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Abstract. The entropy-complexity plane has been shown in [O.A. Rosso et al., Phys.
Rev. Lett. 99, 154102 (2007)] to be able to discriminate between low-dimensional
deterministic chaos and noise, since chaotic maps and stochastic processes occupy dif-
ferent regions of the plane. For time continuous signals, a Poincaré section approach
is proposed that provides a natural way to resolve the arbitrariness of the sampling
time and return to the former discrete time case. This approach is illustrated on the
repulsive Hamiltonian Mean Field (HMF) model that is a prototype of long-range
systems. The permutation entropy and complexity are shown to capture the low en-
ergy out-of-equilibrium bicluster coherent structure.
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1 Introduction

In a recent work, Rosso et al. introduced a representation space, the entropy-
complexity causality plane [1], as a novel tool to evaluate the chaotic and/or
stochastic nature of dynamical systems. They considered some well-known
chaotic maps, such as the Hénon or Schuster maps, and stochastic processes
ranging from fractional Brownian motion with different Hurst parameters to
white noise. The Bandt-Pompe permutation entropy [2] and Jensen-Shannon
complexity [3] of their iterations were computed. The examination of the ensu-
ing entropy-complexity plane, where the permutation entropy is normalized to
its maximal value, revealed a quite appealing feature, namely a geography of
chaos and stochasticity and a segregation between both regions. The accessible
entropy-complexity region takes the form of a crescent joining the two limits
of zero complexity associated to exactly constant or strictly monotonous time
series (yielding a zero permutation entropy) in the left corner to the white noise
limit maximizing the permutation entropy in the right corner. On this graph,
the chaotic maps appear to have usually higher complexities than stochastic
processes and to locate mostly in the left half-plane whereas stochastic pro-
cesses occupy the right half-plane.
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The application of this framework to time-continuous signals remains how-
ever problematic. Indeed, let us have in mind the time evolution of an observ-
able of a deterministic system. If this time evolution is sampled with a too large
sampling period, the resulting time series may eventually appear as a list of
uncorrelated data, and therefore as noise. Conversely, a small sampling period
will drive the location in the entropy-complexity plane to the left [4]. Therefore,
one needs some procedure to overcome as much as possible the arbitrariness of
the sampling period in time-continuous systems. Following our recent work [4],
we propose to use a Poincaré approach by working on sub-series corresponding
to the signal relative maxima (or minima).

So doing, some evidence will be given that the entropy-complexity frame
can be used as a new complementary tool to analyze the dynamics and trans-
port properties of N -body systems. We have in mind long-range systems,
and in particular mean-field systems, that are well-known to exhibit both
special equilibrium properties (e.g. with the possibility of ensemble inequiva-
lence [5]) and relaxation properties such as long-lived out-of-equilibrium states
supported by collective waves or other quasi-stationary states [6]. These are
ergodicity-breaking features due to low collisionality impeding the relaxation
towards Gibbs-Maxwell equilibrium and/or due to possibly insufficient intrinsic
stochastic properties. Therefore these systems have a central role to play in
the identification of the dynamical requirements for the validity and extensions
of statistical mechanics [7].

Because much of the information on the dynamics of N -body globally-
coupled systems is usually contained in the time evolution of some low-dimensional
subset of collective macroscopic variables, it is meaningful to focus on the
characterization of the chaotic or stochastic properties of these few relevant
collective variables. A prototype of such systems is the well-known Hamilto-
nian Mean Field (HMF) model [8] that will be introduced in Section 2. If the
all-to-all particle coupling is repulsive, the HMF system was shown to exhibit
some puzzling out-of-equilibrium dynamics in the low energy regime with the
emergence of long-lived bicluster patterns whereas the equilibrium statistical
mechanics predicts an homogeneous phase for all energies [9]. This transition
will serve here to probe the entropy-complexity analysis. This will be intro-
duced and discussed in Section 3. In Section 4, a Poincaré section approach, by
considering the time series of the relative maxima of the mean-field, is shown
to enable to single-out in the entropy-complexity plane the low-energy regime
where dynamical anomalies take place. A short evocation of the potential ap-
plications and perspectives of this work is given in Section 5.

2 Dynamics of the globally-coupled repulsive HMF
model

A paradigmatic conservative globally-coupled system is the so-called Hamilto-
nian Mean Field (HMF) model where N particles are moving on a circle being
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globally coupled by a cosine interaction with trajectories deriving from

H(p,q) =

N∑
i=1

p2i
2

+
c

2N

N∑
i,j=1

[1− cos(qi − qj)] . (1)

The interacting potential is of the same form as in the non-conservative Ku-
ramoto model and both systems bear similarities. For instance, a puzzling N1.7

scaling of the lifetimes of homogeneous quasistationary states was reported for
the attractive HMF model [10] strangely resonating with the N−1.69 scaling of
the diffusion coefficient reported in chimera states of the Kuramoto model [11].
An explanation for this strange scaling was proposed in Ref. [12] in the HMF
frame on the basis of a stochastic, diffusive, approach.
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Fig. 1. (left) Early time evolution of the density of the N particles on the R/2πZ
circle and (right) snapshot of the one-particle (q, p) space at time t = 30000 for the
energy density ε = H/N = −0.4999. In these simulations, N = 20000 particles were
used.

Introducing the collective variable usually called the magnetization, using
an analogy of the HMF potential with the X-Y spin model, defined by

M = (Mx,My) =

(
1

N

N∑
i=1

cos qi,
1

N

N∑
i=1

sin qi

)
, (2)

the equation of motion of any particle i may be written

d2qi
dt2

= −cMx(t) sin qi + cMy(t) cos qi. (3)

For a negative coupling constant c, the equilibrium statistical mechanics of the
HMF model for this system predicts a vanishing canonical ensemble average of
the modulus M of the mean-field. Moreover, the equivalence of the canonical
and microcanonical ensembles has been proved for this system. Therefore, from
an equilibrium statistical mechanics point of view, the repulsive HMF model ap-
pears as trivial, and consequently, uninteresting. However, the numerical sym-
plectic computations of its dynamics revealed some puzzling out-of-equilibrium
features. Putting the constant c equal to −1, the minimal accessible energy
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density is ε = H/N = −1/2. For very low energy simulations, when ε ap-
proaches −1/2, a very robust biclustered state was observed to form on the
R/2πZ circle, the initiation of which being represented on Figure 1.

This phenomenon was mostly elucidated as a nonlinear collective effect
and an effective picture of the quasistationary biclustered states was proposed
in Refs. [13,14]. In the present study, our objective is to use time series
of the mean-field modulus M(t) = (M2

x + M2
y )1/2, a collective observable,

in the quasisteady states at different energy densities, to probe the entropy-
complexity analysis and extract information on the nature of the dynamics from
it. Numerical results are obtained using a fourth-order symplectic integrator
[15] using a time-step ∆τ = 10−2 ensuring notably a very robust conservation
of the total energy.

Finally, let us make an important point. From Poincaré’s recurrence theo-
rem, it follows that, in the volume-preserving, and thus Hamiltonian, context,
almost any point is recurrent. This a priori prevents the existence of genuine,
possibly low-dimensional, chaotic attractors that contrarily may exist in dissi-
pative systems. It is therefore not a priori possible to reconstruct the phase
space of a N � 1-body Hamiltonian system with a low embedding dimension,
d. However, the HMF model considered here is a globally-coupled, mean-field
system. Discarding the self-consistency, needed to compute the time behavior
of M(t) in Eq. (3), this N -body model would amount to just a one-and-a-half
degrees of freedom Hamiltonian, or more exactly, a collection of N uncoupled
one-and-a-half degrees of freedom Hamiltonian systems. This leads us to con-
jecture that it can display some low dimensional dynamic properties that may
be captured within a complexity-entropy approach. This is introduced in the
following Section.

3 Permutation entropy and construction of complexity

In order to incorporate the intuitive notion of complexity of a physical system,
in relation with the amount of order/disorder present in its states, and the
hierarchy between them, a statistical measure of complexity was proposed in
terms of access probabilities [16]. Its construction started from the assessment
that two opposite fundamental N -body systems could be viewed as being sim-
ple, and be defined as two limits of zero-complexity, namely: i) the perfect
crystal and ii) the isolated ideal gas. The perfect crystal is completely ordered
and therefore a state is privileged : the hierarchy between accessible states is
strong, such that, for this system, the distance to the equiprobable distribution
is maximal. Conversely, the isolated ideal gas is completely disordered and all
its microstates are equiprobable.

These limit-zero complexity states led to the introduction of the notion of
disequilibrium: Whereas entropy measures the degree of disorder, disequilib-
rium is defined to be the distance between the equiprobable distribution and
the distribution of microstates of the studied system, such that complexity is
the product of those two measures

[Complexity] = [Disequilibrium]× [Entropy]. (4)
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A measure of complexity [3] is also expected to satisfy the following require-
ments: it should be intensive, be able to distinguish among different degrees
of periodicity and it should give the most exactly possible an indication of
the nature (chaotic or integrable) of the dynamics. From those constraints, a
relevant choice made by many authors [1,17] has been to choose in the complex-
ity definition’s (4) the Jensen-Shannon disequilibrium and the Bandt-Pompe’s
permutation entropy, the definition of those will be recalled in the following.

Let us start to introduce the Bandt-Pompe’s permutation entropy. Our
working objects are time series from some physical observable. Given a time
series, one examines a sequence, chosen randomly, of d successive points.

Here d denotes the so-called embedding dimension, chosen to be rather small
[1]. In particular, Bandt and Pompe suggest for practical purposes working
with 3 ≤ d ≤ 7 [2], and in the present work we shall use d = 5 (while e.g.
Rosso et al. use d = 6 in [1]).

Then one asks: What is the permutation of those d points which sorts
them by increasing order? The occurrence probability µi (i ∈ {1, ..., d!}) of a
permutation πi is defined as being the probability that the answer to the later
question is πi. Then the permutation distribution of the time series is defined
through the vector of [0; 1]d!

P = (µ1, ..., µd!) with

d!∑
i=1

µi = 1. (5)

Therefore the uniform permutation probability distribution Pe corresponds
to µi = 1

d! , i ∈ {1, ..., d!}. Let Ωd be the set of permutation probability
distributions of size d.

Definition 1 (Bandt-Pompe’s permutation entropy). The Bandt-Pompe’s
permutation entropy, SBP , [2] of order d is the Shannon entropy, SS , of a d-
order permutation probability distribution

∀P ∈ Ωd, SBP (P) = SS(P) = −
d!∑
i=1

µi log µi (6)

and therefore the Bandt-Pompe’s (permutation) entropy is the restriction of
the Shannon’s one on Ωd.

Consequently, the permutation probability distribution which maximizes the
Bandt-Pompe entropy is the uniform one, Pe , corresponding to a time series
of the highest degree of randomness

max
P∈Ωd

SBP (P) = SBP (Pe) = log(d!). (7)

The permutations distribution which minimize the Bandt-Pompe entropy are
those for which (d!− 1) occurrence probabilities are equal to 0 (so one of them
is equal to 1), corresponding to monotonic time series, so that

min
P∈Ωd

SBP (P) = 0− 1 log 1 = 0. (8)
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The disequilibrium, noted Q, is proportional to the distance between the prob-
ability distribution P and the uniform one : Q(P) = ηD(P,Pe), where η ∈ R∗+
is such that 0 ≤ Q ≤ 1. The choice of D is crucial and in this study, according
to constraints evoked before, the measure of the disequilibrium has consisted
of using a Jensen-Shannon divergence defined by [3]

∀P1,P2 ∈ Ωd , J(P1,P2) = SS

(
1

2
P1 +

1

2
P2

)
− 1

2
SS(P1)− 1

2
SS(P2) (9)

such that the distance is D(P,Pe) = J(P,Pe). It remains then to estimate
η. As Q measures a deviation from the uniform distribution, Q is maximal for
distributions for which (d!− 1) occurrence probabilities are equal to 0, so that
one of them is equal to 1. Designing by Pm = (0, ...0, 1, 0, ..., 0) one of such a
distribution (the 1 is at the mth position), from

1

2
Pm +

1

2
Pe =

(
1

2d!
, ...

1

2d!
,

1 + 1
d!

2
,

1

2d!
, ...,

1

2d!

)
, (10)

one deduces SS
(
1
2P + 1

2Pe

)
, and, because SS(Pm) = 0 and SS(Pe) = log(d!),

one obtains

1 = max
P∈Ωd

Q(P) = Q(Pm)

= −η
2

(
d! + 1

d!
log(d! + 1)− 2 log(2d!) + log(d!)

)
. (11)

Consequently, the Jensen-Shannon’s statistical disequilibrium of any probabil-
ity distribution P ∈ Ωd reads

QJS(P) =
SS
(
1
2P + 1

2Pe

)
− 1

2SS(P)− 1
2SS(Pe)

− 1
2

(
d!+1
d! log(d! + 1)− 2 log(2d!) + log(d!)

) , (12)

where the JS subscript has been added. From this follows, the definition of
the complexity used in our study.

Definition 2 (Jensen-Shannon’s statistical complexity). The Jensen-
Shannon’s statistical complexity is defined by

CJS = QJS × sBP where sBP =
SBP

log(d!)
, (13)

where QJS is given in Eq. (12).

4 Permutation entropy and complexity as dynamical
markers of coherent structures

The impact on the entropy-complexity location of the time resolution in the
time series of the observable was shown and discussed in our recent work [4].
This dependency on the time resolution makes for instance quite problematic



Chaotic Modeling and Simulation (CMSIM) 2: 213–222, 2017 219

the comparison in the entropy-complexity frame of time series coming from
different systems. It is therefore desirable to search for routines diminishing as
much as possible this dependency. A possibility is to extract the maxima (or
minima) of the time series and to proceed to the entropy-complexity analysis on
these sub-time series. This amounts to work on a zero-time derivative Poincaré
section of the time signal. This approach is shown below to enable to single
out the energy domain where dynamic anomalies take place.

We performed numerical simulations of the repulsive HMF model using
waterbag conditions in p and a uniform space distribution so that the initial
distribution functions are of the type f0(p, q) = (2∆p)−11[−∆p;∆p](p).

Let us first assume that the time resolution used in the time series of the
observable under consideration is sufficiently fine, so that one remains far away
from the maximal entropy case mentioned above where the too large sampling
period make successive sampled values appear unrelated. Then, instead of
using the full time series in the entropy complexity analysis, one proceed to a
Poincaré section of the signal by restricting to the series of its relative maxima
(or minima). This amounts to doing a Poincaré section of the signal M(t)
on the zero time derivative section dM/dt = 0 [18]. In the present model,
times series of the mean-fields were recorded every time step ∆τ = 10−2.
We extracted from these time series the relative maxima of the mean-fields.
Figure 2 represent the corresponding time series of the relative maxima of the
modulus of the mean-field, M , for three different energy densities close to the
fundamental one.
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Fig. 2. Each point represents the value of a relative maximum of M (y-axis) at its
occurrence time (x-axis). Three different simulations with different energy densities
are represented. Waterbag initial conditions were used.
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At low energy, the biclustered phase illustrated on Figure 1 may be quan-
tified by the mean-field

M2 = (M2x,M2y) =

(
1

N

N∑
i=1

cos 2qi,
1

N

N∑
i=1

sin 2qi

)
, (14)

the two components of which are the n = 2 Fourier coefficients of the spatial
distribution, corresponding to the spatial scale π. It is instructive to compute
the time averages of the mean-fields M and M2 as a function of the energy
density. This has been done using the initial waterbag distributions and re-
sults are shown on Figure 3. Equilibrium statistical mechanics would predict
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Fig. 3. Time averages as a function of the energy densities of the moduli of the mean-
fields M (noted here M1) and M2 obtained from waterbag initial conditions. The plot
is in lin-log scale.

vanishing mean-fields in the large N limit which is at odds with the low en-
ergy values of the time averages of M2. One may remark that the repulsive
HMF model is presumably, and not surprisingly, non ergodic at low energies
since changing the initial conditions to the previous sinusoidal conditions in
the impulsion, that served to push the collective mode, could broaden the en-
ergy domain associated to the biclustered phase. Here the biclustered phase
appears as a zero-temperature out-of-equilibrium effect that may have some
applications to cold atoms [19]. From the observation of Figure 3, one can also
remark that, whereas the time average of the mean-field M2 rapidly changes
from a macroscopic value signaling the biclustered phase about the fundamen-
tal state to attain its O(N−1/2) large energy value, the time average of the
mean-field M presents some anomalous behaviour in a somehow wider energy
domain above the fundamental state.

We extracted the time series given by the relative maxima of both the
magnetization, M , and of the M2 mean-fields. The result of the entropy-
complexity analysis of these sub-time series is represented on Figure 4.
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Fig. 4. Normalized Bandt-Pompe entropy and Jensen-Shannon complexity associated
to the time series of the relative maxima of the magnetization M(t) and of the relative
maxima of M2(t) as a function of the energy density.

The comparison between the Figures 3 and 4 is quite explicit. The entropy-
complexity analysis in the Poincaré section approach shows that the mean-
fields, M and M2, behave as white-noise on the timescale separating two succes-
sive maxima except in the energy domain where they display out-of-equilibrium
features. This is very clear for the M2 mean-field for which the time-average
drops rapidly to its thermal value when the energy per body, ε, is just above
−1/2. Correspondingly, there is a sharp variation of the entropy and of the
complexity that becomes very low and quickly vanishes. The analysis of the
magnetization M shows the same decay of complexity towards zero and growth
of the normalized entropy towards one, yet taking place on a wider domain of
energy that roughly corresponds to a non-thermal behavior of M presumably
due to the presence of some collective mode. These results bring then some ev-
idence that an entropy-complexity analysis is able to unveil out-of-equilibrium
dynamical features. Further study will be conducted to assess these results.

5 Conclusion

A Poincaré section approach through the use of the sub-time series correspond-
ing to the relative maxima (or minima) of the mean-field time series provides a
frame in which the sampling period is, so to speak, automatically chosen by the
system. Some numerical evidence has been given that the entropy-complexity
results using this approach are able to single-out the low-energy anomalous
dynamics. The entropy-complexity analysis is thus able to separate the low
energy domain where the emergence of the collective mode induces some co-
herence effects from the upper-energy domain where it only capture finite-N
noise.
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This result offers interesting perspectives for this approach, e.g. as a novel
- easy to handle - dynamical indicator to estimate the respective weights of
collective modes versus turbulence in domains such as fluid dynamics or plasma
physics.
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