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Abstract. Large optical nonlinearities are critical to photonic technologies, and gen-
eration of harmonics is a convenient way of producing new wavelengths of light. In
particular, third-harmonic generation from infrared sources is often used as a source
of ultraviolet light. In this paper, we study the stability of the dynamics of the pro-
cess of intracavity generation of third harmonic. We show that owing to a rather
general phenomenon analogous to Anderson transition, a stability-instability transi-
tion due to the combined action of driving field and nonlinearity coupling is seen. It
is shown that the dynamics of the system strongly depends on the external electric
field of the fundamental mode and on the coupling coefficient of the interacting modes.
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1 Introduction

In many cases, the dynamical response of quantum systems is affected by the
interaction with an environment, which may be a set of oscillators or a heat
bath [1,2]. Thus, a correct investigation of such open quantum systems are
based on tracing the effects of interaction with the reservoir, and so is rather
complicated from mathematical point of view.
Although the traditional way to describe the dynamics of such systems is the
master equation, it conveys some drawback. The main feature of master equa-
tion approach is neglecting memory effects. Of course, this assumption does
not always hold, e.g., when non-damping or non-oscillating terms are exist.
This constraint which may lead to instability of the system, reduces the appli-
cability of the master equation approach [3]. In addition to master equation
being a customary approach to solve Markovian processes, some other methods
including the non-Markovian quantum jump method [4,5], doubled or tripled
Hilbert space methods [6,7], and the non-Markovian quantum state distribu-
tion method [8,9] have also previously been used to simulate non-Markovian
processes. Generally, owing to setting different approximations the ability of
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these methods to apply in general quantum systems are under question [10].
However, an alternative approach is spectral analysis. Besides the ability of
spectral analysis to simulate a diversity of dynamical systems [11,12], it can
be applied to solve quantum systems interacting with a reservoir without any
approximations [10].
Generally, the study of quantum optical systems interacting with a reservoir is
of great interest in the fields of nonlinear optics (NLO) [13].Among the various
NLO phenomena the (third-harmonic generation) THG is a commonly used
nonlinear optical process for the efficient frequency tripling [14–16] and is of
special interest for possible applications in optoelectronic devices and graphene
nanotubes [17,18].
To date, most efforts have been devoted to improving the efficiency of the THG.
Accordingly, the stability of NLO phenomena exposed to an incident field is
the precursor of phase transition studies. The first theoretical analysis of the
THG backs to the work of Armstrong et al. in 1962 [19]. In this regard, the
intracavity second-harmonic generation (SHG) is rather well studied. Studies
[20–23] are directed at investigating the dynamical response of the intracavity
SHG above the bifurcation point. However, as compared to the intracavity
SHG, the intracavity THG process is insufficiently explored.
In present study, we try to extend the observations to a general case by con-
sidering the case of interacting THG with a bosonic bath. Based on these
considerations, we use spectral analysis to explore dynamical response and
phase diagram of THG interacting with a bosonic bath. We find that the com-
bined action of increasing nonlinearity and driving field intensity induces an
integrable-chaotic transition. We address the observed transition theoretically,
without discussing the enhancement of THG.

2 Model

We study the THG model inside a two-mode cavity in the ~ = 1 basis. To
this end, we consider that a nonlinear medium with an appropriate third-
order susceptibility χ(3) is placed inside the cavity tuned to the frequencies
of the fundamental ω and of the third harmonic 3ω modes. By considering
perturbation of the fundamental mode by an external classical coherent field ε,
the interaction of a light mode at frequency ω with its third harmonic in the
rotating wave approximation is described by the following Hamiltonian [24]

H = i
κ

2
(a3b† − a†3b) + i(εa† − ε∗a) + Γ †aa+ Γaa

† + Γ †b b+ Γbb
†, (1)

where κ, representing the effective nonlinear third-order susceptibility χ(3),
holds for coupling coefficient between the two modes. a(a†) is the bosonic
annihilation (creation) operator for excitations at fundamental frequency and
b(b†) do the same at its third harmonic.
The semiclassical approximation assumes that the electric field can be treated
classically [25].
Due to the loss of light through the partially transmitting mirrors of the cavity,
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the system of interest is dissipative. Γa and Γb are thermostat operators and
represent cavity losses for the two modes.

3 Quantum chaos signatures

We introduce aspects of instability and quantum chaos signatures in the inter-
acting modes of the intracavity THG. The notion of classical chaos is reflected
in phase-space trajectories. Missing link between the signatures of chaotic sys-
tems in classical and quantum domains due to the loss of phase-space trajectory
concept in quantum mechanics, is established by Wigner in the framework of
random matrix theory (RMT) and in terms of their energy level fluctuations.
The properties of quantum systems with classical chaotic counterparts are dif-
ferent from those with classical regular counterparts. Where the energy levels of
a chaotic quantum system are highly correlated, a regular (integrable) system
exhibits an uncorrelated feature [26,27]. Hence, RMT characterizes quantum
systems by classifying their spectral fluctuations in terms of distinct symmetry
classes such as Gaussian orthogonal (GOE) and Poissonian ensembles. Re-
markably, the BGS conjecture [28] further enriched the field of RMT, showing
that GOE applies generally to chaotic systems in the semiclassical limit [29].
Following RMT, the adjacent-spectral-spacing-ratio (ASSR) distribution P (r)
[30] defines the spectral fluctuations of quantum systems by measuring short
range correlations between ASSRs defined as rn = sn

sn−1
, where sn = En−En−1

is the space between any two adjacent levels. As long as the average level den-
sity does not change too much on the scale of level spacings, the unfolding
procedure is not needed for r. For uncorrelated levels, a Poissonian distribu-
tion P (r) = 1

(1+r)2 with a mean value of γP
.
= < γ >Poisson = 0.3863 holds

for ASSR distribution. On the other hand, for quantum chaotic systems with
linear degree of level repulsion, correlations are strong and the Wigner-Dyson

distribution, P (r) = 27
8

r+r2

(1+r+r2)(
5
2
)

with γGOE
.
= < γ >GOE = 0.5359 stands

[30]. Note that the set of γs is defined as γn = min(rn,
1
rn

).
Due to the fact that higher-order nonlinearities couple envelopes with differ-
ent carrier frequencies, it is expected that an additional complexity arises [31].
Applied field leads to the non-separability of the Schrödinger’s equation. Fur-
thermore, previous studies on the dynamics of the number of photons show that
in the case of nonlinear optical processes, such as, e.g., the intracavity SHG
and THG [32,33], stationary solutions are stable only for relatively small per-
turbations. For these systems, a critical pump field was reported above which
small fluctuations in the system do not decay and self-sustained oscillations in
the photon number dynamics was observed. As a result, it seems that increas-
ing the external resonant perturbation to be followed with the break down of
integrability in the domain of proper nonlinearities. As is expected, the combi-
nation increase of the electric field intensity and the nonlinearity follows with
a strong trend for states to mixing. Since this mixing is the main reason for
quantum delocalization [27], a transition to chaotic behavior is expected to
occur. This expected transition can be seen from Figs. 1,2.
We evaluate spectral fluctuations across the THG spectrum and compare re-
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Fig. 1. Dependence of γ on the electric field.
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Fig. 2. Dependence of γ on the nonlinearity.

sults to predictions for Poisson and GOE ensembles in Figs. 1,2, where the
variation of γ vs. ε and κ is depicted. As is seen, for weak εs close to 0, re-
sults match the prediction for the Poisson ensemble well, even for the larger
κs. This result is clearly observable from the Figs. 1,2. A similar behavior is
seen for weak κs even for larger fields. As a result, localization of the light in
the beginning of dynamics follows from the weakness of either the nonlinearity
or the applied field.
Another interesting aspect on the light propagation may be found by looking
at the localization properties of the light in the THG process as a function of
coherent driving and nonlinearity coupling. We now try to reveal the trace
of the observed transition on the structure of the eigenstates. Particularly,
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we investigate how their localization characters vary in both regimes of Pois-
sonian and chaotic. To this end, we turn our attention at their components
addressing the spreading of the eigenstates. Let consider a typical eigenstate

|Ψ (n)(ε, κ) >=
∑N
α,β,ζ,η C

(n)
qp (ε, κ)|α > |β > |ζ > |η > of the Hamiltonian

(Eq.(1)). With this consideration, we can define the localization measure of
the given state vector as P (n)(ε, κ) = 1∑

α,β,ζ,η |C
(n)
qp (ε,κ)|4

[34] named as partic-

ipation ratio. Indeed, the participation ratio P (n), measuring degree of local-
ization [35], gives the number of basis vectors contributing to each eigenstate.
It is noteworthy that the participation ratio provides a way of comparison. In
particular, it reorganizes itself from being close to 1 for a localized state and
approaching dim(H)(= 2401 for this study), for a fully delocalized state. It is
interesting to look at the ensemble average of the estimated participation ratio.
It can be written as P (ε, κ) = 1

dim(H)

∑
n P

(n)(ε, κ) [36]. Because the weights

|cqp|2 fluctuate, the average over the ensemble gives the number of principal

components ∼ N2

3 [37,38].
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Fig. 3. Dependence of participation ratio on the electric field.

Figures 3,4 shows the variation of P as a function of ε and κ. We observe
that the states at the edge of weak fields are more localized. Increasing the
electric field leads to a clear deviation from localized behavior and a significant
increase in the level of delocalization. Especially, in contrast to weak εs, the
largest values of P are restricted to the middle region of the studied interval.
Our numerical computation reveals that the maximum value of P takes place
for (εc, κc) = (3.1, 0.35). We refer to this point as the critical point. From the
central part of Figs. 3,4 we estimate a typical P of ≈ 700 for (κc, εc), whose
order of magnitude indicates strong delocalization. It means that a larger frac-
tion of states are delocalized and widely contribute in the particle transport.
This property is a direct consequence of overlapping which leads to widely dis-



202 Sohrab Behnia, Javid Ziaei, and Mehdi Khdavirdizadeh

0 2 4 6 8 10
0

100

200

300

400

500

600

κ

P

 

 

ε = 0
ε = 1
ε = 2
ε = 2.5
ε = 5
ε = 10
ε = 15
ε = 20

Fig. 4. Dependence of participation ratio on the nonlinearity.

tributed eigenstates. So, the emergence of quantum chaos behavior for this
regime seems to be more likely.

4 Conclusion

The generation of the third and high harmonics has been one of the most
intriguing phenomena in nonlinear optics. THG is a nonlinear optical phe-
nomenon capable of tripling the efficient frequency over a broad range of wave-
lengths. Up to now, the effect of the nonlinear loss on the THG efficiency
have been studied in detail. In this regard, by deriving the Langevin equa-
tions for stochastic field amplitudes for the THG phenomenon and finding its
bifurcation point, Gevorkyan et al. [33] have shown that above this point, the
dynamics of the number of photons of interacting modes changes to the regime
of self-sustained oscillations. Moreover, they have reported the appearance of
the instability domain beyond the critical point. However, less attention has
been paid to the role of the external field and the nonlinearity coupling in
driving THG to produce quantum chaotic behavior so far. Therefore, we was
motivated to perform present study. Owing to the fundamental role of nonlin-
ear optical materials with large third-order nonlinear susceptibilities we have
performed our analyses in the case of weak and strong κs.
Here, we presented a quantum chaos study of intracavity THG. A coherent
external classic field was included into the consideration and the corresponding
Hamiltonian was expanded in the matrix form. The semiclassical analysis of
eigenvalues and the spatial distributions of eigenvectors were performed. It was
shown that the THG undergoes a stable-unstable transition driven by the com-
bination action of the electric field and nonlinearity of the medium. Compared
with the previous studies exploring Anderson localization in the presence of
defects and disorder in a crystal [35], our study provides another approach to-
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wards Poisson-GOE transition in THG without introducing on- or off-diagonal
disorder. We found that both for weak enough nonlinearity and low intensities
of the electric field, the localization phase and steady-state regime dominate.
We found that, the steady-state notion in the THG process losses its mean
for large enough values of ε, κ. Accordingly, for sufficiently strong driving
field and nonlinearity a transition to instability and chaotic regime has also
been observed. Moreover, we explored delocalization transition through the
fluctuation measures of the levels and the state vectors, and we observed that
there is a solid evidence for the presence of quantum chaos in suitable values
of ε, κ. In comparison with studies reporting the appearance of instability
and chaos in the THG [32,33], present study benefits from detecting a critical
point (εc, κc) = (3.1, 0.35) for which the participation ratio, and so the level
of delocalization is maximized. The presence of this critical point foretells a
large fraction of delocalized states in comparison with localized ones. It should
be noted that in the current study, only the appearance of the critical point
has been shown. Furthermore, to approve the occurrence of quantum chaos
we concluded that as expected the observed ASSR distribution shows a good
harmony with the GOE prediction for the critical point.
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