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Abstract. In arecent study, a seven-dimensional Lorenz Model (7TDLM) was derived
based on an extension of the nonlinear feedback loop within the five-dimensional LM
(5DLM). An analysis of Lyapunov exponents indicated that the 7TDLM requires a
much larger critical value for the Rayleigh parameter (rc ~ 116.9) for the onset of
chaos as compared to the rc of 24.74 for the original three-dimensional (3D) LM and
the rc of 42.9 for the 5DLM. To assure that the 7TDLM is more stable than the 3DLM
and 5DLM, analytical solutions of the critical points for the 7DLM were obtained
and a linear stability analysis near the critical point solutions was performed using
various values of the Rayleigh parameter (40 < r < 195) and the Prandtl number
(5 < o < 25). In derivations of the 7TDLM, potential temperature is represented by
the primary, secondary, and tertiary modes, while the streamfunction is represented
only by the primary mode. I also further derive a nine-dimensional LM (9DLM) by
extending the 7DLM with secondary and tertiary modes for the streamfunction. By
comparing the 9DLM with the 7TDLM, the negative nonlinear feedback associated with
the tertiary temperature modes, as first identified in the 7TDLM, is determined to play
a dominant role in stabilizing solutions, while the secondary and tertiary modes for the
streamfunction produce additional heating terms that slightly destabilize solutions.
The critical value of the Rayleigh parameter for the 9DLM is determined to be 102.9,
smaller than that of the 7TDLM but still much larger than those within the 3DLM and
5DLM. Additionally, as indicated by the strong bivariate relationship among primary,
secondary, and tertiary temperature modes, hierarchical scale dependence appears in
the 9DLM as well as the TDLM. Therefore, the comparison between the 7TDLM and
the 9DLM suggests that using the 7TDLM is effective for examining the impact of
high-wavenumber modes on solutions stability.
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1 Introduction

Since Prof. Lorenz of MIT illustrated the sensitive dependence of solutions on
initial conditions over 50 years ago [1,2], his studies have significantly changed
scientific views regarding the predictability of short-term weather and long-
term climate simulations [3,4]. Due to the work of Lorenz, it is now accepted
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that perfect deterministic predictions are impossible and that only finite pre-
dictability can be obtained. Since the practical predictability of a model de-
pends on the model’s mathematical formulas [5], high-dimensional Lorenz mod-
els have been examined in numerous studies (e.g.,[6-8]) in order to understand
the impact of additional Fourier modes on systems responses. However, ear-
lier studies have not provided a solid answer as to whether increasing the
number of modes can produce a model with better predictability. In a series
of recent papers [8-11], to address the above question, a systematic approach
was applied by deriving the five-dimensional (5D), six-dimensional (6D), and
seven-dimensional (7D) Lorenz models (LMs). These 5D-, 6D-, and 7D-LMs
were derived using new modes that can extend the nonlinear feedback loop [8]
within the original 3DLM [1]. The nonlinear feedback loop is identified through
an analysis of the Jacobian term (J(1), 6)) that represents the advection of tem-
perature perturbation (#) by the streamfunction (). To facilitate discussions,
the three Fourier modes used in the 3DLM are referred to as the primary modes;
the two (three) additional Fourier modes in the 5DLM (6DLM) are referred to
as the secondary modes; and the new Fourier modes in the 7TDLM are referred
to as tertiary modes (see details in Section 2). Using these high-dimensional
LMs, the following results were obtained:

1. The two additional secondary modes within the 5DLM, included to repre-
sent the temperature, are capable of providing negative nonlinear feedback
for stabilizing solutions.

2. The third secondary mode within the 6DLM, added to represent the stream-
function, introduces an additional heating term that can destabilize solu-
tions.

3. The findings in (1) and (2) support the view of Lorenz (1972) on the role of
small scale processes: If the flap of a butterfly’s wings can be instrumental
in generating a tornado, it can equally well be instrumental in preventing
a tornado.

4. The nonlinear feedback loop within the original 3DLM determines the
“baseline predictability” and its extension within the 5DLM (or 6DLM)
can provide nonlinear negative feedback and, thus, leads to better pre-
dictability as compared to the “baseline predictability” provided by the
3DLM.

5. The coupling of a new parameterization with nonlinear terms may change
the quasi-equilibrium state. The coupling of a smoothing term (i.e., aver-
aging term) with nonlinear terms may have a similar effect.

6. Further extension of the nonlinear feedback loop within the 7TDLM leads to
a much larger critical value for the Rayleigh parameter (rc¢ 116.9) for the
onset of chaos as compared to the rc of 24.74 for the 3DLM and the rc of
42.9 for the 5DLM.

7. As indicated by the high Pearson correlation coefficients between the pri-
mary and secondary modes and between the secondary and tertiary modes,
0.988 and 0.998, respectively, hierarchical scale dependence appears within
the chaotic solutions of the 7DLM.

The above findings suggest that an improved degree of nonlinearity within a
real-world, high-resolution model may stabilize solutions, leading to improved
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predictability [12,13]; and that heating effects associated with excessive precip-
itation may destabilize solutions, thereby increasing the sensitivity of simula-
tions to small perturbations.

While the 3DLM displays the sensitive dependence of solutions on the ini-
tial conditions, the 7YTDLM reveals the hierarchical scale dependence within
chaotic solutions. The 7TDLM was derived using the primary, secondary, and
tertiary modes for temperature but only the primary mode for the streamfunc-
tion. In this study, the secondary and tertiary modes for the streamfunction
are included in order to derive a nine-dimensional LM (9DLM) for comparing
the impact of the additional modes on solution stability to the impact of the
extended nonlinear feedback loop within the 7DLM. Section 2 discusses the
derivations of the 9DLM and its relationship to the 7DLM. Results from both
the 7DLM and 9DLM are presented in Section 3. A conclusion is provided at
the end.

2 Seven- and Nine-dimensional Lorenz Models

In this section, I first introduce the nine-dimensional Lorenz Model (9DLM),
discuss how to simplify the 9DLM to the 7DLM [11], and then compare the
7DLM and 9DLM with the 5DLM in order to illustrate the major role of
the extended nonlinear feedback loop within the system solutions. By using
Fourier modes to represent the streamfunction and temperature, the 3DLM
and higher-dimensional LMs can be derived from the governing equations for
the two-dimensional Rayleigh Benard convection (e.g., [1,14]; Equations 1-2 in
[11]). To obtain the 9DLM, the following nine Fourier modes are utilized:

M, = V2sin(lz)sin(mz), My = v/2cos(lz)sin(mz), Ms = sin(2mz), (1)

My = V2sin(lx)sin(3mz), Ms = V2cos(lx)sin(3mz), Mg = sin(4mz), (2)
My = 2sin(lz)sin(5mz), Mg = V2cos(lx)sin(5mz), Mg = sin(6mz). (3)

Here | and m are defined as ma/H and 7/H, representing the horizontal and
vertical wavenumbers, respectively; a is a ratio of the vertical scale of the
convection cell to its horizontal scale (i.e., a =1/m). H is the domain height,
and 2H /a represents the domain width.

With the modes in Egs. (1-3), the streamfunction, 1, and the temperature
perturbation, 6, can be represented as:

Y =C (XM1 +X1M4+X2M7>7 (4)

0 =Cy (YM2 — ZMs+Y M5 — Z1 Mg + Yo Mg — Z2M9> . (5)

Cy and Cy are constants and are defined in Eq. (9) of Shen (2014) [8]. While
the modes in Eq. (1) were used to derive the 3DLM [1], additional modes
in Eq. (2) were included in order to derive the 6DLM [10]. New modes in
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Eq. (3) are added in order to derive the 9DLM. The modes in Egs. (1-3) are
referred to as the primary, secondary, and tertiary modes, respectively. The
three modes (M1, My, M7) in Eq. (4) are called streamfunction modes, and the
six modes (Ma, M3, Ms, Mg, Mg, My) in Eq. (5) are called temperature modes.
(X,Y,Z,X1,Y1,71,X5,Ya2, Z5) represent the amplitudes of the Fourier modes
(M;-My), respectively. Based on the analysis of the Jacobian term (J(v,6)),
the secondary and tertiary temperature modes (M5 — Mg and Mg — My) are
selected in order to extend the nonlinear feedback loop of the 3DLM. More de-
tails on the selection of the secondary and tertiary modes can be found in the
supplemental materials of [10]. Using Egs. (1-5), the partial differential equa-
tions for the two-dimensional Rayleigh-Benard convection can be transformed
into a set of ordinary differential equations, as follows:

dX
ay
i =-—XZ+X17Z-2X171+2X71 —3XoZs+1rX Y, (7)
-
dz
= XY XY - X0V - XYs - XoYi - 07, (8)
T
dX1 (o
2 X+ T,
ar oX1 + 4 (9)
dY;
= XZ-2X7) = 3X1Zp + XoZ 1 Xy — doVi, (10)
-
dzZy
o = 2XY1 - 2XY, +2X,Y — 2X0Y — 4bZy, (11)
T
dX2 g
22— dio Xy + =Y 12
dT dlU 2 + dl 29 ( )
dYs,
T:2XZ1—3XZ2+X1Z+TX2—LZ1Y—2, (13)
T
dZs
e 3XYs +3X Y7 +3XoY — 9b7s. (14)
T

Here, 7 = k(1 + a?)(r/H)?t (dimensionless time), ¢ = v/x (the Prandtl num-
ber), r = R,/R. (the normalized Rayleigh number or the heating parameter),
b=4/(1+a?),d, = (9+a®)/(1+a?), and d; = (25 +a?)/(1 + a?). v and K
denote the kinematic viscosity and the thermal conductivity, respectively. R,
is the Rayleigh number and R, is its critical value for the free-slip Rayleigh-
Benard problem. An eight-dimensional LM (8DLM) can be obtained by ne-
glecting Eq. (12) and terms that involve X5 in Egs. (6-14). The 7DLM can be
obtained by neglecting Eqs. (9) and (12) and the terms that involve X; and
Xo in Egs. (6-14). The 7D-, 8D- and 9D-LMs include all of the primary, sec-
ondary, and tertiary temperature modes. While the 7DLM only contains the
primary streamfunction mode, the SDLM has both the primary and secondary
streamfunction modes. The 9DLM includes all of the primary and secondary
and tertiary streamfunction modes.
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Using the definitions of domain-averaged kinetic energy (K E) and available
potential energy (APE) in [10], the following equations can be obtained:

__ c,
- 2<X2+don+d1X§>, (15)
—_— Coo 2 2 2 2 2 2
APE=-22(V2 4 22+ P+ 2+ V2 + 23), (16)

where C, = 7r2/12(¥)3. With Egs. (6-14) in the dissipationless limit,
the time derivative of the sum of Egs. (15) and (16) is zero (i.e., d(KE +
APE)/dr = 0). Therefore, the following energy conservation law is obtained:

KE + APE = constant. (17)
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Fig. 1. The largest ensemble-averaged Lyapunov Exponents (eLEs) as a function of
the forcing parameter, r, in various LMs. The figure provides results for Ar=1. The
pink, black, blue, green, and orange lines display eLEs for the 3DLM, 5DLM, 7DLM,
8DLM, and 9DLM, respectively. The appearance of chaotic solutions is indicated by
positive eLEs. Note that the critical value of r for the onset of chaos is between r=116
and r=117 for the 7DLM, and between r=102 and r=103 for the 9DLM. The pink
and black lines are reproduced from [8].

To determine under which condition a model produces chaotic solutions,
the Lyapunov exponent (LE) as a function of the Rayleigh parameter has been
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used ([15]). In this and other studies conducted by myself and other collabo-
rators ([8-11]), numerical methods for calculation of an ensemble averaged LE
(eLE) are developed in order to quantitatively evaluate whether or not the sys-
tem is chaotic. An eLE is determined by averaging 10,000 LEs obtained from
10,000 ensemble runs each of which produces one LE using the same model
configurations but different ICs. With the exception of the heating parame-
ter (r), the following parameters are kept as constant: a = 1/y/2, b = 8/3,
d, =19/3, dy = 17, and o = 10. While Figure 1 displays eLEs obtained using
various values of the Rayleigh parameter (40 < r < 195), Figures 2-3 provide
scatter plots with r = 120 for a comparison between the 7TDLM and 9DLM.
Detailed discussions on the numerical methods used for calculations of the eLE
and solutions can be found in [8,10].

3 Numerical Results

In this section, characteristics of the solutions for both the 7DLM and 9DLM
are discussed. Figure 1 provides eLMs for the two models, as well as the 3DLM
and 5DLM, for a comparison. For the 9DLM, its critical value for the Rayleigh
parameter (rc ~ 102.9) for the onset of chaos is comparable but smaller than
the rc of 116.9 for the TDLM. Both models produce much larger critical values,
as compared to the rc of 24.74 for the 3DLM and the rc of 42.9 for the 5DLM.
Table 1 summarizes critical values for the models. As discussed in [11], when
the tertiary temperature modes were included within the 7DLM, the extension
of the nonlinear feedback loop produced negative nonlinear feedback to stabilize
solutions. As the 9DLM is a superset of the 7DLM, results with a comparable rc
may indicate that the negative nonlinear feedback associated with the tertiary
temperature modes also plays a major role in stabilizing the solutions. On the
other hand, when additional secondary and tertiary streamfunction modes are
included in order to extend the 7TDLM to the 9DLM, a slightly smaller r. for
the 9DLM may suggest the impact of destabilization by the two streamfunction
modes that produce additional heating terms. A similar result was previously
obtained from a comparison between the 5DLM and 6DLM, since the 5DLM
with a larger rc only contains one heating term while the 6DLM with a smaller
rc has two heating terms (see also Table 1). Further analysis between the
7TDLM and 9DLM is provided below.

For the 7TDLM, in addition to the negative nonlinear feedback associated
with the extended nonlinear feedback loop, hierarchical scale dependence is
another unique characteristic of the solutions. Hierarchical scale dependence
was first shown with the high correlation coefficients for two modes among the
primary, secondary, and tertiary temperature modes [11]. In the following, I
will discuss whether hierarchical scale dependence also appears in the 9DLM
that contains additional streamfunction modes. To achieve the goal effectively,
in Figure 2, I begin my discussions with a matrix of scatter plots for the TDLM.
The plots are generated from the numerical results of Shen (2016) [11] using
numerical packages in R ([16]). The scatter-plot matrix displays a bivariate
relationship amongst all of the seven variables, including X,Y, Z, Y7, Z1, Y3,
and Z,, as shown in the diagonal cells. Each of the cells below the principal
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Table 1. The characteristics of various Lorenz models. Values for r. and ri are
determined based on the eLE analyses and the linear stability analyses [8,11] , re-
spectively. The “Equations” column provides a list of the equations used in each
specific Lorenz model. The “Heating terms” column indicates heating terms within
the corresponding LM. The “Models” list selected modes for the LM. Note that the
3DLM, 5DLM, and 7DLM only have one heating term.

Model| 7. L Equations Heating terms Modes
3DLM| 23.7 |24.74| Egs. (15)—(17) in [§] rX M;-Ms
5DLM]| 42.9 [45.94| Egs. (10)—(14) in [§] rX Mi-Ms, Ms-Ms
6DLM| 41.1 |[N/A Egs. (8)—(13) in [9] rX, rX M;-Ms
8DLM|103.4|N/A |Egs. (6)—(14) with no Xo| rX, rX, Mi-Meg,Mg-Mg
9DLM|102.9| N/A Eqgs. (6)-(14) rX, rXi, rXe M;-My
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Fig. 2. A matrix of scatter plots for the TDLM with its seven variables, as listed in
the principal diagonal. r and o are 120 and 10, respectively. Each of the cells above
(below) the diagonal shows a PCC (scatter plot) between the two variables. Scale
dependence is indicated by high PCCs, as well as the linear relationship, in scatter
plots.
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diagonal provides a scatter plot of two variables at the row and column inter-
action of the two variables. For example, the second cell in the first column
is a scatter plot of X (horizontal axis) and Y (vertical axis). Each of the cells
above the diagonal provides the Pearson correlation coefficient (PCC) of two
variables at the row and column intersection of the two variables. For example,
the second cell in the first row indicates the PCC between X and Y, denoted
by PCC(X,Y). From the cells above the diagonal in Figure 2, high PCCs can
be found in two variables among Y, Y7, and Y> and among Z, Z;, and Z.
The PCC(Z, Z1), PCC(Z1, Z2), and PCC(Z, Z3) are 0.988, 0.998, and 0.984,
respectively, suggesting the scale dependence. Additionally, since the PCC of
the primary and tertiary modes (PCC(Z, Z3)) is smaller than the PCC of the
primary and secondary modes (PCC(Z, Z;)) and the PCC of the secondary
and tertiary modes (PCC(Z1, Z3)), the results indicate the appearance of hi-
erarchical scale dependence. The PCC(Y,Y1), PCC(Y1,Y2), and PCC(Y,Y2)
are 0.861, 0.967, and 0.730, respectively, which also indicates hierarchical scale
dependence. A strong linear relationship amongst the above variables is clearly
shown by scatter plots in the cells below the diagonal.

Figure 3 displays the scatter-plot matrix for the 9DLM, which includes the
additional variables of X; and Xs. For the PCCs, PCC(Z, Z;), PCC(Z1, Z2)
and PCC(Z, Zs) are 0.979, 0.998, and 0.972, respectively, slightly smaller than
those in the 7DLM. Similar scatter plots are also obtained with the exception
of the cells that involve additional modes (X7 and X3). Therefore, hierarchical
scale dependence (for the temperature modes) also appears within the 9DLM.
Additionally, a linear relationship appears in each pair of the primary, sec-
ondary, and tertiary streamfunction modes (e.g., X, X7, and X5). However,
the PCC(X, X2) of 0.905 is slightly greater than the PCC (X, X;) of 0.901.
In my future work, I will verify whether or not hierarchical scale dependence
appears amongst the streamfunction modes. Figure 3 also displays a strong
linear relationship between X; and Y; with a PCC of 0.973, and between X5
and Y, with a PCC of 0.996. Therefore, statistically, the following regression
models can be employed to relate X; (X3) to Y7 (Y2):

X1~ o1+ BiYq, (18)

Xo ~ ag + 1Yo, (19)

where (a, 81)=(-9.87x107%, 2.36x1072) and (g, B2)=(-7.5x107°, 3.43x1073).
Equations (18-19) can be further simplified into the following: rX; ~ r51Y;
and rXo ~ r2Y> that act as a forcing term in Egs. (10) and (13), respectively.
Based on an analysis of the coefficients in Eqgs. (18-19), as well as the scale
analysis in Egs. (9) and (12), X; and X are statistically much smaller than
Y1 and Y5, respectively. Therefore, the inclusion of X; and X5 may slightly
destabilize the solutions. In summary, the 9DLM has a similar rc as compared
to the 7TDLM. While the tertiary temperature modes of the 9DLM extend the
nonlinear feedback loop of the 5DLM, providing negative nonlinear feedback
for stabilizing solutions, the secondary and tertiary streamfunction modes in-
troduce additional heating terms that slightly destabilize solutions. The latter
was not included within the 7DLM.
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9DLM with r=120
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Fig. 3. The same as for Figure 2 but for the 9DLM with its nine variables, as listed
in the principal diagonal.

4 Conclusions

Over 50 years ago, Prof. Lorenz discovered the sensitive dependence of numer-
ical solutions on initial conditions and changed scientific views regarding the
predictability of weather and climate simulations. In recent studies and in this
study, I reported the role of negative nonlinear feedback in stabilizing solutions
and the appearance of hierarchical scale dependence within chaotic solutions
of the 7TDLM and 9DLM. The negative nonlinear feedback, associated with the
extension of the nonlinear feedback loop of the 5DLM [11], is enabled by the
tertiary temperature modes (i.e., Mg and My) in both the 7DLM and 9DLM.
In comparison with the extended feedback loop, additional heating terms of
the 9DLM, associated with the two additional modes (i.e., My and M7 as
the secondary and tertiary streamfunction modes), can destabilize solutions.
Based on the analysis, responses associated with the additional streamfunction
modes are weaker than those associated with the tertiary temperature modes.
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As compared to the rc of 116.9 for the 7TDLM, the 9DLM has a comparable but
slightly smaller critical value of the Rayleigh parameter (rc¢ ~ 102.9) for the
onset of chaos. Both models produce much larger values of rc, as compared to
the rc of 24.74 for the 3DLM and the rc of 42.9 for the 5DLM. Therefore, I
suggest that examining the impact of additional modes on solution stability by
extending the nonlinear feedback loop of the 7TDLM is effective. Currently, a
new 9DLM is being derived and examined by excluding the secondary and ter-
tiary streamfunction modes and by including two additional higher wavenumber
temperature modes.
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