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Abstract: The Silnikov criteria requiring at least one fixed point to be of saddle focus 

type for chaos to be generated is tested here in Erbium doped fiber ring laser(EDFRL). 

The study of EDFRL linear stability analysis, nature and dynamics of fixed points is 
presented using theoretical and numerical approach. Two fixed points are calculated for 

EDFRL and their movement with change of key parameters is studied. The system 

converges to the same fixed points whenever we start the system with a slight deviation 

proving that the equilibrium points are not saddle focus type, yet the system is shown 
here and known previously to generate chaos violating Shilnikov criteria. This paper 

proves that EDFRL is a practical system which lacks the existence of a saddle focus type 

fixed point, hence generates Non- Silnikov chaos for some parameter range.  

Keywords: Silnikov theorem, EDFRL, chaos, Fiber laser, linear stability, fixed points. 

 

1    Introduction 

Chaotic systems in the fields of physics, engineering, biology and medicine have 

been extensively studied since many decades. For a continuous dynamical system 

to produce chaos, at least three differential equations are required as per 

Poincare-Bendixon theorem [1]. Lasers are represented by their rate equations, 

meeting all the conditions for nonlinearity and subsequently possibility of chaos 

generation. The semiconductor laser [2–5], microchip laser [6–8] and fiber laser 

[9–13] have been extensively demonstrated both numerically and experimentally 
as successful chaos generators.   

Erbium-doped fiber laser (EDFRL) is an important class of laser in the context 

of optical fiber communications. EDFRL can be used for generating very high 

output powers of magnitudes as high as tens of watts or even more [14]. Various 

experimental and numerical studies [9-16] have been conducted for this 

important class of lasers. Abarbanel et al for the first time developed a quantum 

level model of EDFRL and applied it to study bandwidth and frequency domain 

characteristics of chaos [15]. Luo et al developed mathematical model for pump 
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modulated EDFRL to study optical bi-stability and bifurcation by varying 

modulating frequency [16]. Furthermore routes to chaos, chaos synchronization 

and master slave configurations were also explored and the experimental results 

were in very good agreement with theoretical study [16]. The mathematical 

model developed by Luo was simpler and at a higher level than that formulated 

by Abarbanel. Study of chaotic behavior using some form of forcing function 

and variation of different parameters remained the main focus for the analysis of 

EDFRL laser model. Dynamics of unforced system and linear stability analysis 

was not presented to the best of our knowledge, which is the main focus of this 

paper. The system is linearized at its fixed points using Jacobian. This analysis 

is quite important to explore the nature of fixed points, hence having an insight 

of rich dynamics of the system to relate the parameter ranges with stable, 

unstable or chaotic regimes. Another interesting observation as presented in this 

paper is that the EDFRL is different than the conventional chaotic systems i.e., 

chaos cannot be predicted using Silnikov theorem [17-18], which is used to 

prove the existence of chaos in continuous nonlinear dynamical systems.  

As per Silnikov theorem a system must have at least one fixed point of saddle 

focus type. Furthermore three eigenvalues  of jacobian evaluated at that 

fixed point should satisfy  and with the assumptions that 

 and the existence of homoclinic orbit, chaos can be shown to exist. 

B. Chen et al [19] extended the Silnikov theorem to the case where one of the 

eigenvalues of the Jacobian evaluated at an equilibrium point is zero and the 

other two are complex. Modified Silnikov method is devised to cater for the 

degenerate case, where one of the eigenvalue is zero, for a system of particular 

form.  

Until recently it was believed that conformity with Silnikov theorem is necessary 

for a system to exhibit chaotic trajectories. Xiong Wang, Guanrong Chen [20] 

reported recently that new generation of systems does exist which can be shown 

to violate Silnikov theorem and yet produce chaos. The system presented by 

Xion et al. has only one stable focus, so there is no question of 

homoclinic/heteroclinic trajectories. In the absence of any instability, it is 

expected that all trajectories will definitely converge to the stable focus. However 

the existence of chaotic trajectories was shown numerically using a range of 

different parameter values.  

In this context, EDFRL which is already shown to be a chaos generator [9-16], is 

presented here as a practical system which produces Non-Silnikov chaos. In this 

paper we have shown that EDFRL system has two equilibrium points, around 

which system is linearized and general expressions for equilibrium points and 

eigenvalues are found. It is shown that both of these equilibriums are not of 

saddle focus type, so one would not expect chaos to be generated as per Silnikov 

theorem. However the generation of chaos is further validated by numerical 

computation of some example in time series and phase space. Variation of fixed 

points for different parameter values and shape of converging trajectories around 

these fixed points is also shown. The general expressions of fixed points and 

eigenvalues are evaluated using linear stability analysis. Dependence of 
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equilibrium points on system parameters, approaching trajectories and time series 

data is presented using numerical simulations.  

 

2.    Theoretical Model 

The mathematical model representing the dynamics of Laser intensity and 

population inversion  for erbium doped fiber is reported to be as follow 

           (1) 

             (2) 

g and k are the cavity gain and loss parameters respectively,  is modulation 

index and  is Laser threshold. Third degree of freedom is provided by time 

variable  . To find out the equilibrium or fixed points, time derivates will 

be set to zero and perturbation term is also ignored. So system takes the form 

                               (3) 

           (4) 

3.    Fixed Points and Shilnikov Theorem 

Simultaneously solving for  and , two fixed points are  

  (5) 

 (6) 

In order to analyze the nature of these fixed points, system is linearized at these 

points. Defining the functions f and g as 

  (7) 

               (8) 

The Jacobian of the system is defined as 
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 (9) 

To linearize the system at first fixed point the Jacobian is evaluated at 

 

 (10) 

The eigen values are given as 

 

 

For a homoclinic or hetroclinic orbit, stable and unstable manifolds should cross 

transversally, which imply that fixed point should be a saddle point. One of the 

given eigenvalues must be positive, for  to be a saddle. Now  cannot be 

positive because  is necessary condition for lasing action. For  to be 

positive, following condition must be true 

  (11) 

So   is the laser threshold for EDFRL as already reported in literature. 

This is the minimum limit on  for the start of lasing action and also the lower 

bound on  for the equilibrium point to be a saddle. This does not guarantee the 

generation of chaos as Silnikov theorem requires additionally for saddle point to 

be a focus too. As all the eigenvalues are real and absence of imaginary part 

implies that there is no homoclinic orbit around fixed point . These 

conditions show that Silnikov theorem is not applicable, and chaos is not likely 

to be generated. Now analyzing fixed point . 
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  (12) 

Evaluating the Jacobian at  

  (13) 

Finding eigenvalues 

 (14) 

For all practical purposes cavity gain parameter g remains greater than cavity loss 

parameter k and   should be greater than laser threshold, so these eigenvalues 

will always have negative real part. So a stable fixed point attracts all the 

trajectories around neighborhood and there is no saddle point unless the third 

eigenvalue is positive. From the third equation of model, the third 

eigenvalue , violates Silnikov theorem conditions   and  

. 

Modified Silnikov theorem may be applied when there is a degenerate case of 

zero eigenvalue, but it is applicable for the following general normal form of the 

system 

 

 

 

Then for chaos to occur the modified Silnikov theorem is based on two 

assumptions; (1)  (2) there exists a homoclinic orbit 

connected at (0,0,0). 

Here we see that the system model of fiber laser is not in conformity with the 

above model and assumptions presented are not true for this system, so the 

modified Silnikov theorem is also not applicable. It is evident that Silnikov 

criterion is not being fulfilled by EDFRL system, so one would expect that there 

is no possibility for chaos generation. However, fiber laser is well known to 

exhibit chaos as reported our earlier work[9-10]. In the following section some 

sample phase space and time series data is presented to show the typical shape 

of chaotic waveforms.  
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4.    Simulations and Results 
The solution for the mathematical model of fiber laser is computed numerically 

using Fourth order Runge-Kutta solver. At first simulation is run without 

perturbation term. Trajectories are expected to converge to a fixed point as 

calculated in section II. Using k=3.3e7; g=2*k; Ip=5; two fixed points are 

calculated as = [0, 0.6667] and  = [2, 0.500000]. Trajectories are 

converging to a particular fixed point, when started from different initial points 

in the neighborhood. When started from some neighborhood the system 

converges to fixed point = [0, 0.6667] as in Fig. 1. This is in total agreement 

with fixed point location as found theoretically. First fixed point  shows the 

rest condition of laser when I = 0 and lasing action has not started.  

 

Fig. 1. System convergence to fixed point = [0, 0.6667] 

Table-1 depicts some instances for the change of location of fixed points in 

phase space with respect to change of parameters. The first fixed point always 

has lasing intensity zero which means lasing is not started yet but population 

inversion is building up. However, the second fixed point has nonzero value of 

lasing intensity as well which means a steady lasing condition. 

 

Table-1 Change in two fixed points with parameter changes 

Ip k g Fixed point  Fixed point  

5 3.3 x 10
7
 2k [0,0.6667] [2,0.500000] 

10 3.3 x 10
7
 2k [0, 0.8182] [7, 0.500000] 

20 3.3 x 10
7
 2k [0, 0.9048] [17, 0.500000] 

100 3.3 x 10
7
 2k [0, 0.9802] [97, 0.500000] 

10 3.3 x 10
7
 4k [0, 0.8182] [25,0.2500] 

10 3.3 x 10
7
 10k [0, 0.8182] [79,0.1000] 

 

All the simulated results show that system is dissipative and converging to 

equilibrium points from all directions for a variety of parameter ranges. Fig. 2 
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shows the path of changing second fixed point when =10 and g is changed 

from 2k to 30k.  

 

Fig.2 Trajectory of second fixed point for change of ga from 2ka0 to 30ka0 

Next   is used as perturbation term or forcing function to generate 

chaotic dynamics. Fig. 3(a) and (b) show typical phase space chaotic trajectories 

when modulation index is taken as 0.3 and 0.05 respectively. Fig. 4(a) and (b) 

show chaotic time variation of lasing intensity  and population inversion . 

 
(a) 

 
(b) 

 

Fig. 2 Phase space trajectories for different modulation index 

(a) ma=0.05   (b)ma=0.3 



264    M Sohail Khalid, Syed Zafar Ali and Muhammad Khawar Islam 

 

 

(a) 

 

(b) 

Fig. 4. Time variation (a)  Lasing Intensity   (b) Population inversion D 

5.    Conclusions 
This work shows that practical systems like EDFRL can produce Non- Silnikov 

chaos which is evident from linear stability analysis and the nature of fixed 

points. Eigenvalues at both the fixed points are either real or having negative 

real part hence suggesting a stable system. Linear stability analysis and general 

form of fixed points is presented theoretically, while simulation results show 

that system actually converges to theoretical fixed point locations in phase 

space. This study suggests that EDFRL is an exception from conventional chaos 

generators who follow Shilnikov criteria. 
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