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Abstract. In the present paper we investigate the family of the sequences of PRN’s
produced by the generic elements of norm subgroup of multiplicative group of the
reduced system of residues modulo pm of the ring of Gaussian integers. The sequence
of that family passes two-dimensional serial test on uniformity and unpredictability.
Keywords: norm group, pseudorandom numbers, discrepancy.

1 Introduction

The sequence of real numbers {an}, 0 ≤ an < 1 we call the sequence of
pseudorandom numbers (abbreviation, PRN’s) if it is produced by determin-
istic generator and, being a periodical sequence, has the statistical properties
such that it looks like to implementation of the sequence of random numbers
with independent and uniformly distributed values on [0, 1). More acceptable
sequences of PRN’s are generated by the congruential recursion

yn+1 ≡ f(yn, yn−1, . . . , yn−k+1) (mod m)

with some initial values y0, y1, . . . , yk−1 ∈ {0, 1, . . . ,m−1}, where f(u1, . . . , uk)
is integer-valued function over Zkm.

Because it emerged that linear function f(u) = au + b does not supply re-
quirements of ”affinity” to statistical independency (unpredictability) (see, for
example, [10]), this motivated the creation of nonlinear congruential pseudo-
random sequences having an unpredictability property.

The generator produced by the quadratic function f(u) = au2 + bu + c
satisfies to condition of ”practical” unpredictability (see, [6]).

The generator associated with quadratic function f(c) we call parabolical.
In 1989 J. Eichenauer and J. Lehn[4] and H. Niederreiter[13] have studied

a recursive sequence generated by the recursive relation

xn+1 =

{
ax−1n + b if xn 6= 0,
b if xn = 0.
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with some coefficients a ∈ F ∗q , b ∈ Fq.
In the paper [18] there are investigated the analogous of inversive congru-

ential generators, that without any increases of computational complexity of
finding the elements of sequence {yn}, have got an essential complexity for
intruder’s to work around the parameters of inversive or linear generator to be
recovered.

The requirements to uniform distribution and unpredictability is satisfied
the following inversive generator

yn+1 ≡ ay−1n + b (mod pm),

where p is a prime number, a, b ∈ Z, y−1n is a multiplicative inverse to yn
(mod pm).

The inversive generator and its generalization was being investigated by
many authors (see, [1]-[3], [5]-[8], [15]-[18]).

Starting out from our reasoning, we will call such inversive generator as
hyperbolical.

In [19] there have been studied the statistical properties of sequences of
PRN’s produced by a number generator, which determines by the norm group
of the ring of residue classes of modulus pm of the ring of Gaussian integers.
That generator we call circular generator.

In present paper we continue to research the statistical properties of se-
quences of PRN’s produced by the circular generator.

Our main aim here is to elucidate the motivation for constructing circu-
lar generator of the sequences of PRN’s with some specific properties that be
faster of its usage in cryptography. Our exposition focuses on some special
measures of ”randomness” with respect to which ”the good” sequences have
been produced by using of norm group Em. A quantive measure of uniformity
of distribution of a sequence may be the so-called discrepancy. Originated from
a classical problem in Diophantine approximations this concept has found ap-
plications in the analysis of PR sequences on uniformity and unpredictability.
From the well-known Turan-Erdös-Koksma inequality it is evident that the
main tool in estimating discrepancy is the use of bounds on exponential sums
over on elements of the sequence of PRN’s. This motivates a construction this
paper.

Before we proceed further we will fix the notation that will be used through-
out this paper.

Notation

• Lower case Roman (respectively, Greek) letters usually denote rational (re-
spectively, Gaussian) integers; in particular, m, n, k are positive integers
and p is a rational prime number.
• We also define a norm over Q(i) into Q by N(α) = |α|2.
• For the sake of convenience, we denote by G the set of Gaussian integers.
• Let Zq (or Gq) denotes the ring of residue classes modulo q, and Z∗q (or
G∗q) denotes the multiplicative group in Z (or Gq).
• If x ∈ G∗q , we write x−1 for the multiplicative inverse of x mod q, i.e. x−1 is

an arbitrary Gaussian integer satisfying the condition x ·x−1 ≡ 1 (mod q).
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• As usual, gcd(a, b) or (a, b) stand for the greater common divisor of a and
b (or, respectively, α and β in G).

• Through Z[x] (or G[x]) we denote the polynomial ring over Z (or G). For
a ∈ Z (α ∈ G) stand νp(a) (or νp(α)) if pν(a)|a, pν(a)+1 6 |a.

• The fraction a
b , (b, q) = 1 of modulus q means as ab−1, where b−1 is a

multiplicative inverse modulo q.
• At last, eq(x) denotes e2πi

x
q .

2 Auxiliary results

We start by listing some previous estimates on exponential sums which will be
used to establish our main results.

Let f(x) be a periodic function with a period τ . For any N ∈ N , 1 ≤ N ≤ τ ,
we denote

SN (f) :=

N∑
x=1

e2πif(x)

Lemma 1. The following estimate

|SN (f)| ≤ max
1≤n≤τ

∣∣∣∣∣
τ∑
x=1

e2πi(f(x)+
nx
τ )

∣∣∣∣∣ log τ

holds.

This statement is well-known lemma about an estimate of uncomplete expo-
nential sum by means of the complete exponential sum (see, [9]).

Lemma 2. Let p be a prime number and let f(x) be a polynomial over Z

f(x) = A1x+A2x
2 + p(A3x

3 + · · · ),

and, moreover, let νp(A2) = α > 0, νp(Aj) ≥ α, j = 3, 4, . . .. Then we have
the following estimate∣∣∣∣∣∣

∑
x∈Zpm

e2πi
f(x)
pm

∣∣∣∣∣∣ =

{
p
m+α

2 if νp(A1) ≥ α,
0 else,

(see, [16]).

Lemma 3. Let T ≥ N ≥ 1 and q ≥ 2 be integers, yk ∈ {0, 1, . . . , q − 1}d for
k = 0, 1, . . . , N − 1; tk = yk

q ∈ [0, 1)d. Then

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1

N

∑
h∈Cd(q)

∑
h0∈(−T2 ,

T
2 ]

1

r(h, q)r(h0, T )
×

×

∣∣∣∣∣
T∑
k=0

e(h · tk +
kh0
T

)

∣∣∣∣∣
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(see, [12])

Lemma 4. The discrepancy of N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)2

satisfies

DN (t0, t1, . . . , tN−1) ≥ 1

2(π + 2)|h1h2|N

∣∣∣∣∣
N−1∑
k=0

e(h · tk)

∣∣∣∣∣
for any lattice point h = (h1, h2) ∈ Z2 with h1h2 6= 0.

(It is the special version of Niederreiter result in [13]).

Let p be a prime rational number, p ≡ 3 (mod 4). Let us denote by Em
the following subgroup of G∗pm

Em := {x ∈ G∗pm : N(x) ≡ ±1 (mod pm)}.

The subgroup Em we call the norm group in G∗pm .

Lemma 5. Let Em be a norm group. Then Em is a cyclic group, |Em| = 2(p+
1)pm−1, and let u+ iv be a generating element of Em. Then exist x0, y0 ∈ Z∗m
such that

(u+ iv)2(p+1) ≡ 1 + p2x0 + ipy0, 2x0 + y20 ≡ −2p2x20 (mod p3)

and we have modulo pm for any t = 4, 5, . . .

<((u+ iv)2(p+1)t) = A0 +A1t+A2t
2 + · · ·

=((u+ iv)2(p+1)t) = B0 +B1t+B2t
2 + · · · .

Moreover,
A0 ≡ 1 (mod p4), B0 ≡ 0 (mod p4),

A1 ≡ p2x0 +
1

2
p2y20 ≡ −

5

2
x20p

4 (mod p5),

B1 ≡ py0(1− p2x0) (mod p4),

A2 ≡ −
5

2
x20p

2 (mod p5),

B2 ≡
5

3
p3x0y0 (mod p4),

Aj ≡ Bj ≡ 0 (mod p3), j = 3, 4, . . . .

(In greater details see [14]) ut
Denote

(u+ iv)k = u(k) + iv(k), 0 ≤ k ≤ 2p+ 1,

(u+ iv)2(p+1)t+k ≡
m−1∑
j=0

(Aj(k) + iBj(k)) (mod pm).

It is clear, that

Aj(k) = Aju(k)−Bjv(k); Bj(k) = Ajv(k) +Bju(k).

Thus from Lemma 3 we infer.
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Corollary 1. For k = 0, 1, . . . , 2p+ 1, we have

(u(k), p) = (v(k), p) = 1 if k 6≡ 0 (mod
p+ 1

2
);

u(0) = 1, v(0) = 0, (u(p+ 1), p) = 1, p‖v(p+ 1);

u(k) ≡ 0 (mod p), (v(k), p) = 1 if k =
p+ 1

2
or

3(p+ 1)

2
;

u(k) = u(−k), v(k) = −v(−k).

Hence, for k 6≡ 0 (mod p+1
2 ) we have

A0(k) ≡ u(k), B0(k) ≡ v(k) (mod p),

A1(k) ≡ −py0v(k), B1(k) ≡ py0u(k) (mod p3),

A2(k) = −5

2
x20p

u(k), B2(k) ≡ −5

2
x20p

2v(k) (mod p4),

Aj(0) = Aj , Bj(0) = Bj , A0(p+ 1) ≡ −1, B0(p+ 1) ≡ 0 (mod p3),

p2‖A1(p+ 1), p‖B1(p+ 1), p2‖A2(p+ 1), B2(p+ 1) ≡ 0 (mod p3),

p‖A1(k), p2‖B1(k), p2‖A2(k), B2(k) ≡ 0 (mod p3) if k =
p+ 1

2
or

3(p+ 1)

2
.

�

Consider a finite sequence of s-dimensional points {xn}, n = 0, 1, . . . , N −1

from [0, 1)s,s is a fix positive number. The discrepancy D
(s)
N of {xn}, n =

0, 1, . . . , N − 1 is defined as

D
(s)
N := sup

∆

∣∣∣∣AN (∆)

N
− |∆|

∣∣∣∣ ,
where the supremum is taken over all subboxes ∆ ⊆ [0, 1)s, AN (∆) is the num-
ber of points xn, n = 0, 1, . . . , N − 1 that hits the box ∆, |∆| is the volume of
∆.

If with grows of N a value D
(s)
N tends to zero, we suggest that the se-

quence is equidistributed in [0, 1)s. It is well known that the property of
statistical independence of PRN’s x0, x1, . . . , xs−1 will be hold if and only if
(x0, x1, . . . , xs−1) is uniformly distributed in [0, 1)s. For this reason we say
that the sequence of numbers x0, x1, . . . , xN−1 from [0, 1) is unpredictability if

the sequence of s-dimensional points X
(s)
n , n = 0, 1, . . . , N − s, where X

(s)
n =

(xn, xn+1, . . . , xn+s−1), is uniformly distributed in [0, 1)s for s = 1, 2, . . . , S,
where S is sufficiently barge number. More precisely, in this case one says that
the sequence {xn} passes s-dimensional serial test on pseudorandomness. In
practice sufficiently take S = 4.

For integers d ≥ 1 and q ≥ 2, let Cd(q) be the set of all nonzero lattice
points h = (h1, . . . , hd) ∈ Zd with − q2 < hj ≤ q

2 for 1 ≤ j ≤ d. Define for
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h ∈ Cd(q)

r(h, q) =

{
1 if h = 0,

q sin (π |h|q ) if h 6= 0,

r(h, q) =
d∏
j=1

r(hj , q)

Lemma 6. Let {yn} be the sequence of d-dimensional points in {0, 1, . . . , q −
1}d with a period τ , and yn = Yn

q ∈ [0, 1)d. Then for any N , 1 ≤ N ≤ τ , we
have

D
(d)
N (y0,y1, . . . ,yN−1) ≤ d

q
+

1

N

∑
h∈Cd(q)

∑
h0∈(− τ2 ,

τ
2 ]

1

r(h, q)r(h0, q)
×

×

∣∣∣∣∣
N−1∑
n=0

e(h · yn +
nh0
τ

)

∣∣∣∣∣ ,
where h · y denotes the inner product of h and y.

Lemma 7. Let X0, X1, . . . , XN−1 ∈ [0, 1)d, d ≥ 1 with discrepancy Dd
N . Then

for any nonzero h = (h1, . . . , hd) ∈ Zd we have∣∣∣∣∣
N−1∑
n=0

e2πih·Xn

∣∣∣∣∣ ≤ 2

π

((
π + 1

2

)m
− 1

2m

)
ND

(d)
N

d∏
j=1

max (1, 2|hj |),

where m is the number of nonzero coordinates of h.

(see, [13])
Lastly, we will make use the following sequences produced by a generating

element u+ iv of the norm group Em.
We select a random number k ∈ {0, 1, . . . , 2p+1} and consider the sequence

{(u+ iv)2(p+1)n+k}, n = 0, 1, . . . , pm−1 − 1.
Denote

x(k)n := <((u+ iv)2(p+1)n+k), (1)

y(k)n := =((u+ iv)2(p+1)n+k). (2)

Every sequence {x(k)n } or {y(k)n }, n = 0, 1, . . ., has a period τ = pm−1.
From Lemma we obtain the description of elements of these sequences as the
polynomials at n. Besides, taking into account, that

(u+ iv)2(p+1) = u0 + iv0, u0 = 1 + p2x0, v0 = py0, (x0, p) = (y0, p) = 1

and
x(k)n ≡ x(k)n−1u0 − y

(k)
n−1v0 (mod pm), (3)

y(k)n ≡ x(k)n−1v0 − y
(k)
n−1u0 (mod pm) (4)

may be achieved the representations of x
(k)
n , y

(k)
n as the polynomials at x0, y0.

By virtue of the congruence
(
x
(k)
n

)2
+
(
y
(k)
n

)2
≡ (−1)k (mod pm) and

recursion (3) we call the sequences (1) and (2) the circular sequences of PRN’s
and the recursions (3), (4) we call the circular generators.
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3 Family of sequences of PRN’s produced by circular
generator

We generate the family of the sequences of congruential PRN’s which as-
sociated with the sequences {xn(k)} and {yn(k)}. Depending on a select
k ∈ {0, 1, . . . , 2p + 1} we will construct the special sequences of PRN’s. The
several classes of sequences can be associated with the values of k:

(A) k 6≡ 0 (mod p+1
2 );

(B) k = 0 or p+ 1;

(C) k = p+1
2 or 3(p+1)

2 .

Firstly, we consider the class (A). The classes (B) and (C) may be consider by
a similar way, but these classes have its specific.

So, let {x(k)n }, {y(k)n } be the sequences produce the circular generator with
k 6≡ 0 (mod p+1

2 ). In these cases (u(k, p)) = (v(k), p) = 1.
We denote

z(k)n :=
x
(k)
n

1 + v0(k)y
(k)
n

(mod pm), (5)

where v0(k) = v(k) + p2v1(k), (v1(k), p) = 1.
This definition is reasonable by virtue of the fact that

1 + v0(k)y
(k)
n ≡ 1 + v0(k)B0(k) ≡ 1 + v20(k) ≡ −u2(k) (mod p)

v0(k)
m−1∑
j=1

Bj(k)nj ≡ 0 (mod p).

And hence, denoting (u(k)−1)2 = u(k)−2 (mod pm), we have

z(k)n ≡ −(u(k))−2(A0(k) +A1(k)n+ · · · )

(
1 + (u(k))−2v0(k)B1(k)n+

+ u−2(k)
(
v0(k)B2(k)n2 + u−2(k)v20(k)B1(k)

)
n2 + · · ·

)
(mod pm).

Now, after simple calculations, we get

z(k)n = −(u(k))−2
M∑
j=0

A
(k)
j nj ,

where
A

(k)
1 = pu(k)−1y0 − py0v(k)u(k)−2,

A
(k)
2 = v0(k)A0(k)B2(k) + u(k)−2v0(k)2A0(k)B2

1(k)+

+ v0(k)A1(k)B1(k) +A2(k),

A
(k)
j ≡ 0 (mod p3), j = 3, 4, . . . .

So, we obtain modulo pm

z(k)n ≡ (u(k))−1
[
free term + p2y0v1(k)n+ p2c2(k)n2 + p3G(n)

]
, (6)
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where G(n) ∈ Zpm [n], and

c2(k) = y20 · (−2x0u
−1(k)v2(k)− 10x20u

2(k)− 10x20u
−1(k)v(k)− u−3(k)v2(k)).

The relation (6) defines the representation of z
(k)
n as the polynomial at n.

In case of (B) we consider the sequence {z(k)n }, z(k)n =
x(k)
n

y
(k)
n

.

Finally, in case of (C) we let

z(k)n =
x
(k)
n

1 + y
(k)
n

and similarly to (A) we infer the representation z
(k)
n as polynomial at n.

This allows us to state and prove the following theorem.

Theorem 1. Let h1, h2, j ∈ Z, (h1, h2, p
m) = p`, 0 ≤ j ≤ 2p+1. The following

estimate

|Sj(h1, h2)| :=

∣∣∣∣∣∣
pm−1−1∑
n=0

epm(h1z
(k)
n + h2z

(k)
n+j)

∣∣∣∣∣∣ ≤ pm+`
2

holds.

Proof. Without less of generality that (h1, h2, p
m) = 1, using the relations (6)

we can write for k 6≡ 0 (mod p+1
2 )

h1z
(k)
n + h2z

(k)
n+j ≡ (u(k))−2

[
free term + p2((h1 + h2)y0v0(k) + 2·h2c2(k))n+

+p2(h1 + h2)c2(k)n2 + p3G1(n)
]

(mod pm).

By the condition (h1, h2, p
m) = 1, it follows that the congruences

(h1 + h2)y0v0(k) + 2·h2c2(k) ≡ 0 (mod p)

(h1 + h2)c2(k) ≡ 0 (mod p)

cannot be realized simultaneously. Thus, by Lemma 2, we infer

|Sj(h1, h2)| ≤
{

0 if h1 + h2 ≡ 0 (mod p),
p
m
2 if h1 + h2 6≡ 0 (mod p).

(7)

The same estimate we obtain for the rest values of k.
ut

Corollary 2. The discrepancy of the sequence
{
X(s)
n

pm−1

}
, s = 1, 2, has the fol-

lowing bound

D
(s)
N ≤

s

pm−1
+

2p
m−1

2

N

(
2

π
log pm +

7

5

)s
, 0 < N ≤ τ, (8)

where X
(s)
n =

(
z
(k)
n , . . . , z

(k)
n+s−1

)
.
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This assertion follows from Lemma 4 and Theorem 1. Now we prove a lower

estimate D
(2)
N .

Theorem 2. Let p be a prime number, p ≡ 3 (mod 4) and let z
(k)
n defined by

the relation (5), k 6≡ 0 (mod p+1
2 ). Then for the sequence {w(k)

n }, w(k)
n =

z(k)n

pm ,
n = 0, 1, . . . , τ − 1, we have

D(2)
τ (W

(k)
0 ,W

(k)
1 , . . . ,W

(k)
τ−1) ≥ 1

4(π + 2)
p−

m−1
2 , (9)

where W
(k)
n = (w

(k)
n , w

(k)
n+1), n = 0, 1, . . . , τ − 1.

Proof. We take h1 = h2 = 1. Then by Theorem 1 with j = 1 and Lemma 5,
we at one obtain

D(2)
τ ≥

1

2(π + 2)
τ−

1
2 =

1

2(π + 2)
p−

m−1
2 .

ut

Remark 1. It is straightforward to verify that all that we said in the case the
sequence produced of the relation (5) also holds for the sequence produced by
the congruence

z(k)n ≡ u0(k)x(k)n + v0(k)y(k)n (mod pm) (10)

with

u0(k) = u(k) + p2u1(k), v0(k) = v(k) + p2v1(k), (u1(k), p) = (v1(k), p) = 1.

Theorem 1 and 2 show that, in general, the upper bound is the best possible

up to the logarithmic factor for circular congruential sequence {(w(k)
n , w

(k)
n+1)},

n ≥ 0, defined by congruence (5) (or (10)).

Remark 2. The relations (3), (4) make it possible to drive a representations

x
(k)
n , y

(k)
n and consequently z

(k)
n as polynomials at x0, y0. Thus it may be well

to construct non-trivial estimates of exponential sums over generating element
of the norm group Em.
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