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Abstract. We study a delay mathematical model for the dynamics of AIDS-related
cancer. Cancer is a major burden in HIV infected patients, and as such, is extremely
important to understand the epidemiology and the mechanisms behind it. Our model
consists of four classes, the cancer cells, the healthy cells, the infected cells and the
virus. We show numerically the existence of periodic orbits arising from a Hopf
bifurcation from an endemic state. Moreover, we observe the appearance of chaos,
due to a cascade of period doubling bifurcations.

1 Introduction

In the last few decades, several mathematical models have been proposed to
describe the interaction of the immune system with the human immunodefi-
ciency virus (HIV) [6,4]. HIV deteriorates the immune system, attacking, in
particular, the CD4+ T cells. When the immune system’s level of defence
decreases below a given threshold, the individual enters an immunodeficiency
state. Individuals with acquired immune deficiency syndrome (AIDS) are more
vulnerable to the emergence of various types of cancer, such as Kaposi sarcoma,
non-Hodgkin lymphoma (NHL) of high-grade pathologic type and of B cell or
unknown immunologic phenotype, and invasive cervical carcinoma. These are
known as AIDS-related malignancies, which means that an HIV infected per-
son with one of these cancers has officially AIDS. Death attributed to these
cancers in HIV infected patients is high. The non-Hodgkin lymphoma (NHL)
has been associated with an immunocompromised status, with individuals in-
fected with HIV being ≥76 times more likely to develop NHL, than non-infected
individuals. Current findings suggest that viral supression is extremely impor-
tant to prevent AIDS-related lymphomas, independently of CD4 cell count.
Sustained periods of HIV replication can induce irreversible damage in the im-
mune system, namely lymphoid fibrosis, thymic destruction, etc [2,9]. Thus, it
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is epidemiological defiant and valuable to better understand the mechanisms
behind the development of neoplasia in HIV infected patients.

In 1993, Lund et al [7] developed a model for the interaction of HIV with
the immune system. The authors find that oscillations are seen in both CD4+

T cells and the virus particles. This type of solutions interfere negatively in
the prediction of the spread of HIV. Moreover, the study shows that the model
can present chaotic behaviour. The later could explain the distinct dynamics
of HIV in different individuals. Later on, in 2007, Lou et al [4] investigate how
the ‘incubation’ periods of CD4+ T cells and quiescent memory T cells, after
being infected by HIV, affect cancer development. Memory T cells have higher
incubation periods. The authors find that the longer the ‘incubation’ period,
the smaller is the needed reproducing capacity of cancer cells to evolve to
AIDS. Thus, increased numbers of infected quiescent memory T cells promote
worse scenarios for HIV infected patients. Lou et al [5] propose a model for
the dynamics of HIV in the presence of cancer. The authors show that HIV
boosts the growth of cancer. Moreover, the authors find Hopf bifurcations
leading to periodic solutions, sequences of period doubling bifurcations and
the appearance of chaos. In 2014, Starkov et al [8] study further the model
created by Lou et al [5]. The authors derive sufficient conditions for cancer free
behaviour in the model.

Following the aforementioned ideas, in this paper, we propose a model for
AIDS-related cancer dynamics. In Section 2, we introduce the model. In
Section 3, we compte the equilibria of the model and the corresponding stability.
In Section 4, we show and discuss the results of the simulations of the model.
In Section 5 we conclude our work and shed light on future research.

2 The Model

The model is composed by the concentrations of cancer cells, C(t), of healthy
cells, T (t), of infected cells, I(t) and of virus, V (t).

In the model, we assume that the cancer is caused by one single cell, due to
gene mutation, being r1 their uncontrolled proliferation rate. Cancer cells are
killed by the immune system at rate k1. The healthy T cells grow at a rate r2.
The maximum carrying capacity is m. The healthy cells die, due to the effect
of the cancer cells at rate p, and are infected by HIV at rate k2. There exists
an ‘incubation’ period after healthy cells infection and the production of virus,
it is denoted by τ . The infected cells die at a rate µI . The virus are produced
by the infected CD4+ T cells, with bursting size Ns, and die at a rate c. The
nonlinear system of delay differential equations, describing the dynamics of the
model, is given by:
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Ċ(t) = C(t)
[
r1

(
1− C(t)+T (t)+I(t)

m

)
− k1T (t)

]
Ṫ (t) = T (t)

[
r2

(
1− C(t)+T (t)+I(t)

m

)
− pk1C(t)− k2V (t)

]
İ(t) = k2T (t− τ)V (t− τ)− µII(t)

V̇ (t) = NsµII(t)− cV (t)

(1)

We assume constant initial conditions: C(θ) = C0, T (θ) = T0, I(θ) = I0,
V (θ) = V0, ∀θ ∈ [τ, 0].

3 Equilibria and stability analysis

Model (1) has several equilibria:

• The trivial equilibrium: P0 = (0, 0, 0, 0)
• The cancer equilibrium: P1 = (m, 0, 0, 0)
• The healthy equilibrium: P2 = (0,m, 0, 0)
• The cancer-healthy equilibrium:

P3 =
(
C̄, T̄ , 0, 0

)
=

(
mr2

r2 + p(r1 + k1m)
,

mr1p

r2 + p(r1 + k1m)
, 0, 0

)
• The HIV-healthy equilibrium:

P4 =
(

0, T̂ , Î, V̂
)

=

(
0,

c

Nsk2
,

cr2(Nsk2m− c)
Nsk2(r2c+ k2NsµIm)

,
r2µI(Nsk2m− c)
k2(r2c+ k2NsµIm)

)
• The cancer-HIV-healthy equilibrium:

P5 = (C?, T ?, I?, V ?) =

(
c2k1r2 +Nsk2µI(r1c+ k1cm− r1mNsk2)

Nsk2r1(pk1c− k2NsµI)
,

c

Nsk2
,
k1c [pmNsk2r1 − c(r2 + pr1 + pk1m)]

Nsk2r1(pk1c− k2NsµI)
,
k1µI [pmNsk2r1 − c(r2 + pr1 + pk1m)]

k2r1(pk1c− k2NsµI)

)

We first discuss the stability of the cancer equilibrium, P0. The matrix of
the linearization of model (1) around the trivial equilibrium, P0, is:

M =


r1 0 0 0
0 r2 0 0
0 0 −µI 0
0 0 NsµI −c


The eigenvalues are easily obtained: r1, r2, −µI and −c. Since the eigenvalues
r1 and r2 are positive, this equilibrium is unstable.

Following, we compute the stability of the cancer equilibrium, P1. The
matrix of the linearization of model (1) around the cancer equilibrium, P1, is
written as:

M1 =


−r1 −r1 − k1m −r1 0

0 −pk1m 0 0
0 0 −µI 0
0 0 NsµI −c
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The eigenvalues are easily obtained: −r1, −pk1m, −µI and −c. Since they are
all negative, this equilibrium is locally stable.

We proceed with the discussion of the stability of the healthy equilibrium,
P2. The corresponding characteristic equation is given by:∣∣∣∣∣∣∣∣

−k1m− λ 0 0 0
−r2 − pk1m −r2 − λ −r2 −k2m

0 0 −µI − λ k2me−λτ
0 0 NsµI −c− λ

∣∣∣∣∣∣∣∣ = 0 (2)

The following eigenvalues are easily obtained: −k1m and −r2. The remaining
eigenvalues are the roots of the following characteristic equation:∣∣∣∣−µI − λ k2me−λτNsµI −c− λ

∣∣∣∣ = 0 (3)

which is equivalent to:

λ2 + (c+ µI)λ+ µIc−NsµIk2me−λτ = 0 (4)

When τ = 0, the characteristic equation reduces to λ2 + (c + µI)λ + µIc −
NsµIk2m = 0. By the Routh-Hurwitz criteria, the two roots of the character-
istic equation λ2 + a1λ+ a2 = 0 have negative real parts if and only if a1 > 0
and a2 > 0. It is easy to show that a1 = c + µI > 0. We prove below that
a2 > 0 if R0 < 1.

a2 = µIc−NsµIk2m > 0⇔ Nsk2m

c
< 1⇔ R0 < 1 (5)

Consider now the case τ > 0. In order to show that the eigenvalues have also
negative real parts, we prove that the characteristic equation does not have a
purely imaginary root. This means, that the real parts don’t change signs. By
a way of contradiction, we consider that there is some ω > 0 such that λ = iω
is an eigenvalue of the characteristic equation, that is:

−ω2 + (c+ µI)ωi+ µIc−NsµIk2me−ωiτ = 0 (6)

Thus

ω4 + (c+ µI)ω
2 + (µIc)

2 = (NsµIk2m)2|e−ωiτ |2 ≤ (NsµIk2m)2 (7)

therefore, if R0 = Nsk2m
c < 1, the characteristic equation has no purely imag-

inary roots. We conclude that the healthy equilibrium is locally stable for
R0 < 1, when τ ≥ 0.

The study of the local stability of the cancer-healthy equilibrium, P3, is
as follows. The characteristic equation of system (1) for the cancer-healthy
equilibrium P3, is given by:



Chaotic Modeling and Simulation (CMSIM) 2: 237–248, 2018 241

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− r1r2
r2+p(r1+k1m) − λ − r2(r1+k1m)

r2+p(r1+k1m) − r1r2
r2+p(r1+k1m) 0

− r1p(r2+pk1m)
r2+p(r1+k1m) − r1r2p

r2+p(r1+k1m) − λ −
r1r2p

r2+p(r1+k1m) − k2mr1p
r2+p(r1+k1m)

0 0 −µI − λ k2mr1p
r2+p(r1+k1m)e

−λτ

0 0 NsµI −c− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(8)

The last equation is equivalent to:

[(
−r1r2

A
− λ
)(
−r1r2p

A
− λ

)
− r1r2p(r2 + pk1m)(r1 + k1m)

A2

] [
(µI + λ)(c+ λ)− NsµIk2mr1p

A
e−λτ

]
= 0

(9)

where A = r2 + p(r1 + k1m). The first term of the last equation is equivalent
to:

λ2 + r1r2+r1r2p
A λ+

r21r
2
2p

A2 − r1r2p(r2+pk1m)(r1+k1m)
A2 = 0

By the Routh-Hurwitz criteria, the two roots of the last equation λ2+a1λ+a2 =
0 have negative real parts if and only if a1 > 0 and a2 > 0. It is easily verified
that a1 = r1r2+r1r2p

A > 0. The proof of a2 > 0 leads to an impossibility.

a2 =
r21r

2
2p

A2 − r1r2p(r2+pk1m)(r1+k1m)
A2

=
r21r

2
2p−r1r2p(r1r2+r2k1m+r1pk1m+pk21m

2)
A2

= − r1r2p(r2k1m+r1pk1m+pk21m
2)

A2 < 0

(10)

Since a2 < 0, the Routh-Hurwitz criteria is not verified, thus we conclude that
the cancer-healthy equilibrium is unstable.

The local stability of the HIV-healthy equilibrium, P4, follows. The char-
acteristic equation of system (1) for the HIV-healthy equilibrium P4, is given
by:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

(
1− T̂+Î

m

)
− k1T̂ − λ 0 0 0

− T̂ r2m − pk1T̂ r2

(
1− T̂+Î

m

)
− k2V̂ − T̂ r2

m − λ − T̂ r2m −k2T̂

0 k2V̂ e
−λτ −µI − λ k2T̂ e−λτ

0 0 NsµI −c− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(11)
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The following eigenvalue is easily obtained: r1

(
1− T̂+Î

m

)
− k1T̂ = − k1c

Nsk2
+

r1µI(Nsk2m−c)
r2c+Nsk2µIm

. This eigenvalue is negative if R1 = Nsk2r1µI(R0−1)
k1(r2c+Nsk2µIm) < 1. The

remaining eigenvalues are the roots of the following characteristic equation:∣∣∣∣∣∣∣∣∣∣∣

r2

(
1− T̂+Î

m

)
− k2V̂ − T̂ r2

m − λ − T̂ r2m −k2T̂

k2V̂ e
−λτ −µI − λ k2T̂ e−λτ

0 NsµI −c− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0 (12)

which may be written in the form:

P (λ) +Q(λ)e−λτ = 0 (13)

where P (λ) = λ3 + b1λ
2 + b2λ+ b3 and Q(λ) = b4λ+ b5 and

b1 = c+ µI + r2c
mNsk2

, b2 = µIc+ r2c
mNsk2

(c+ µI), b3 = r2c
2µI

mNsk2
,

b4 =
cr22µI(Nsk2m−c)

Nsk2m(r2c+k2NsµIm) − µIc, b5 =
r22c

2µINsk2m−2r22c
3µI−r2cµ2

IN
2
s k

2
2m

2

mNsk2(r2c+k2NsµIm)

(14)

When τ = 0, the characteristic equation reduces to λ3 +B1λ
2 +B2λ+B3 = 0,

where

B1 = b1 > 0, B2 = b2 + b4 =
r22c

3+r2ck2NsµIm(c+µI+r2)
mNsk2(r2c+k2NsµIm) > 0,

(15)

B3 = b3 + b5 =
r2c

2µI [µImNsk2(1− k2m
c )+r2c(R0−1)]

mNsk2(r2c+k2NsµIm)
(16)

By the Routh-Hurwitz criteria, the three roots of the characteristic equation
λ3+B1λ

2+B2λ+B3 = 0 have negative real parts if and only if B1 > 0, B3 > 0
and B1B2 > B3. We have shown that B1 > 0. We proceed with the proof of
B3 > 0.

B3 =
r2c

2µI [µImNsk2(1− k2m
c )+r2c(R0−1)]

mNsk2(r2c+k2NsµIm) > 0⇔ µImNsk2
(
1− k2m

c

)
+ r2c(R0 − 1) =

= µImk2 (Ns −R0) + r2c(R0 − 1) > 0⇔ 1 < R0 < Ns
(17)

By some algebraic manipulation we also prove that B1B2 > B3. Thus, if τ = 0,
the HIV-healthy equilibrium, P4 is locally stable if R1 < 1 and 1 < R0 < Ns.

Let now τ > 0. The equilibrium P4 is unstable if there is at least one root
λi with Re(λi) > 0 and is stable if Re(λi) < 0 for all λi. That is to say,
the stability of solutions depends on the location of the zeros of the associated
characteristic equation. By Theorem 1 [3], we obtain the following lemma.



Chaotic Modeling and Simulation (CMSIM) 2: 237–248, 2018 243

Lemma 1. Consider the transcendental equation (13), where P and Q are
analytic functions in a right half-plane Re(λ) > −σ, σ > 0, which satisfy the
following conditions:

1. P (λ) and Q(λ) have no common imaginary zero.
2. P (−iω) = P (iω), Q(−iω) = Q(iω) for real ω.
3. P (0) +Q(0) 6= 0.
4. when τ = 0 there are at most a finite number of roots of (13) in the right

half-plane.
5. F (ω) = |P (iω)|2 − |Q(iω)|2 for real ω, has at most a finite number of real

zeroes.
Under these conditions, the following statements are true:
• Suppose that the equation F (ω) = 0 has no positive roots. Then if (13)

is stable τ = 0 it remains stable for all τ ≥ 0, whereas if it is unstable
at τ = 0 it remains unstable for all τ ≥ 0.

• Suppose that the equation F (ω) = 0 has the least one positive root and
that each positive root is simple. As τ increases, stability switches may
occur. There exists a positive number τ? such that (13) is unstable for
all τ > τ?. As τ varies from 0 to τ?, at most a finite number of stability
switches may occur.

Lemma 2. If the conditions of the Lemma 1 are verified for system (1), then:

• if τ ∈ [0, τ?[, then the HIV-healthy equilibrium P4 is locally asymptotically
stable;

• if τ > τ?, then the HIV-healthy equilibrium P4 is unstable and system (1)
undergoes a Hopf bifurcation at P4 when τ = τ?.

where τ? = 1
ω0

arccos
(
b4ω

4
0+(b1b5−b2b4)ω2

0−b3b5
b24ω

2
0+b

2
5

)
Finally, we study the stability of the cancer-HIV-healthy equilibrium, P5.

This equilibrium exists only if R2 = r1p(R0−1)
r2+pk1m

< 1. The characteristic equation

of system (1) for the cancer-HIV-healthy equilibrium P5, is given by:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

(
1− C?+T?+I?

m

)
− k1T ? − r1C

?

m − λ − r1C
?

m − k1C? − r1C
?

m 0

− r2T
?

m − pk1T ? r2

(
1− C?+T?+I?

m

)
− pk1C? − k2V ? − r2T

?

m − λ − r2T
?

m −k2T ?

0 k2V
?e−λτ −µI − λ k2T ?e−λτ

0 0 NsµI −c− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(18)

Lemma 3. If the conditions of the Lemma 1 are verified for system (1), then:

• if τ ∈ [0, τ̂ [, then the cancer-HIV-healthy equilibrium P5 is locally asymp-
totically stable;

• if τ > τ̂ , then the cancer-HIV-healthy equilibrium P5 is unstable and sys-
tem (1) undergoes a Hopf bifurcation at P5 when τ = τ̂ .
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where τ̂ = 1
ω0

arccos
(
b5ω

6
0+(b1b6−b2b5−b7)ω4

0+(b2b7+b4b5−b3b6)ω2
0−b4b7

b25ω
4
0+(b26−2b5b7)ω2

0+b
2
7

)
Lemma 4. Let R0 = Nsk2m

c , R1 = Nsk2r1µI(R0−1)
k1(r2c+Nsk2µIm) , and R2 = r1p(R0−1)

r2+mpk1
. For

system (1), we have:

1. P0 and P3 are unstable for all τ ≥ 0;
2. The cancer equilibrium P1 is locally stable for all τ ≥ 0;
3. When R0 < 1, the healthy equilibrium P2 is locally stable for all τ ≥ 0.
4. When R0 > 1, the healthy equilibrium P2 is unstable for all τ ≥ 0 and P4

exists.

• When R1 < 1 and 1 < R0 < Ns then P4 is asymptotically stable for
τ < τ?, and unstable when τ > τ?, where

τ? =
1

ω0
arccos

(
b4ω

4
0 + (b1b5 − b2b4)ω2

0 − b3b5
b24ω

2
0 + b25

)
(19)

When τ = τ?, a Hopf bifurcation occurs; that is, a family of periodic
solutions bifurcates from P4 as τ passes through the critical value τ?.

• When R1 > 1, P4 is unstable for all τ ≥ 0. When R2 < 1, P5 exists.
Suppose that the Routh-Hurwitz criteria is verified, then the cancer-
HIV-healthy equilibrium, P5, is asymptotically stable when τ < τ̂ and
unstable when τ > τ̂ , where

τ̂ =
1

ω0
arccos

(
b5ω

6
0 + (b1b6 − b2b5 − b7)ω4

0 + (b2b7 + b4b5 − b3b6)ω2
0 − b4b7

b25ω
4
0 + (b26 − 2b5b7)ω2

0 + b27

)
(20)

When τ = τ̂ , a Hopf bifurcation occurs; that is, a family of periodic
solutions bifurcates from P5 as τ passes through the criticial value τ̂ .

4 Numerical Results

In this section, we simulate the model (1). The parameters used in the sim-
ulations are r1 = 0.11 day−1, m = 1500 mm−3, k1 = 1 × 104 mm−3 day−1,
r2 = 0.03 day−1, p = 0.1, k2 = 2.5×10−5 mm−3 day−1, τ = 9.75 day, µI = 0.3
day−1, Ns = 200, c = 3 day−1. The initial conditions are set to C(0) = 1
mm−3, T (0) = 800 mm−3, and all other variables are set to 10 mm−3.
We consider r1, the uncontrolled proliferation rate of the cancer cells, a bifur-
cation parameter. We start from the cancer-HIV-healthy (CHH) equilibrium
of model (1), for r = 0.11, in Figure 1. As r1 is increased, a Hopf bifurcation
takes place and a periodic solution appears (see Fig. 2). Further bifurcations
occur in which this periodic orbit doubles its period repeatedly. Thus, we can
observe period 4, period 8, and period 16 orbits. This numerically observed
period-doubling bifurcation leads to the appearance of chaotic behaviour in
Figure 7.

Biologically, these results may be explained as follows. We know that if the
proliferation rate of cancer cells, r1, increases then cancer and HIV coexist in
the organism. After a given threshold thus, the cancer structure will evolve and
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this could mean the beginning of the AIDS stage in the HIV infected patient.
This phase is characterized by a deterioration of the health status of the HIV
infected patient which leads to death.
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Fig. 1. Cancer-HIV-healthy equilibrium of the model (1), for parameter values and
initial conditions given in the text.

5 Conclusions

We propose a delay mathematical model for the dynamics of AIDS-related
cancer. The model exhibits equilibria, periodic solutions and chaos, for some
regions of the parameter values. Chaos has been found in biological models,
namely in the throbs of the ventricular cells of a chicken heart, or in the human
brain activity. Biologically, the appearance of chaos in our model means that
the HIV infected patient has developed neoplasia, and is ‘officially’ at the AIDS-
stage, which means he will die. Thus, understanding the mechanisms behind
the development of neoplasia in HIV infected patients is a defiant challenge.
Future work will consider the effect of cell-to-cell transmission in the severity
of AIDS-related cancers.



246 Pinto et al.

0
100

200

C(t)
300

400800

600

T(t)

400

200

50

60

40

30

20

10

0
0

I(
t)

Fig. 2. Periodic solution of the model (1) of period 1, for parameter values (except
r1 = 0.13) and initial conditions given in the text.

Fig. 3. Periodic solution of the model (1) of period 2, for parameter values (except
r1 = 0.0.14) and initial conditions given in the text.
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Fig. 4. Periodic solution of the model (1) of period 4, for parameter values (except
r1 = 0.141) and initial conditions given in the text.

Fig. 5. Periodic solution of the model (1) of period 8, for parameter values (except
r1 = 0.1416) and initial conditions given in the text.
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0.14812244897959) and initial conditions given in the text.
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