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Abstract. The optical representation of turbulence and chaos phenomena open the door 
to the statistical and thermodynamic theory of the dissipative coherent and partially 

coherent structures, in a whole, that can be attributed to “one of the central problems of 

theoretical physics.” Our extensive numerical simulations of the generalized cubic-

quintic nonlinear Ginzburg-Landau equation, which models, in particular, dynamics of 
mode-locked fiber lasers, demonstrate a close analogy between the properties of 

dissipative solitons and the general properties of turbulent and chaotic systems. In 

particular, we show a scenario of transition to turbulence related to “spectral 

condensation – temporal thermalization” duality and disintegration of dissipative soliton 
into a non-coherent (or partially coherent) multisoliton complex. Thus, the dissipative 

soliton can be interpreted as a complex of nonlinearly coupled coherent “internal modes” 

that allows developing the kinetic and thermodynamic theory of the non-equilibrious 

dissipative phenomena. Also, we demonstrate an improvement of dissipative soliton 
integrity and, as a result, soliton disintegration suppression due to non-instantaneous 

nonlinearity caused by the stimulated Raman scattering. This effect leads to an 

appearance of a new coherent structure, namely, a dissipative Raman soliton. 

Keywords: Optical turbulence, Dissipative solitons, Chaos in nonlinear optical systems, 

Generalized cubic-quintic nonlinear Ginzburg-Landau equation. 
 

1  Introduction 
 

In the last decades, rapid progress in modern nonlinear science was marked by 

the development of the concept of a dissipative soliton (DS). DS is a strongly 

localized, coherent, partially coherent or even incoherent structure emergent in a 

nonlinear dissipative system far from the thermodynamic equilibrium. This 

concept is highly useful in very different fields of science ranging from field 

theory and cosmology, optics, and condensed matter physics to biology and 

medicine [1]. The existence of DS under non-equilibrium conditions requires a 

well-organized energy exchange with an environment so that this energy flow 

forms a non-trivial internal structure of DS, which provides the energy 

redistribution inside it and can distort the soliton coherence. Such a DS with 

nontrivial internal structure can develop in lasers [2,3], and the DS dynamics 

can be chaotic and turbulent [4]. The range of turbulence, noise, and rogue wave 

phenomena emulated by the optical DS is so broad that it turns them into a 

universal playground for studies in the fields of nonlinear dynamical systems 
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and nonequilibrium thermodynamics, as well as provides us with the highly-

effective and controllable tools for “metaphoric” computing and analog 

modelling, big data and rare events analysis which are suitable for different 

branches of knowledge [5].  

In this work, we conjecture an analogy between the internal structure 

of a DS and the turbulence phenomena. Such close relation leads to chaotization 

of DS dynamics with the energy growth. Simultaneously, the nonlocality 

(“inertia”) in a dissipative system caused by the stimulated Raman scattering 

(SRS) can suppress chaos and stabilize DS. 

 

2  DS and turbulence 
 

As was shown in [7], the most natural description of DS with strongly 

inhomogeneous phase (i.e., large “chirp”) can be realized in the spectral domain. 

Using the adiabatic approximation (for details see [7,8]) shows that the DS 

spectrum can be expressed in the following form: 
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where  p   is a DS spectral power,   is a frequency,   is a cut-off frequency 

(  x  is the Heaviside function). Eq. (1) represents a truncated Lorentz profile 

with the characteristic width L  and can be interpreted by analogy with 

thermodynamics as the Rayleigh-Jeans distribution [9,10], so that 2
L  plays a 

role of negative “chemical potential.” The parameter T is analogous to 

“temperature” and is closely connected with the system nonlinearity: 
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The cut-off frequency   is defined by the dissipation (see below). 

The master model for Eqs. (1,2) is based on the famous complex nonlinear 

cubic-quintic Ginzburg-Landau equation describing a broad variety of 

nonequilibrium phenomena, in particular, a propagation of dissipative nonlinear 

waves and beams [1,2]: 
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Here z  and t  are the propagation and time coordinates, respectively;  ,a z t  is 

an optical field,   is a dispersion (“kinetic energy”) coefficient (we assume 
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0   for the normal dispersion), and   is a phase nonlinearity (“self-

interaction”) coefficient. Limiting the right-hand side of the equation to the first 

part gives precisely the nonlinear Schrödinger equation, and its applications 

include such phenomena as turbulence, Bose-Einstein condensate, etc.  

The next part of Eq. (3) describes the dissipative factors. The  -term 

defines an average energy in/out-flow (“gain”) and depends on the field energy 
2

E a dt  , in general case. The  -term defines the spectral dissipation 

(“kinetic cooling” in Bose-Einstein condensates),   is a coefficient of self-

amplitude modulation, and  -coefficient describes a saturation of self-

amplitude modulation, which is necessary for DS stabilization. 

The running wave steady-state solution of Eq. (3) 

 

      , expa z t a t i t iqz      (4)  

 

with the instant local phase  t results in the Langmuir dispersion relation 

(Fig. 1) [10] for the DS wave number q  [7]:    

 
2

0q P         (5) 

 

which connects the DS peak power  
2

0 0P a t   and the cut-off frequency 

 . Such cut-off corresponds to the edge of a spectral dissipation window 

(“transparency window”): 

 

 2 1        (6) 

 

and these spectral losses have to be compensated by a nonlinear gain 0P  at 

the DS peak (the relative carrier frequency is set to 0   at 0t  ) with the 

subsequent redistribution of the energy (Fig. 2): 

 
2

0 .P        (7) 

 

Eqs. (5,6,7) give the threshold condition for the DS existence: 

 

1



                (8) 

 

(more precise consideration gives 2/3 in the high-energy limit E  and 2 in 

the low-energy limit 0E ). This relation shows that both spectral filtering and 

nonlinear dissipation are highly important for DS stability. 
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These relations and the DS spectral properties presented above reveal a very 

close analogy with the main features of strong Langmuir turbulence [10]. Such 

analogy is deepened by analysis of energy flows inside the DS (Fig. 2). 

Let’s neglect the nonlinear gain saturation (i.e. 0  ). Then, the exact 

solution of Eq. (3) can be expressed as 
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where 0a  is amplitude,   is a DS width, and   is a dimensionless chirp as a 

measure of phase inhomogeneity [11]. The intra-DS energy in/out-flow is [2]: 
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      (10)  

  

and it is shown in Fig. 2.  

Fig. 2 reproduces a classical turbulence energy cascade: an energy 

nucleation (“spectral condensation”) at 0   with a declining high-frequency 

transfer which falloffs at the cut-off frequency   (i.e., at the DS edges in the 

time domain). 

 

 
Fig. 1. Correspondence between the DS spectrum (red curve) and the turbulence 

spectral distribution in Fourier space   (black curve shows the Langmuir dispersion 

relation): cut-off frequency   is defined by resonance condition between linear 

waves with a wave number k  and DS with a wave number q  ( 0P  is a DS peak 

power). Spectral condensation at  0  is illustrated by shading [10]. 
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 As one can see from Fig. 2, such behavior is closely connected with the 

chirp increase, i.e., enhancement of the phase inhomogeneity. The last can 

destroy the internal DS coherency. Such partially coherent DS can be treated as 

consisting of “internal modes” [12] or as a “multisoliton complex” [13]. These 

properties of strongly chirped DS would allow applying the methods of wave 

kinetic theory [14] that waits for its pursuance. 

 

3  DS fragmentation in high-energy and high-dispersion limits 
 

Here we present the results of numerical simulation of Eq. (3) in the normal 

dispersion ( 0  ) regime bearing in mind a Yb-all-fiber laser [3]. Since the 

turbulent regimes are highly non-stationary, these simulations offer difficulty 

and are time-consuming. We used the reduced split-step Fourier method [15]: 

 

      
   

        
   

exp exp , exp ,
2 2

h h
a z h h x x x a z              (11) 

 

where   and   are the linear and nonlinear parts of Eq. (3), respectively, and 

h  is a propagation step. Using the Agrawal’s method [16], the full split-step 

method [15] and the different numerical schemes for the Π-calculation allowed 

accelerating the simulations to some extent, but such acceleration was not 

significant in our case.  

 It is convenient to normalize the propagation coordinate z  to a laser 

length L . The “propagation unit” becomes a laser cavity round-trip number. We 

used 500h L to avoid the numerical instabilities which can imitate physical 

turbulence phenomena. Other normalizations are: field power is normalized to 

the  -coefficient corresponding to the fused silica, time is normalized to the 

time mesh step 1t  fs (2
19

÷2
20

 mesh points were used in calculations), energy 

was normalized to t  . Then, the reasonable value of the dimensionless 

 
Fig. 2. Profile of energy generation in dependence on the chirp parameter for a DS 

of Eqs. (9,10) with 0.05  ,  10  ,  0.01  .  
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spectral dissipation parameter for a Yb-fiber laser is 366  fs

2
 ( 30  nm 

spectral filter width), 6  W
-1

km
-1

 [25], 0.1  , and 0.05   [17]. The 

propagation time equals to 5000 laser cavity round-trips. 

Eq. (3) must be supplemented by an additional mechanism of “gain 

saturation,” i.e., the dependence of the -term on the pulse energy E . We used 

the simplest law [18]: 

 

1 ,
s

E

E
 

 
  

 
    (12) 

 

where   is a “stiffness” coefficient defining a saturation efficiency, and sE  is 

an energy of continuous-wave non-coherent radiation corresponding to 0   

(such a solution of Eq. (3) is unstable if DS exists). 

 

 
Fig. 3. The Wigner function and its marginals: the DS spectrum (bottom) and temporal 

profile (right) for a single DS from a multi-soliton complex. The latter is shown in the 

inset. The dimensionless 53 10sE    (that corresponds to 50 nJ for given parameters and 

normalization), 0.01  ps2, and 0.05  . Dimensional wavelength range corresponds 

to an all-normal-dispersion Yb-fiber laser [19]. 

 

We used the fixed value of 53 10sE    and varied   in our calculations. 

When  is below some critical value (  0.012  ps
2
 in our case), the well-

known multi-DS regime exists (e.g., see [20]). Fig. 3 (inset) shows an example 

of such regime. The Wigner distribution [21]: 
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in Fig. 3 with its marginals corresponding to the spectral (bottom) and time 

(right) profiles αρε shown for the central DS in the multi-pulse complex. Since 

L  is sufficiently large for decreasing   [7], the spectral energy more 

uniformly distributed within the range defined by a cut-off frequency   which 

increases with the   decrease (see the Langmuir dispersion relation in Fig. 1). 

Both factors enhance the spectral dissipation described by the  -parameter in 

Eq. (3). DS splitting reduces the DS peak power and, thereby, narrows spectrum 

(again, see the Langmuir dispersion relation in Fig. 1) that is beneficial 

energetically due to a decrease of spectral dissipation.  

 

 
Fig. 4. The Wigner function, its projections, i.e., DS spectrum (bottom) and temporal 

profile (left) for a sole DS for dimensionless 53 10sE   ,  0.02 ps2. 

 

The phenomenon of multiple DSs creation with the dispersion decrease can 

be understood from the thermodynamic point of view, as well. If 2
L  is treated 

as a “chemical potential” (Eq. (1)), taking into account the dependence of the 

“long-range” correlation time   on the chemical potential [9]: 

 

2
L


 


    (14)   

 

demonstrates degradation of correlation with the dispersion decrease and the 

L  growth that prevents the DSs merging within a multisoliton complex. That 

means excitation of non-coherent radiation, when   becomes positive (i.e., 
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when DS energy becomes lower than the “critical energy” sE  in Eq. (12)), with 

subsequent creation of new DSs which cannot merge into a single coherent 

structure (single DS) due to a limited correlation time  . In practice, DSs can 

disappear completely so that only non-coherent radiation remains. Dependencies 

of critical energy sE  on parameters for different types of laser systems form the 

so-called “master diagrams” [3,4,18] and finding such dependencies is a critical 

issue for the DS theory. 

When sE E  with the growth of  , a stable DS develops (Figs. 4,5). The 

Wigner function demonstrates that the high-energy DS is strongly chirped and 

high spectral density is localized at the spectrum centrum (i.e., a “spectral 

condensation” takes place [10]). Simultaneously, the temporal profile has a flat-

top shape with sharply truncated edges. One can see from Fig. 5, that the 

building-up stage is accompanied by power bursts that can be an obstacle for 

self-emergence of DS in a high-energy laser [22].  

The key feature of the high-energy regime is that the DS peak power is fixed 

due to saturation of self-amplitude modulation: 0 ~ 1P  . Then, Fig. 1 allows 

concluding that the cut-off frequency decreases with the dispersion growth: 

   and, thereby, the spectral condensation enhances: 0L  . The 

last enlarges the long-range correlation time in agreement with Eq. (14), so that 

DS broadens and its chirp increases. 

 

 

Fig. 5. Evolution of DS power profile for dimensionless 53 10sE    and 0.05   ps2. 

   

It is reasonable to assume that a large chirp (i.e., large phase inhomogeneity) 

weakens the intra-DS phase coherence, which is defined by the ratio of a “short-

range” correlation time 1  to a “long-range” correlation time . This value 

decreases with dispersion, and such phenomenon was observed in a middle-
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nonlinear regime when the  -growth induced 0P -fluctuations and irregular 

modulation of spectrum shape [12]. It was interpreted as excitation of the DS 

“internal modes.”  In this case growth of phase difference between different 

parts of DS leads to their phase decoupling under the action of small 

perturbations, and the DS loses its coherence. In a high-nonlinear regime 

considered here, it leads to DS splitting through a turbulent transitional phase 

(Fig. 6). Such phase decoupling of internal components of DS enhances an 

analogy between DS and turbulence that would allow developing a kinetic 

theory of DS. Some first steps on this wave were made [14], but a complete 

theory is not developed to date.   

  

 

Fig. 6. Contour plot of evolving DS power for 53 10sE    and  0.2  ps2. 

 

We observed numerically that the coherence degradation is related closely to 

the  -decrease, and the turbulence appears for 
1 ~1  ps so that the short-

range correlation time is about of 1 ps within an incoherent DS with the 

spectrum width 1 L  (Fig. 7). The quantitative theory of this phenomenon is 

under development at present. 

 
Fig. 7. Contour plot of autocorrelation function in a turbulence regime of Fig. 6. 
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4 Effect of stimulated Raman scattering and Raman 

dissipative soliton 
 

The stimulated Raman scattering (SRS) is an example of a nonlocal nonlinear 

response which affects the DS dynamics of fiber laser and can limit its energy 

scalability and stability [23,24]. With SRS, the nonlinear phase term in Eq. (3) 

has to be replaced by [16] 
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where Rf  is a fraction of SRS in total phase nonlinearity and the SRS response 

function for glasses is usually approximated by [16] 
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( 1 2,T T  are the response times). The approximation showed in the second line of 

Eq. (15) can be used for comparatively long ( 1 2,T T ) but spectrally broad 

pulses and such approximation was used in the present work 

 (here,  


 0R RT f h t tdt ).  

The numerical simulations, taking into account the SRS demonstrate that the 

minimal   providing the DS stabilization against multi-pulsing (i.e., satisfying 

sE E ) is lower than that without SRS (Fig. 8). 

It is obvious that SRS lowers DS energy and reduces its peak power. That 

narrows the DS spectrum and suppresses spectral dissipation. As was stated 

above, the last factor is the main source of multi-pulsing for small . Therefore, 

SRS stabilizes DS in the vicinity of minimal dispersion. 

The most exciting effect of SRS for large   is suppression of both 

turbulence and DS splitting. We assume that this phenomenon is closely 

connected with the emergence of new type of DS - Raman dissipative soliton - 

which is downshifted in frequency [24] (Fig. 9). The latter effect can play a role 

of passive negative feedback when the increase of power is suppressed by 

spectral dissipation due to the SRS-induced self-frequency shift. This topic 

requires further numerical and analytical investigations. 

 



Chaotic Modeling and Simulation (CMSIM)  2: 125-137, 2018     135 

 

 
Fig. 8. DS profiles without ( 0Rf  ; black and blue solid lines) and with SRS 

( 0.22Rf  , 1.8RT   fs; solid and dashed red curves) for 53 10sE   , 0.01  (solid 

black and red lines) and 0.02 ps2 (solid blue and dashed red lines).  

 

 

 

 
Fig. 9. Wigner function and its projections (spectrum, bottom; time profile, right) for 

the Raman dissipative soliton. Parameters correspond to those of Fig. 8, but 0.7  ps2. 

 

Conclusions 
 

DS dynamics was considered numerically on an example of the complex 

nonlinear cubic-quintic Ginzburg-Landau equation describing a variety of 

dissipative phenomena far from thermodynamic equilibrium. As a physical 

testbed, we chose a Yb-fiber laser operating in the all-normal-dispersion regime. 

It was conjectured that a structure of DS resembles that of turbulence in the 
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spectral domain. In particular, the spectrum is described by the Rayleigh-Jeans 

distribution with the characteristic “chemical potential.” There is the cut-off 

frequency, which is defined by the Langmuir dispersion relation and the spectral 

dissipation. Spectral density concentrates at 0   with a subsequent declining 

frequency transfer to the cut-off frequency. The long-range correlation time 

defined by “chemical potential” degrades with the dispersion decrease that 

results in multi-pulsing. On the other hand, dispersion growth reduces the cut-

off frequency that leads to spectral condensation, DS extra-broadening, and its 

substantial chirping. As a result, the small perturbation can cause phase 

decoupling between components of DS, so that it loses coherency. The latter 

leads to turbulence and DS decomposition. Stimulated Raman scattering, which 

is considered traditionally as a destabilizing factor, enhances stability against 

multi-pulsing due to the reduction of DS peak power and spectral width. For 

large dispersion, the SRS suppresses turbulence and DS decomposition and 

forms a new type of DS – Raman dissipative soliton – with down-frequency-

shifted spectrum.      
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