system, ak(t) and dk(t) to the values of those coefficients in the equilibrium,
bk

4νπ2k2 and b
c

bk
4νπ2k2 are computed.

For t0 enough large, we known that for every t > t0 we have

ak(t) = ak(t0)e
−

∫ t
t0

2πikv+4νπ2k2
+ bk

∫ t

t0

e−
∫ t
r
2πikv+4νπ2k2dr (16)

and using
∫ t
t0
e−

∫ t
r
4νπ2k2 = 1

4νπ2k2 (1− e−4νπ2k2(t−t0)) we have that

ak(t)− (1− e−4νπ
2k2(t−t0))

bk
4νπ2k2

= ak(t0)e
−

∫ t
t0

2πikv+4νπ2k2
+

+bk

∫ t

t0

e−
∫ t
r
4νπ2k2(e−

∫ t
r
2πikv − 1)dr.

Taking limits when t→∞, we get
ak(t) − (1 − e−4νπ2k2(t−t0)) bk

4νπ2k2 → 0, since ak(t0)e−
∫ t
0
2πikv+4νπ2k2 → 0

and from Eq. (13) we have that bk
∫ t
t0
e−

∫ t
r
4νπ2k2(e−

∫ t
r
2πkiv − 1) → 0. Now

taking into account that (1−e−4νπ2k2(t−t0)) bk
4νπ2k2 converges to bk

4νπ2k2 for large
time we conclude that:

ak(t)→ bk
4νπ2k2

I1(t) = 2Re(
∑

k∈(K∩J)+

ak(t)c−k)→ 2Re(
∑

k∈(K∩J)+

bkc−k
4νπ2k2

) = I (17)

Integrating the equation for dk(t) we have that

dk(t) = dk(t0)e
−

∫ t
t0

(2πikv+4cπ2k2)
+

∫ t

t0

(4bπ2k2)ak(r)e−
∫ t
r
(2πikv+4cπ2k2)dr (18)

from Eq. (18) we have that

dk(t)− (1− e−4cπ2k2(t−t0)) bc
bk

4νπ2k2 = dk(t0)e
−

∫ t
t0

(2πikv+4cπ2k2)
+

+
∫ t
t0

(4cπ2k2)e−4cπ
2k2(t−r) b

c (ak(r)e−
∫ t
r
2πikv − bk

4νπ2k2 )dr
(19)
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working as in the ak case, we prove that Eq. (19) tends to zero and then we
obtain the result about dk.

In fact, taking limits when t→∞, we obtain

dk(t)− (1− e−4cπ
2k2(t−t0))

b

c

bk
4νπ2k2

→ 0,

since dk(t0)e
−

∫ t
t0

(2πkvi+4cπ2k2) → 0 and taking into account Eq. (14) from
Lemma 1 together Eq. (17), we have that∫ t

t0

(4cπ2k2)e−4cπ
2k2(t−r) b

c
(ak(r)e−

∫ t
r
2πkvi − bk

4νπ2k2
)dr → 0.

So that we get
dk(t)→ b

c
bk

4νπ2k2

I2(t) = 2Re(
∑

k∈(K∩J)+

dk(t)c−k)→ b

c
2Re(

∑
k∈(K∩J)+

bkc−k
4νπ2k2

) =
b

c
I (20)

To conclude, we study now when the velocity v(t) goes to zero. From (10)
we can reading the equation for v, the first equation of system Eq. (7), as

dv

dt
+G(v)v = (I1(t)− I) + (I2(t)− b

c
I) + (1 +

b

c
)I

we have that

v(t) = vt0e
−

∫ t
t0
G(v)

+
∫ t
t0

(I1(t)− I)e−
∫ t
r
G(v)dr +

∫ t
t0
Ie−

∫ t
r
G(v)dr+

+
∫ t
t0

(I2(t)− b
cI)e−

∫ t
r
G(v)dr + b

c

∫ t
t0
Ie−

∫ t
r
G(v)dr

(21)

where 
I1(t) = 2Re(

∑
k∈(K∩J)+

ak(t)c−k)

I2(t) = 2Re(
∑

k∈(K∩J)+

dk(t)c−k)

Now from Eqs.(17) and (20) for every δ > 0 there exists t0 such that |I1(s)−I| ≤
δ and |I2(s)− b

cI| ≤ δ for every t0 ≤ s ≤ t <∞.
Let F (t) =

∫ t
t0
e−

∫ t
r
Gdr, with

F (t) =

∫ t

t0

e−
∫ t
r
Gdr =

∫ t
t0
e
−

∫ r
t0
G
dr

e
−

∫ t
t0
Gdr

(22)

and then using L’Hopital’s Lemma from [12] for the function F , we have

limsupt→∞F (t) ≤ e
∫ t
t0
Gdr

Ge
∫ t
t0
Gdr
≤ limsupt→∞

1

G(v)
(23)

Hence, we find that
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limsupt→∞|v(t)− (1 +
b

c
)IF (t)| ≤ 2δlimsupt→∞

1

G(v)
, ∀δ > 0 (24)

i.e., since δ is arbitrary, we get

v(t)− (1 +
b

c
)IF (t)→ 0. (25)

We note that all above result, are valid for every I always we have the
conditions

∫∞
0
|v(s)|ds <∞.

Now, we note that I0 = Re(
∑

k∈(K∩J)+

bk(t)c−k
k2

) = 0 is equivalent to I =

1
2νπ2 I0 = 0.

Therefore, if I0 = 0 then I = 0 and we get from Eq. (25) that v(t)→ 0.

ii) If I0 = Re(
∑

k∈(K∩J)+

bk(t)c−k
k2

) 6= 0 this is I 6= 0 and we assume that∫∞
0
|v(s)|ds < ∞. Then using again L’Hopital’s Lemma from of Rodŕıguez-

Bernal and Van Vleck[17], for F, with Eq. (22) we have that

liminft→∞F (t) ≥ liminft→∞
e
∫ t
t0
Gdr

Ge
∫ t
t0
Gdr
≥ liminft→∞

1

G(v)
> 0,

and therefore from this together with Eq. (25) we conclude liminft→∞|v(t)| >
0, which implies that

∫∞
0
|v(s)|ds =∞. This result is in contradiction with the

initial condition
∫∞
0
|v(s)|ds <∞, what implies that it is not a valid hypothesis.

3.3 Concluding remarks

Recalling that functions associated to circuit geometry, f, and to prescribed
heat flux, h, are given by f(x) =

∑
k∈J cke

2πkix and h(x) =
∑
k∈K bke

2πkix,
respectively. In Jiménez-Casas and Ovejero[6] Corollary 2.2, using the operator
abstract theory, it is proved that if K ∩ J = ∅, then the global attractor for
system Eq. (1) in IR× Ḣ1

per× L̇2
per is reduced to a point

{
(0, θ∞,

b
cθ∞)

}
, where

θ∞ is the unique solution in Ḣ2
per(0, 1) of

−ν ∂
2θ

∂x2
= h(x).

In this sense the Proposition 2 offers the possibility to obtain the same
asymptotic behaviour for the dynamics, i.e., the attractor is also reduced to a
point taking functions f and h without this condition, that is with K ∩ J 6= ∅,
its enough that the set (K ∩ J) 6= ∅, but Re(

∑
k∈(K∩J)+

bkc−k
k2

) = 0.

We note, the result about the inertial manifold (Jiménez-Casas and Ove-
jero[6]) reduces the asymptotic behaviour of the initial system Eq. (1) to the
dynamics of the reduced explicit system Eq. (7) with k ∈ K ∩ J.
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We observe also that from the analysis above, it is possible to design the
geometry of circuit, f , and/or heat flux, h, so that the resulting system has
an arbitrary number of equations of the form N = 4n0 + 1 where n0 is the
number of elements of (K ∩ J)+ and we consider the real an imaginary parts
of relevant coeffiicents for the temperature ak(t) and solute concentration dk(t)
with k ∈ (K ∩ J)+ .

Note that it may be the case that K and J are infinite sets, but their
intersection is finite. Also, for a circular circuit we have f(x) ∼ asen(x) +
bcos(x), i.e. J = {±1} and then K ∩ J is either {±1} or the empty set.

Recently, we have considered a thermosyphon model containing a viscoelas-
tic fluid and we have shown chaos in some closed-loop thermosyphon model with
one-component viscoelastic fluid (Yasappan and Jiménez-Casas et al. [10]), and
even in some cases with a viscoelastic binary fluid (Yasappan and Jiménez-
Casas et al. [11] and Jiménez-Casas and Castro [9]).
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7. A. Jiménez-Casas, “A coupled ODE/PDE system governing a thermosyphon
model”, Nonlin. Analy., 47, 687-692, (2001).
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