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Abstract. The dynamics of bubble, drop, and foam formation can present chaotic 

behavior. Under certain conditions these systems present routes to chaos such as period 
doubling, period adding, or intermittency. In addition to these aspects, some interesting 

emergent types of fragile objects can be observed, such as antibubbles. 
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1 Introduction 

 
One of the best examples of a dynamical system exhibiting chaotic 

behavior is the bubble formation from a nozzle. This system presents a 

myriad of routes to chaos, such as period doubling route, intermittency 

route and period-adding route, just to cite some of them. We have 

developed this study from the paradigmatic case of a chaotic system, 

the dripping faucet experiment, suggested by Rössler [1]. In addition to 

this aspect, drops and bubbles can create foam, the fluid dynamics of 

foams is nonlinear, and we have observed the butterfly effect in foam 

systems. According to the Nobel Prize winner Pierre-Gilles de Gennes 

[2], bubbles, drops and foams can be considered as fragile objects, due 

to the ephemeral feature of these systems. In this paper we present the 

main features of the chaotic behavior of these fragile objects, indicating 

some general concepts that sum up the main aspects of chaotic systems 

in two phase flow and correlated systems.  

 

2 Period Doubling and Intermittency 
 Bubbles, drops and foams consist mainly of a two phase flow 

system, consisting of liquid and a gas [1-4]. For the case of bubble and 

drop formation, we have to consider also the existence of a solid phase, 

such as a nozzle. In Fig. 1(a)-(e) we present a complete route to chaos 
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in a bubbling system [5], with the related bifurcation diagram in Fig. 

1(f). 

 

 

 
Figure 1. Chaotic behavior of a bubbling system involving period doubling and 

intermittency at same time, increasing the air flow rate of bubble formation. 
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The interface present in bubbles, drops and foams is one of the main 

features of the existence of nonlinearity in these systems, and this feature can 

lead to chaotic behavior. 

Another example of a system presenting chaotic behavior is the dripping 

faucet experiment [1][4]. In Fig. 2(a) we present a bifurcation diagram for this 

system presenting period doubling, jumps and chaotic behavior. In Fig. 2(b) we 

are presenting a chaotic reconstructed attractor from the dripping faucet system. 

 

 
Figure 2. In (a), bifurcation diagram of the dripping faucet system showing periodic 
behavior, period doubling, jump, and chaos. One example of a chaotic behavior in the 

dripping faucet system is shown with the chaotic attractor in (b). 

 

A model for the dripping faucet experiment is giving by: 
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where x is the coordinate of the mass center of the drop, Q is the liquid flow 

rate, k and b is surface tension and viscosity respectively, and M is the mass 

of liquid attached to the faucet. A drop with mass M detaches from the 

nozzle with velocity vc, with the factor , when the attached drop reaches 

the point xc. See more information about this system in Refs. [1][4] 

 

3 Period-Adding bifurcations and Circle Map dynamics 
The second important feature for the observation of chaotic behavior in 

systems involving fragile objects is the injection of mass and energy. This 

injection is related to the redistribution of matter with time, and the flow of 

the liquid/gas phases give the energy necessary to create states of out of 

equilibrium. In presence of these features, we can observe circle map and 

period-adding dynamics [5-13]. 
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Figure 3. From (a) to (e) the profiles of a bubble growing with an air flow rate of 134 

ml/min. This type of bubble growing is associated with period adding bifurcations (f). 

 

 The flow of gas is represented in Fig. 3 in the bubble formation from a 

nozzle. The bubble grows in Fig. 3(a) and in Fig. 3(b) the bubble lifts off and 

the neck appears collapsing latter in Fig. 3(c). In Fig. 3(d) a small bubble 

appears, and it retracts in (e). This process is related to the period-adding 

bifurcation presented in Fig. (f), which is a sequence of periodic  bifurcations of 

k to k+1. A model for this type of dynamical system is present in Fig. 4, which 

is a map with periodic reinjection. Besides bubble formation, period adding 

behavior is observed in the interspike interval series generated by a neural 

pacemaker inserted in rats, or in the Fitzhugh-Naguno model [9] for mimicking 

the firing neurons. In this way, we have observed that both bubble creation 

model of Fig. 3, and drop formation of Eq. (1) are somehow explained by 

integrate and fire dynamics [10-11]. 
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Figure 4. Example of function and iterated map in (a) for the period adding behavior with 
chaotic windows. Bifurcation diagram showing period adding behavior in (b). 

 

In order to study this sensitiveness to initial conditions during bubble or 

drop formation, we have studied the perturbation of the formation of bubbles 

using sound waves, as it is shown in the diagram of Fig. 5(a), with the 

reconstructed attractors from the experiment in Fig. 5(b), showing period 1, 

bifurcations, and chaotic behavior. 

 

 
Figure 5. In (a) diagram of the bubble formation experiment subjected to a sound wave. 
In (b) a sequence of different types of attractors obtained from the experiment for 

different values of sound wave amplitude. 

 

 It is interesting to note the similarity between the experiment and the 

model based on the circle map for the case of bubble formation disturbed by 

sound waves [5-10], as it is shown in Fig. 6. 
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Figure 6. Comparison between the time series obtained from the experiment in (a) and 

the data obtained from the model of the circle map dynamics in (b). 

 

4  Foam as a dynamical system 
 

 One possible definition of liquid foam is a way to store surface energy. 

We have studied different ways to create foams [13-16]. 

 

 
Figure 7. Bubble raft (a), a type of two dimensional foam created adding one bubble at 
time. In (b), there is a foam obtained from a period 2 bubbling and in (c), a foam 

obtained from coalesced bubbles. In (d), we have observed foams from different 

bubbling regimes, from periodic to chaotic behavior. 
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 Injecting air through a submerged nozzle can form air bubbles in a 

liquid [14]. Once bubbles are formed, each bubble rises toward the liquid 

surface forming the foam of Fig. 7(a). The bubble population balance equation 

in a bubble raft with N bubbles is given by 

 

,bfDN
dt

dN
      (2) 

 

in which D is the bubble-bursting rate coefficient and fb is the bubbling 

frequency, the transient in this type of foam is 

.)( 0
D
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   (3) 

For the case of a bubble raft with an stable population we have dN/dt = 0 when 

time tends to infinity, so 

.
1

bf
D

N      (4) 

 

 In this way, the number of the remaining bubbles in the bubble raft also 

has a linear relation with the bubble frequency fb, and is determined by the 

characteristic time scale 1/D, which is the average value of the bubble lifespan 

in this type of foam. 

 

 
Figure 8. Antibubbles in (a) observed in the experiment when bubble formation presents 

a intermittent chaotic regime (b). See Ref. [8] for more information. 
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Figure 9. Stretching and folding mechanism observed during the foam formation in a 

Hele-Shaw cell, representing the ‘butterfly effect”. 

 

 Besides the bubble raft formation, we also have observed the formation 

of antibubbles for the case of the bubbling system in an intermittent regime [8]. 

An antibubble consists of a spherical shell of air, as it is shown in Fig. 8. The 

mechanism of antibubble formation is related to droplets, which occur for a 

bubbling regime of period-4 whenever a spike of liquid penetrates upward 

inside a large bubble. When some of these droplets encounter the inner bubble 

surface, a layer of air is trapped around these droplets.  

 We also have observed the stretching and folding mechanism in foams 

[15-16], which is popularly known as butterfly effect in Fig. 9, when a liquid 

containing a surfactant is shaken in the presence of air, a foam is formed by the 

action of deformation and stretching of the air/liquid interface [15]. Based in our 

experimental data from the series of the length of the foam from a Hele-Shaw 

cell, we have found that the soap film length has reached a maximum value as a 

function of the number of flips. During this stage, we also have found the 

existence of spatial divergence in the foam elements following neighbor 

bubbles, in which the distance between bubbles was stretched in the vertical 

axis, while in the horizontal the distance was folded. Large bubbles present 

random walk motion in both directions (Figs. 10-11), while small bubbles are 

scattered like balls in the Galton board dynamics. 
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Figure 10. The time series of the baker map (a), the power spectra of Galton board 

dynamics in (b), and for the random walk in (c). From (d) to (f), the evolution of 6 

bubbles in a foam for two flips of the Hele-Shaw cell. 
 

 
Figure 11. The power spectra for the time series of the baker map (a), the power spectra 

of Galton board dynamics in (b), and for the random walk in (c). We have applied the 

same characterization method to obtain the power spectra of the bubble motion for the 
coordinates (x, y) of some bubbles and obtained their respective values in (d). The 

dashed lines in (d) represent the values of the decay a (f
-

) for the baker map (I), for the 

Galton board dynamics in (II), and for the random walk in (III). 
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5  Acoustic streaming in drops and bubbles 

 
 It is interesting to note that bubbles and drops have different behaviors 

when they are subjected to vibrations. We have observed experimentally using 

the diagram of Fig. 12, that drops are attracted to a vibrating membrane, while 

bubbles are repelled for the same vibrations. 

 
 

Figure 12. In (a) diagram of the experiment showing attraction of a drop and the 

repulsion of a bubble in the presence of the vibrations of a membrane using pendulums. 

In this experiment, the drop is a sphere with a density greater than the liquid, while the 
bubble is a sphere with density lesser than the liquid [17]. The diagram of the experiment 

in (b) for the attractive force for a drop represented by a pendulum, and in (c) the case of 

the repulsive force for the case of a bubble, represented by an inverted pendulum. The 

picture of the experiment with a steady membrane in (d), and with a vibrating membrane 
in (e). 
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Conclusions 
 

 We have presented the chaotic behavior of systems involving the 

formation of bubbles, drops and foams. Under certain conditions, these systems 

present the main features necessary to show chaotic behavior of dissipative 

systems, which are the existence of nonlinearities and sensitiveness to initial 

conditions. In most part of our work, in order to interpret the complex behavior 

of these two phase flow systems, we have proposed some empirical models 

using recurrences, differential equations, and metrical and geometrical 

characterization such as Lyapunov exponents, measuring fractal dimensions, in 

addition to the study of the topology of the dynamical systems. 

 Basically, the balance between inertial and dissipative forces defines 

the dynamics of these systems, however the abrupt changes of surfaces collapse 

the bubble or drop formation in another dynamical state, causing intrinsic 

hysteresis. For example, the increasing or decreasing of the control parameter 

can create different sequence of bifurcations, and bistability is ubiquitous in 

those systems. Bistability is the coexistence of two periodic regimes for the 

same value of the control parameter. This phenomenon implies in a shift of the 

position of the bifurcations points. This behavior is present during the period-

adding bifurcations in the bubbling system. 

 There is a limit to how many bubbles can occupy the foam 

simultaneously. For example, for the experiment of bubble injection with a 

nozzle, the number of bubbles in the foam is proportional to the bubble 

frequency multiplied by the average value of bubble lifetime. For the case of the 

foam in a Hele-Shaw cell, the soap film length has reached a maximum value as 

a function of the number of the flips, following the logistic growth. In addition 

to this, when this foam reaches this stage of length stability, there is a spatial 

divergence of the bubbles in this foam during a sequence of flips. Large bubbles 

present random walk motion, while small bubbles present chaotic motion. 

 When air bubble formation in a nozzle is submitted to sound wave 

perturbation, we have observed the circle map dynamics. Another interesting 

case is the emergent phenomenon of antibubble formation. The antibubbling 

regime is a complex system, in which a heterogeneous amalgam of different 

things happen, like bubbling following by period doubling, discontinuity in the 

dynamics characterized by bubble coalescence, inverted dripping as a result of 

the instability of the Rayleigh jet, and finally the creation of antibubbles as the 

result of the intermittency and liquid circulation. 

 To sum up, we consider that the application of Chaos theory in two-

phase flows formed by the formation of bubbles, drops, antibubbles, and foams 

is very good way to understand these systems. 
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