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Abstract. It is shown firstly that chaotic time series are generated by time-discretizing 

continuous periodic functions, and the time-dependent chaos functions, which have non-

periodicity and sensitivity on initial values, are obtained from the Chebyshev differential 

equation and the pendulum model equation with the Jacobi elliptic functions. Then, the 
proposed numerical method for nonlinear time series expansion is represented for 

analysing chaotic time series and for generating 1/f noise on the basis of the time-

dependent chaos functions. Finally, noise analyser, chaos function generator and chaos 

controller are briefly discussed as an application of the chaotic time series and the 
nonlinear expansion method to engineering. 
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1  Introduction 
 

Over the last fifty years, a large number of papers and books on nonlinear 

physics have appeared, for soliton, chaos, fractals and so on [1, 2]. In order to 

describe the nonlinear dynamics, physics and mathematics explain intricate 

patterns and the repeated application of dynamic procedures, and the 

fundamental rules underlying the variety of physical phenomena have led to 

searching and defining them in scientific terms. For example, after the proposal 

of a theory for shallow water waves, soliton has been a self-reinforcing solitary 

wave that maintains the shape during the travel with constant speed, and arises 

as the solution to a widespread class of weekly nonlinear dispersive partial 

differential equations representing physical systems [3-6]. In the last two 

decades, the field of soliton and nonlinear optics has grown steadily for 

technological applications, and presents research problems from a fundamental 

and an applied point of view [7-9]. In the meantime, it has been shown that the 

first-order nonlinear difference equations arise in the biological, economic and 

social sciences, and possess a rich spectrum of dynamical behavior as chaos in 

many respects [10-12]. The population growth of insects is modeled by the 

simplest nonlinear difference equation called the logistic map. After many 

attempts for chaos, as an electrical analogue, a piecewise-linear circuit has been 

proposed to generate chaos, and has been accepted as a powerful paradigm for 
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learning chaos [13]. Furthermore, various chaotic sequences have been proposed 

for pseudo-random numbers [14] and the application to cryptosystems [15-17]. 

At the same time, a family of shapes and many other irregular patterns called 

fractals have been proposed for the geometric representation [18], as an 

irregular set consisting of parts similar to the whole. Therefore, the concept of 

fractals is useful for describing various natural objects, such as clouds, coasts, 

rivers and road networks [19, 20]. For the application of fractals to engineering, 

fractal compression has been proposed as a method to compress images using 

fractals [21]. On the other hand, a soliton wave generator using nonlinear diodes 

has been proposed [22]. In addition, for an application of chaos, an algorithm of 

exact long time chaotic series has been constructed without the accumulation of 

round-off error caused by numerical iterations [23], and has been applied to the 

generation of pseudo-random numbers and to cryptosystems [24]. Recently, a 

nonlinear time series expansion of the logistic chaos has been proposed [25], 

and high dimensional chaotic maps and fractal sets with physical analogues 

have been presented [26].  

In this paper, it is shown firstly that chaotic time series are constructed by time-

discretizing continuous periodic functions in Section 2. Next, the time-

dependent chaos functions, which have non-periodicity and sensitivity on initial 

values, are obtained on the basis of the Chebyshev polynomials and the Jacobi 

elliptic functions in Sections 3 and 4, respectively. Then, numerical calculation 

steps for constructing the proposed nonlinear time series expansion are 

represented in Section 5, and finally an application of the chaotic time series and 

the nonlinear expansion to engineering is briefly discussed in Section 6. The last 

Section is for conclusions. 

 

2  Time-Discretization of Periodic Functions 
 

Firstly, we introduce an exact chaos solution 

 

                                    ),2cos( n

n Cx   ,,2,1,0 n                                    (1) 

with a real coefficient  

,2/ lmC                                                               (2)  

 

and finite positive integers },{ ml , to the logistic map 12 2

1  nn xx . For the solution 

(1) with (2), we can regard it as a time-dependent function; 

 

                                       ),2cos()( ttx n

n                                                         (3) 

with a condition 

                                             ,2/ lmt                                                               (4) 

where the function (3) with (4) is known to have a fractal curve as n  [27]. 

For example, chaotic time series of (3) are calculated and illustrated in Fig. 1, 

and the initial value is given by )2cos()0( 0 n

n tx   from the function; 
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 ))(2cos()(  ttx n

n
                                              (5) 

with a real parameter ε>0, in order to show the chaotic properties numerically. 

It is found in Fig. 1 that the difference of time series of two cases 0 (      )  

and 0001.0 (   ) is small at (a) n=0 and (b) n=1, respectively. However, for 

(c) n=10 and (d) n=20, the sensitivity on initial values appears clearly. That is, 

the time-dependent chaos function (3) generates chaotic time series without a 

period. The algorithm for long time chaotic series to avoid the accumulation of 

round-off error caused by the numerical iteration of (3) with (4) is given by; 

 

                ,,3,2,1,0 n  

                ),3,2,1,0(,),(3),(2),(,0)(   ittttiti
 

                ,)/( 01 rii plttt  
                                                                      (6) 

                )2cos()( i

n

in ttx   

))(2cos( tin   

))/(2cos( 0 r

n pil  

))/(cos( rn pil                                                                    (7) 

with              ),2(mod21 rnn pilil 
                                                                  (8) 

 

where }/{ rn pl  are rational numbers, l0 is the initial integer of ln, and pr is a 

large prime number [23-25]. 

Similarly, from a chaos solution; 

 

)2sin( n

n Cy                                                        (9) 

 

with the condition (2) and satisfying the delayed solvable chaos map 

)21(2 2

11   nnn yyy  [26], we regard it as a time-dependent function; 

 

)2sin()( tty n

n                                                      (10) 

 

with the condition (4), where (10) gives chaotic time series, and (2) and (10) are 

applied to the nonlinear time series expansion in Section 5.  

In this paper, we call the functions (1) and (9) ‘chaos function,’ and the 

functions (3) and (10) time-dependent ‘chaos function.’ In Sections 3 and 4, the 

chaos functions are obtained from the Chebyshev polynomials and the Jacobi 

elliptic functions, respectively. 
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                                                        (a) n=0 

 

      
                                                              (b) n=1 

 

      
                                                              (c) n=10 

 

      
                                                              (d) n=20 

 

Fig. 1. Time series of )2cos()( i

n

in ttx   (3) with (4), ),2cos()0( 0 n

n tx   

ε=0 (     ×     ), ε=0.0001 (              ), l0=100 and pr=1213 in (7). 
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3  The Chebyshev Polynomials 
 

As well known, the Chebyshev differential equation is given by 

 

,0)1( 2

2

2
2  yk

dx

dy
x

dx

yd
x  ,,3,2,1,0 k                    (11) 

 

with a parameter k, and by introducing a variable transformation cosx , we 

have the general solution 

 

                               )cossin()coscos()( 11 xkBxkAxy    

)()( xBUxAT kk                                                  (12) 

 

with 1x  and integration constants {A, B}, where Tk(x) and Uk(x) are defined 

as the Chebyshev polynomials of the first and the second kind of degree k, 

respectively [28]. For the polynomials of Tk(x), we have from (12) as 

 

                                   ,)cos(;1 1 xTk                                                 (13) 

                                   ,12)2cos(;2 2

2  xTk                                     (14) 

                                   ,34)3cos(;3 3

3 xxTk                                     (15) 

                                    … 

and for Uk(x); 

                                    ,)sin(;1 1 XUk                                               (16) 

                                    ,2)2sin(;2 2 xXUk                                      (17) 

                                    ,43)3sin(;3 3

3 XXUk                                     (18) 

                                    … 

 

Then, we find the Chebyshev maps in a general form; 

 

                                   ),(1 nkn xTx 
 ),(1 nkn XUX 

                                 (19) 

 

which map the interval [-1, 1] k times onto itself. Especially, it has been 

considered that the maps with 2k  are ergodic and strongly mixing [29], and 

have statistical properties [30]. Here, it is interesting to note that from the maps 

(19) we have the following chaos maps and the chaos solutions [26] as 

 

),2cos(,12;2 2

1

n

nnn Cxxxk  
 

),2sin(),21(2 2

11

n

nnnn CXXXX  
                      (20) 

),3cos(,34;3 2

1

n

nnnn Cxxxxk  
  

),3sin(,43 3

1

n

nnnn CXXXX 
                             (21) 

                                   … 
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where lpmC /  with finite positive integers {l, m} for the general chaos 

solution )cos( n

n Cpx  . Then, we obtain the time-dependent chaos function; 

,,4,3,2,/),cos()(  ppmttptx ln

n   which give chaotic time series. 

 

4  The Jacobi Elliptic Functions 
 

The mathematical model of pendulum is well discussed and described by the 

second-order nonlinear differential equation; 

 

,0sin
2

2

 


l

g

dt

d                                                (22) 

 

where   is the pendulum angle of deviation, g is the acceleration due to gravity, 

and l is the thread length. In order to find the solution to (22), the elliptic 

integral is defined by 

 

 




x

k
xkx

dx
u

0
222

)10(,
)1)(1(

                          (23) 

 

with a modulus k, ux sin  as 0k , and ux tanh  as 1k . Then, we 

find the inverse function of (23), and it is called the Jacobi elliptic function of 

the first kind; 

                                            ),,( kusnx                                                        (24) 

                                            ,),(1),( 2 kusnkucn                                    (25) 

                                   .),(1),( 22 kusnkkudn                                    (26) 

 

Then, the duplication formulas [28] are derived as 

 

,
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),(),(),(2
),2(

42 kusnk

kudnkucnkusn
kusn


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.
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Therefore, we get the following map, for example, from (28); 

 
                                      ),2(1 kucnX n 
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with                                  ),,2( kCcnX n

n                                                 (30) 
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which has been considered as the Katsura-Fukuda map [31], and has been 

discussed in the class of exactly solvable chaos map [32]. 

Furthermore, we find the logistic map 12 2

1  nn XX  and the chaos solution 

)2cos( n

n CX   as 0k  from (29) and (30), respectively. Thus, we have the 

generalized time-dependent forms; 

 

                                                 ),,()( ktpcntX n

n                                        (31) 

                                          ),()( ktpsntY n

n                                          (32) 

 

with (4). Here, we call functions (31) and (32) time-dependent ‘elliptic chaos 

function,’ which give chaotic time series. 

 

5  Application to Engineering 
 

In this Section, it is presented that chaotic time series obtained in Sections 2-4 

could be applied to the nonlinear time series expansion method [25] and to 

engineering. 

Usually, the Fourier series expansion decomposes periodic functions or periodic 

signals in terms of an infinite sum of simple oscillating functions, and has been 

applied to finding an approximation for original problems as harmonic analysis 

[33]. The well-known expansion for a given continuous periodic function f(t)  

has been represented by 

 

                               





1

0 )),sin()cos((
2

)(
n

nn tnbtna
a

tf                      (33) 

 

where   is the angular frequency. Recently, a nonlinear time series expansion 

has been proposed for a continuous periodic function )(tg  with a 2 -period as  

 

                               
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
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1
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2

)(
n

n

n

n
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a

tg                         (34) 

 

with a positive integer p>1 and the coefficients; 

 

                                        ,)(
2

1

2

2

0

0





dttg

a
                                                (35) 

                                        ,)cos()(
1 2

0



dttptga n

n
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                                        .)sin()(
1 2

0



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Here, it is found that the coefficient n  in (33) is linear, and the coefficient np  
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in (34) is nonlinear with respect to n. Steps for the construction of (34) are 

represented as follows: 

Step 1 

The number 
0N  of discrete-time data 

iX  is determined as .,,2,1,0 0Ni   Then, 

we find a maximum prime number 
0Nn  . For example, the case of 2000 N  

gives ,199n  and we introduce the following correction function for the data 
iX  

as a pretreatment; 

 

                                  ,1,/)(, 0  nNNXXaaiXy nii
                            (38) 

 

with  i=0,1,2,…,N  to have a periodicity, that is, a 2 -period under the condition 

0.00  Nyy .  

Step 2 

Next, we evaluate },,2/{ 0 nn baa  by setting 
ii ytg )(  for the numerical integration 

of (35)-(37) with the discrete-time 
it  by dividing a 2 -period evenly into N 

intervals. 

Step 3 

Then, we calculate the discrete-time form of (34), which is given by 

 

                              ,))sin()cos((
2

)(
1

0 





n

i

n

ni

n

ni tpbtpa
a

tg                      (39) 

 

and define the following error function by 

 

                                        ,/))((
1

2



N

i

ii Ntgy                                        (40) 

 

where 
iy  and )( itg  are the revised data (38) and the calculated data (39), 

respectively. Finally, we find the optimal parameter },{ 0lp  with the initial value 

l0 of ln in the numerical iteration to minimize the error function (40) as an 

optimization problem of (38)-(40). Here, for the calculation of functions 

)cos( i

ntp  and )sin( i

ntp , the proposed algorithm [23, 24] to avoid the 

accumulation of round-off error plays an important role, where the details are 

shown in the proposed expansion method [25]. 

Thus, we obtain numerical results of the chaotic time series expansion and the 

power spectrum. For example, a resultant expansion is given as 

 

)54cos()54cos({
2

)( 100

1001
0

iii tata
a

tg    

                                                 )},54sin()54sin( 100

1001 ii tbtb                (41) 



    Chaotic Modeling and Simulation (CMSIM) 2: 193-204, 2017       201 
 

  

Fig. 2. The data iy  (38) and the expansion )( itg  (39) with parameters (p, l0) = (54, 70) 

and 161008.6   obtained by the numerical iteration [25]. 

 

Fig. 3. The power spectrum of )( itg  (41). 

and the revised original data 
iy  and the calculated data )( itg  are illustrated in 

Fig. 2. In this case, the resultant power spectrum is shown in Fig. 3, which has a 

flat average value with a property like white noise. 

Similarly, we can construct another nonlinear time series expansion, by 

introducing chaotic time series (31) and (32) derived from the Jacobi elliptic 

functions in Section 4, as 

 

                            ,)),(),((
2

)(
1

0 





n

i

n

ni

n

ni ktpsnbktpcna
a

tg                       (42) 

 

where k is the modulus for elliptic functions. 

In addition, on the basis of the given discrete-time data 
iX , we can construct 

other chaotic time series expansions, which generate 1/f fluctuation and noise by 

setting arbitrarily the coefficients },,{ 0 nn baa  of (41) as shown in Fig. 4.  

Therefore, the proposed time-dependent chaos functions and the nonlinear 

expansion could be applied to analyzing the data of noise, to constructing the 

chaotic time series expansion and to generating 1/f noise, as noise analyzer, 

chaos function generator and 1/f noise generator, respectively, and to input 

voltage of chaotic circuit and system, natural illumination, natural sound, natural 

vibration in the fields of engineering and technology. 
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(a) Power spectra 

  
(b) Case 1 in (a) 

 
(c) Case 2 in (a) 

  
(d) Case 3 in (a) 

 
Fig. 4. Power spectra and 1/ f noise obtained by (41) with setting the coefficients  

{a0, an, bn} arbitrarily [25]. 
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Conclusions 
 

We have shown in this paper firstly that the chaos function (1) with (2) and the 

time-dependent chaos function (3) with (4) have the chaotic properties of non-

periodicity and sensitivity on initial values. Then, the chaotic time series are 

derived from the Chebyshev polynomials, and the generalized chaotic time 

series (31) and (32) are obtained on the basis of the Jacobi elliptic functions. 

Finally, numerical calculation steps for the chaotic time series expansion are 

represented, and an application of the chaotic time series and the nonlinear 

expansion is briefly discussed for the fields of engineering and technology. 
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