Chaotic Modeling and Simulation (CMSIM) 2: 185-196, 2018

Lyapunov Exponent Evaluation of the CBC Mode
of Operation

Abdessalem Abidi!, Christophe Guyeux?, Jacques Demerjian®, Belagacem
Bouallegue!, and Mohsen Machhout!

! Electronics and Microelectronics Laboratory University of Monastir, Faculty of
Sciences of Monastir, Tunisia
(E-mail: abdessalemabidi9@gmail.com)

2 FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department
Université de Bourgogne Franche-Comté, 16, Route de Gray, 25000 Besangon, France
(E-mail: jacques.demerjian@gmail.com)

3 Lebanese University, Faculty of Sciences, LARIFA-EDST, Fanar, Lebanon
(E-mail: jacques.demerjian@gmail.com)

Abstract. The Cipher Block Chaining (CBC) mode of encryption was invented in 1976,
and it is currently one of the most commonly used mode. In our previous research works,
we have proven that the CBC mode of operation exhibits, under some conditions, a
chaotic behavior. The dynamics of this mode has been deeply investigated later, both
qualitatively and quantitatively, using the rigorous mathematical topology field of re-
search. In this article, which is an extension of our previous work, we intend to compute
a new important quantitative property concerning our chaotic CBC mode of operation,
which is the Lyapunov exponent.
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1 Introduction

Blocks ciphers, like Data Encryption Standard (DES) or Advanced Encryption
Standard (AES), have a very simple principle: they do not treat the original text
bit by bit but they manipulate blocks of text. More precisely, the plaintext is
broken into blocks of N bits. For each one, the encryption algorithm is applied to
obtain an encrypted block that has the same size. Then, we put together all of
these blocks, which are separately encrypted, to obtain the full encrypted message.
For decryption, we proceed in the same way, but now starting from the ciphertext,
in order to obtain the original one employing the decryption algorithm in place
of the encryption function. So it is not sufficient to put anyhow a block cipher
algorithm in a program. We can, instead, use these algorithms in various ways
according to their specific needs. These ways are called block cipher modes of
operation. Indeed, there are several modes and each one of them differs from
others by its own characteristics, in addition to its specific security properties. In

Received: 23 March 2017 / Accepted: 19 March 2018
© 2018 CMSIM ISSN 2241-0503



186 Abidi et al.

this article, we are only interested in the Cipher Block Chaining mode and we will
quantify its chaotic behavior thanks to the Lyapunov exponent. To do so, we first
show that such mode of operations can be considered as dynamical systems.
Indeed, some dynamical systems are very sensitive to small changes in their
initial condition. Both constants of sensitivity to initial conditions and of expan-
sivity illustrate that [1,2]. However, these variations can quickly take enormous
proportions, grow exponentially, and none of these constants can measure such a
behavior. Alexander Lyapunov has examined this phenomenon and introduced an
exponent that measures the rate at which these small variations can grow.

Definition 1. Let f : R — R. The Lyapunov exponent of the system defined
by 2 € R and 2"t = f(2") is:

1
)\(.Io): lim —

n
1 / 1—1 .
n—>+oonzn‘f(m )‘
i=1
Consider a dynamical system with an infinitesimal error on the initial condition
xg. When the Lyapunov exponent is positive, this error will increase (situation of
chaos), whereas it will decrease if A(zg) < 0.

Example 1. The Lyapunov exponent of the logistic map 2° € [0,1], #"*! =
px™(1 — x™) [3] becomes positive for p > 3,54, but it is always smaller than
1. The tent map [4,5] and the doubling map of the circle [6], two other well-known
chaotic dynamical systems, have a Lyapunov exponent equal to In(2).

Sometimes, instead of trying to prove directly the properties on the system
itself, it is preferable to reduce the initial problem to another whose characteris-
tics are known or seem to be accessible. Such a reduction tool is called, in the
mathematical theory of chaos, the semi-conjugacy.

Definition 2. The discrete dynamical system (X, f) is topologically semi-conjugate
to the system (Y, g) if it exists a function ¢ : X — Y, both continuous and onto,
such that:

pof=goy,

that is, which makes commutative the following diagram [7].

x —1 o x

<Pl Js@
yY
In this case, the system (), g) is called a factor of the system (X, f).

Various dynamical behaviors are inherited by systems factors [7]. They are
summarized in the following proposition:

Proposition 1. Let (V,g) a factor of the system (X, f). Then:
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1. for all j < k, p € Pery(f) = p(p) € Per;(g), where Per, (h) stands for the
set of points of period n for the iteration function h.

2. (X, f) reqgular = (Y, g) regular,

3. (X, f) transitive = (Y, g) transitive.

So if (X, f) is chaotic as defined by Devaney, then (Y, g) is chaotic too.

Having these materials in mind, it is now possible to measure the Lyapunov
exponent of some CBC mode of operations. Do do so, we will follow the canvas
described hereafter. In Section 2, some basic reminders are given. The semicon-
jugacy allowing the exponent evaluation is described in Section 3. In the next
one, the consequences of such a semi-conjugacy are outlined, and the exponent
is computed. This article ends by a conclusion section where our contribution is
summarized and intended future work is outlined.

2 Basic Recalls

2.1 The Cipher Block Chaining (CBC) mode

The CBC block cipher mode of operation presents a very popular way of encryption
that is used in numerous applications, despite the fact that encryption in this mode
can be performed only using one thread. Cipher block chaining is a block cipher
mode that provides confidentiality but not message integrity in cryptography. The
operating principle of this mode is to add XOR each subsequent plain-text block
to a cipher-text one that was previously received, see Figure 1. Each subsequent
cipher-text block depends on the previous one. Finally, the first plain-text block is
added XOR to a random Initialization Vector (commonly referred to as IV). This
vector has the same size as all plain-text blocks.

To decrypt cipher-text blocks, one should add XOR, output data from decryp-
tion algorithm to previous cipher-text blocks. The receiver knows all cipher-text
blocks just after obtaining encoded the message, thus he can decrypt the message
using many threads simultaneously. If one bit of a plain-text message is damaged
(for instance, because of some earlier transmission error), all subsequent cipher-
text blocks will be damaged and it will be never possible to decrypt the cipher-text
received from this plain-text. As opposed to that, if one cipher-text bit is damaged,
only two received plain-text blocks will be damaged.

Finally, note that a message that is to be encrypted using the CBC mode,
should be extended until being as long as a multiple of a single block length.

2.2 Modeling the CBC mode as a dynamical system

Our modeling follows a same canvas than what has be done for hash functions [8,1]
or pseudo-random number generation [9]. Let us consider the CBC mode of oper-
ation with a keyed encryption function e; : BN — BN depending on a secret key
k, where N is the size for the block cipher, and D;, : BN — BN is the associated
decryption function, which is such that Vk,ej o Dy is the identity function. We
define the Cartesian product X = BN x Sy, where:
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(a) CBC encryption mode (b) CBC decryption mode

Fig. 1. CBC mode of operation

e B ={0,1} is the set of Boolean values,
e Sy = 0,2V — 1V, the set of infinite sequences of natural integers bounded by
2N — 1, or the set of infinite N-bits block messages,

in such a way that X is constituted by couples of internal states of the mode of
operation together with sequences of block messages. Let us consider the initial
function:
it Sy —0,2N -1
(m")ien —  m°

that returns the first block of a (infinite) message, and the shift function:

o SN — SN
2 1 2 3

(m® mt,m2,...) — (mt,m? m3,..)
which removes the first block of a message. Let m; be the j-th bit of integer, or
block message, m € 0,2V — 1, expressed in the binary numeral system, and when
counting from the left. We define:

Fr:BNx 0,28 —1— BN
(@,m) (25 + f(2)),21 N

This function returns the inputted binary vector x, whose m;-th components z,,,
have been replaced by f(z)m;, for all j = 1..N such that m; = 1. In case where
f is the vectorial negation, this function will correspond to one XOR between the
clair text and the previous encrypted state.

Denote by fo the vectorial negation. So the CBC mode of operation can be
rewritten n a condensed way, as follows.

Xt = (5k o Ffo (Z(X{L)VX;L) 7U(X{L))

For any given g : 0,2V —1x BN — BN we denote G4(X) = (g(i(X1), X2); 0(X1))
(when g = & o Fy,, we obtain one cypher block of the CBC, as depicted in
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Figure 1). So the recurrent relation of Eq.(1) can be rewritten in a condensed way,
as follows.
Xt = Gepory, (X7). (2)

With such a rewriting, one iterate of the discrete dynamical system above corre-
sponds exactly to one cypher block in the CBC mode of operation. Note that the
second component of this system is a subshift of finite type, which is related to
the symbolic dynamical systems known for their relation with chaos [10].

We then have defined a distance on Ay as follows: d((x,m); (£,7)) = d(z, )+
dpm (m,m), where [11]:

in which d(x,y) = 1 if z = y, else it is 0. Using this modeling, we have been able
to prove that [11],

Theorem 1. The CBC mode of operation Ge,or,, 1s chaotic, as defined by De-
vaney [12], on the topological space (X,d). This means that Ge,or,, has on (X,d)
the properties of:

e regularity: its set of periodic points is dense in Xy (for any point x in Xy,
any neighborhood of x contains at least one periodic point).

e topologically transitivity: for any pair of open sets U,V C Xy, there exists an
integer k > 0 such that GlgkoFfo U)nV £ 2.

e sensitive dependence on initial conditions: there exists 6 > 0 such that, for
any x € Ay and any neighborhood V' of x, there exist y € V and n > 0 such
that

d( gkoFfo <$)’ngoFf0 (y)) > 4.

This result has been extended in [13], in which both expansivity and sensibility of
symmetric cyphers have been regarded in the case of the CBC mode of operation.
However, all these results of qualitative and quantitative disorder have been stated
on an exotic phase space X, equipped with a distance d very different from the
usual Euclidian one. Our objective is now to translate them in a more usual
situation, namely the real line equipped with its usual order topology. To do so, a
topological semi-conjugacy must be introduced. Such a formulation will make it
possible to evaluate the Lyapunov exponent of the CBC mode, as the latter will
be described by a differentiable function on R.

3 A Topological Semi-conjugacy

3.1 The phase space is an interval of the real line

Toward a topological semi-conjugacy We show, by using a topological semi-
conjugacy, that CBC mode can be described on a real interval. In what follows
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(a) Function z — dist(z;1.5) on (b) Function z — dist(z;1.9) on
the interval (0;4). the interval (0;4).

Fig. 2. Comparison between D (in blue) and the Euclidean distance (in green).

and for easy understanding, we will assume that N = 10. However, an equivalent
formulation of the following can be easily obtained by replacing the base 10 by
any base N.

Definition 3. The function ¢ : S;g x B9 — [O, 210[ is defined by:

Q XIO = 810 X Blo — [0, 210[
((So, 517 .. ), (l;‘o7 e ,Eg)) — © ((S, E))

where (S, E) = ((So, S1,--.); (Eo, ..., Eg)), and ¢ ((S, E)) is the real number:

9
e whose integral part e is Z 297F E., that is, the binary digits of e are Ey E; ... F.
k=0
e whose decimal part s is equal to s = 0,50 51 S2 ... = ;r:i 10-kgk=1,

© realizes the association between a point of X1 and a real number into [O, 210 [
We must now translate the CBC process Gg,o Fy, ON this real interval. To do so,

two intermediate functions over [O, 210[ must be introduced:

Definition 4. Let x € [0, 210[ and:

9
® ¢),...,e9 the binary digits of the integral part of z: |x] = Z 29"Fe,.

k=0
e (sk)ren the digits of x, where the chosen decimal decomposition of x is the

—+o0
one that does not have an infinite number of 9: z = |z] + Z sp107F L
k=0

e and s are thus defined as follows:

e:[0,21° — B
x> (eg,...,€9)



Chaotic Modeling and Simulation (CMSIM) 2: 185-196, 2018 191

and
5:10,2190 — 0,9V
T > (Sk)keN

We are now able to define the function g, whose goal is to translate the CBC
mode ngopfo on an interval of R.

Definition 5. g¢: [07 210[ — [0, 210[ is defined by:

g: [0,210[ — [0,210[
x  — g(x)

where g(x) is the real number of [0,2'°[ defined bellow:

e its integral part is the number, encrypted by ey, whose binary decomposition

equal to ey, ..., eq, with:
, Je(w); it mY =0
%~ Le(@)i +1 (mod 2) if mf =
e whose decimal part is my,...,mg, m3, ..., m3,m3 ... m3,...
9 —+o00
In other words, if x = Z 297 ke, + Z sk 107%71, then:
k=0 k=0
9 “+o0
glx) = Z2g_k€k(ek +d(k, so) (mod 2)) + Zsk"’llo_k_l.
k=0 k=0

Defining a metric on [0,210[ Numerous metrics can be defined on the set

[0,21%], the most usual one being the Euclidean distance A(z,y) = /y? — z2.
This Euclidean distance does not reproduce exactly the notion of proximity in-
duced by our first distance d on X. Indeed d is finer than A. This is the reason
why we have to introduce the following metric:

Definition 6. Let z,y € [0,2'°[. D denotes the function from [0, 2 [2 to Rt
defined by: D(z,y) = D, (e(x),e(y)) + Ds (s(z), s(y)), where:

|Sk—5k|_

9 oo
DQ(E,E)ZZ(S(EhEk)a and Ds(Svs’):Z 10%

k=0 k=1
Proposition 2. D is a distance on [O, 210 [
Proof. The three axioms defining a distance must be checked.

e D > 0, because everything is positive in its definition. If D(z,y) = 0, then
D.(z,y) = 0, so the integral parts of z and y are equal (they have the same
binary decomposition). Additionally, Ds(z,y) = 0, then Vk € N*, s(z)F =
s(y)®. In other words, z and y have the same k—th decimal digit, Vk € N*.
And soz =y.
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* D(z,y) = D(y,x).
e Finally, the triangular inequality is obtained due to the fact that both § and
|z — y| satisfy it.

The convergence of sequences according to D is not the same than the usual
convergence related to the Euclidean metric. For instance, if 2" — x according to
D, then necessarily the integral part of each x™ is equal to the integral part of x
(at least after a given threshold), and the decimal part of ™ corresponds to the
one of x “as far as required”. To illustrate this fact, a comparison between D and
the Euclidean distance is given in Figure 2. These illustrations show that D is
richer and more refined than the Euclidean distance, and thus is more precise.

The semi-conjugacy It is now possible to define a topological semi-conjugacy
between Xy and an interval of R which makes possible to translate the action
of the CBC encryption on a message in the form of a recurrent sequence on the
interval [0,2'0].

Theorem 2. CBC mode on the phase space Xy are simple iterations on R, which
18 illustrated by the semi-conjugacy of the diagram below:

Gepory,

(Sl()XBlO,d) (810>(Blo,d)

‘| Js
([0.200D) —— ([0,2°[D)

Proof. ¢ has been constructed in order to be continuous and onto.

In other words, Xy is approximately equal to [0, N [

Comparing the metrics of [O, 2N[ The two propositions below allow us to
compare our two distances on [0, oN [:

Proposition 3. The identity function Id: ( [O,QN [,A ) — ( [O,QN [,D ) s not
continuous.

Proof. The sequence ™ = 1,999...999 constituted by n 9’s as digits, is such that:

o A(z",2) = 0.
e But D(z",2) > 1, so D(z™,2) does not converge to 0.

The sequential characterization of the continuity allows us to conclude the
proposition.

A contrario:

Proposition 4. Id: ( [0,2'\' [,D ) — ( [O,QN [,A ) 18 continuous.



Chaotic Modeling and Simulation (CMSIM) 2: 185-196, 2018 193

Proof. On the one hand, if D(z™, z) — 0, then D.(z™,x) = 0 at least after a given
rank, because D, produces only integers. So, after a given rank, the whole integral
parts of ™ are equal to the one of x.

On the other hand, Dy(z™,2) — 0, so Yk € N*,dN, € N,n > Ny =
Dy(2™,z) < 107%. Which means that for all k, it exists a rank N}, after which all
the £™’s have the same k first digits, which are the ones of z. We can deduce from
all these aspects that A(x™,x) — 0, which leads to the claimed result.

We can conclude from the previous propositions that the introduced metric is
more precise than the Euclidean distance. In other words:

Proposition 5. The distance D is finer than the Fuclidean distance A.
This proposition can be reformulated as follows:

The topology generated by A is inside the one generated by D.

D has more open sets than A.

Figuratively, D allows a better observation, leading to more details than A.
Finally, it is harder to converge with the topology 7p generated by D, than
with the one generated by A, and denoted 7x.

Impact of the topology To alleviate notations, let us denote by X’; the topolog-
ical space (X, 7), and by V. (z) the set of all neighborhoods of # when considering
the 7 topology. When there is no ambiguity, we will simply use the notation V().

Theorem 3. Let Xy be a set, and T,7" two topologies on Xy such that 7' is finer
than 7. Let f : X — Xy be a function continuous for both T and 7’.
If (X1, f) is chaotic according to Devaney, then (X;, f) is chaotic too.

Proof. Let us firstly introduce the transitivity of (X, f).

Let wi,ws be two open sets of 7. Then wy,ws € 7/, as 7' is finer than 7.
But f is 7/—transitive, so we can deduce that In € N,w; N f((wy) = @. As a
consequence, f is T—transitive.

Let us now establish the regularity of (X, f), i.e., for all z € Xy, and for all
T—neighborhood V of z, a periodic point for f can be found in V.

Let x € Ay and V € V. (z) a 7—neighborhood of z. By definition of the
neighborhood notion, Jw € T,z € w C V.

But 7 C 7/, sow € 7/, and as a consequence, V € V., (). As (X, f) is regular,
it exists a periodic point for f in V', and the regularity of (X, f) is proven.

3.2 CBC mode described as a real function

We will now show that the g function is a piecewise linear one: it is linear on each
n n+1
107 10
Proposition 6. CBC mode g defined on R have derivatives of all orders on
[0,210[, except on the 10241 points in I defined by {% / n € 0;219 x 10}.

n n+1
010 [
is a linear function, having a slope equal to 10: Vx ¢ 1,4’ (x) = 10.

interval having the form [ [, n € 0;2'9 x 10 and its slope is equal to 10.

Furthermore, on each interval of the form with n € 0;2'° x 10, g
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n n+1
107 10
same integral part e and the same decimal part so: on the set I,,, functions e(x)
and z + s(2)° of Definition 4 only depend on n. So all the images g(x) of these
points x:

Proof. Let I, = [ {, with n € 0;2!% x 10. All the points of I,, have the

e Have the same integral part, which is g (e), except probably the bit number sq.
In other words, this integer has approximately the same binary decomposition
than ey(e), the sole exception being the digit so (this number is then either
ex(e + 2107%0) or g, (e — 2107%0) depending on the parity of sg, i.e., it is equal
to ex(e + (—1)% x 210=s0)),

e A shift to the left has been applied to the decimal part y, losing by doing so
the common first digit sg. In other words, y has been mapped into 10 x y — sp.

To sum up, the action of g on the points of I is as follows: first, make a mul-
tiplication by 10, and second, add the same constant to each term, which is
1

— (ex(e+ (=1)%0 x 2107%0)) — g,

10

Remark 1. CBC mode is then an element of the large family of functions that are
both chaotic and piecewise linear (like the tent map [4,5]).

We are now able to evaluate the Lyapunov exponent of our chaotic CBC mode,
which is now described by the iterations on R of the g function introduced in
Definition 5.

4 Disorder generated by CBC formulated on R

4.1 Devaney’s chaos on the real line

We have established in [11] that the CBC mode of operation (Ge,or;, , Xa) satisfies
the Devaney’s definition of chaos. From the semi-conjugacy, we can deduce that
it is the case too for the mode of operation on R with the order topology, as:

° (ngopf072(d) and (g, [0,210 [D) are semi-conjugated by ¢,

L) (g, [0, 210 [ D) is a chaotic system according to Devaney, because the semi-
conjugacy preserves such a character [7].

e But the topology generated by D is finer than the one generated by the eu-
clidean distance A — which is the order topology [5].

e According to Theorem 3, we can deduce that the CBC mode of operation g is
chaotic, as defined by Devaney, for the usual order topology on R.

We can formulate this result as follows.

Theorem 4. The CBC mode of operation g on R satisfies the Devaney’s chaos
property, when R is equipped with its usual topology (the order one).

Indeed this result is weaker than Theorem 1, that established the chaos of
iterates on a finer topology. This can be explained in the following figurative
manner. By using tools that are usual in the discrete dynamical system field,



Chaotic Modeling and Simulation (CMSIM) 2: 185-196, 2018 195

we can only observe disorder in the iterations of the CBC mode of operation
(Theorem 4). And even if we considered an higher resolution, and more powerful
tools than the ones that are commonly used, we still fail in finding order in such
a chaos (Theorem 1).

Result of Theorem 4 is still precious. Indeed, we have started to formulate the
mode of operation on a set different from the one commonly considered (Xy instead
of R), to be as close as possible to the computer machine (dealing with bounded
integer), and so to prevent from losing disorder properties when switching from
theory to computer program. It is to be feared that this introduction of discrete
iterations can only be paid by the obtention of disorders of lower quality. In other
words, perhaps we moved from a situation of a good disorder lost when computed
on finite state machines, to a disorder preserved but of poor quality. Theorem 4
shows exactly the contrary of this claim.

4.2 Evaluation of the Lyapunov Exponent

Let £ = {xo € [07 210[ / Yn € N,z" ¢ I}, where I is the set of points in the real
interval where g is not differentiable (as it is explained in Proposition 6). We have
the following result.

Theorem 5. Let us consider the CBC mode of operation with block size of N.
Then, Va° € L, its Lyapunov exponent is equal to A\(z°) = In(V).

Proof. The function ¢ is piecewise linear, with a slop of 10, as ¢'(z) = 10 where

1 )
g is differentiable. Then Vz € £, A(z) = lim, 400 52?:1 ln’ g (m’_l)’ =
1 1
limy, s oo — Doy In]10] = limy,—y 400 —n In [10] = In 10.
n n

Remark 2. The set of initial vectors for which this exponent is not defined is
countable. This is indeed the initial conditions such that an iteration value will
be a number having the form 10’ with n € N. We can reach such a real number

only by starting iterations on a decimal number, as this latter must have a finite
fractional part.

Remark 3. For a system having N cells, we will find, mutatis, an infinite uncount-
able set of initial conditions 2% € [0;2] such that A(z°) = In(N).

So, it is possible to make the Lyapunov exponent of our CBC mode as large as
possible, depending on the size of the block message.

5 Conclusion and Future work

We have available now a new quantitative property concerning the CBC mode of
operation: its Lyapunov exponent is equal to In(N), where N is the size of the block
message. This exponent allows to quantify how the ignorance on the exact initial
vector increases after several iterations of the mode of operation. It illustrates the
disorder generated by iterations of such a process, reinforcing its chaotic nature.
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Using the semi-conjugacy described here, it will be possible in a future work to
compare the topological behavior of various modes of operation on Xy and on R.
This semi-conjugacy can be used to investigate various interesting directions, as
to have a new understanding of the modes of operations while considering them
as iterations on the real line. Their dynamics can be better understood thanks
to the use of mathematical analyzis tools. Finally, elements of comparison with
usual iteration ways can be provided too, as we will consider the same iteration
set, namely the real line.
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