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Abstract. Wave chaos signature in a cavity quasi-optical cylindrical resonator under the 

influence of several singular perturbations has been studied experimentally. Earlier the 

spectrum of a cavity quasi-optical cylindrical resonator with a single singular 
perturbation as a thin metal rod was considered theoretically and experimentally. It was 

found that the effect of spectral lines "repulsion". This effect demonstrates the 

dependence of the probability distribution of inter-frequency intervals for wave spectrum 

of our resonator. The question is as follows. Does a sufficiently large number of 
irregularities have the cumulative sufficiently large impact on resonator spectrum chaotic 

behavior? We have detected experimentally that the sign of quantum chaos in our 

resonator is getting bigger with the increase of the number of singular perturbations and 

the dependence of the probability distribution of inter-frequency intervals tends to 
Wigner distribution. 
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1  Introduction and problem statement 
 

The problem of wave (quantum) chaos covers the study of various 

quantum systems, classical analogs of which exhibit chaotic behavior. Recently, 

this problem attracts quite a lot of attention, as evidenced by numerous of its 

theoretical and experimental studies (see, for example, [1] and the literature 

cited therein). When studying of wave chaos, model systems are usually used in 

the form of wave scattering billiards such as Sinai and Bunimovich billiard 

types, in which wave) chaos signs were discovered. Because of the identity of 

the stationary Schrödinger equation and Maxwell's wave scalar equation, quasi-

optical microwave resonators for this purpose are also used, which are similar in 

shape to a corresponding scattering billiard. 

The wave chaos  characteristics are inherent of other systems, such as 

scattering cylindrical billiards, with a rough lateral boundary [2, 3], billiards 

filled with random bulk inhomogeneities [4], cylindrical billiards with a lateral 
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boundary with small smoothness, when at certain points there is no second 

derivative [5, 6]. 

The presence of wave chaos features was theoretically predicted also in 

systems containing one or several small inhomogeneities, each of which can be 

treated as a singular perturbation [7, 8]. However, despite the fruitfulness of the 

theoretical method used in these works to describe the influence of such 

inhomogeneities, a whole series of questions did not receive sufficient 

clarification in them. In particular, one of the fundamental questions remained 

unclear: what is the physical reason for the fact that a regular wave system 

under the influence of a small spatial disturbance acquires distinct signs of wave 

chaos? There was no answer the question: does wave chaos occur at any level of 

a singular perturbation, or should this perturbation be sufficiently large? We will 

consider a closed electrodynamic system in the form of a quasi-optical 

cylindrical microwave resonator with inhomogeneities, in which there are no 

signs of spatial symmetry and there is only one obvious integral of the motion-

the energy of the system. 

Because of the lack of spatial symmetry, such a system is non-

integrable (in the classical sense), and because of this it is chaotic, since its state 

does not depend on the initial conditions (mixing effect [9]). The non-

integrability of the system is the basis for the search for wave chaos signs in it. 

M. Feingold and A. Peres [10] have shown that the series of quantum 

perturbation theory describing such a system are divergent. It follows that with 

the help of classical methods of theoretical description, it is unlikely that 

satisfactory results can be obtained for it. Therefore, more promising, in our 

opinion, is an experimental study. 

The most common method of experimental study of wave chaos in a 

closed electrodynamic system is the spectral approach, when the properties of 

the frequency spectrum of a quasi-optical microwave cavity are studied. In this 

case, the inter-frequency intervals between the nearest spectral lines are 

measured. L. Landau and Ya. Smorodinsky [11] found that in the spectrum of 

such a system lines belonging to the same class of symmetry are "pushed". The 

sense of it is as follows. The probability of very small inter-frequency intervals 

between the resonance lines in the spectrum is very small. Later it was 

established that the effect of the "repulsion" of spectral lines, which manifests 

itself in the form of a Wigner distribution of inter-frequency intervals, is of great 

stability for systems with wave chaos. 

In the Wigner probability P (s) distribution of the inter-frequency 

intervals in the spectrum is determined by the 

expression, )4/exp(2/)( 2 sssPw  , where s is the average inter-frequency 

interval normalized to the mean value. The presence of a Wigner distribution in 

the chaotic spectrum of the resonator system was also accepted as a 

characteristic feature of wave chaos [1]. We note here that the existence of the 

"repulsion" in the spectrum of a non-integrated system was indicated in [11], 

more than 50 years ago, but its nature has not yet been sufficiently studied. 
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In this paper, an attempt is made to move forward in elucidating this 

fundamental question in the concept of wave chaos by the example of a non-

integrable system of a cylindrical bulk microwave cavity resonator with 

inhomogeneities in the form of a set of singular perturbations randomly located 

in it. 

Earlier, a resonator with a single singular inhomogeneity was 

considered theoretically in [8], in which it was predicted that the "repulsion" 

effect, which manifests itself in the form of a Wigner distribution of inter-

frequency intervals, should appear only for a sufficiently large number of 

inhomogeneities, when their total effect on the resonator spectrum is large 

enough. In [12], the effect of a singular perturbation on the resonator spectrum 

was studied experimentally using the example of a quasi-optical cylindrical 

microwave cavity. A singular perturbation was created in it by introducing into 

the resonator an eccentrically located thin metal rod attached to the upper and 

lower cover of the resonator. The location of the rod in the resonator was 

random. The rod had electrical contact over the microwave with the upper and 

lower covers of the resonator. Owing to this and the singular character of the 

perturbation, it essentially changed the distribution of the electromagnetic field 

in a small neighborhood at the end 

In this paper, we study the effect of a large number of singular 

inhomogeneities in the resonator on the manifestation of the characteristics of 

wave chaos. Of great importance in this case is the condition under which 

electrical contact is achieved over the microwaves between the rods and the 

metal covers of the resonator. This was achieved with the use of special metal 

collets, pressing the rods to the covers of the resonator. 

In the scattering of modes of resonator oscillations with thin rods, 

intermode and between different modes scattering also occurs [12]. By 

analyzing the between different modes scattering operator, it was theoretically 

established that this interaction is dominant in comparison with intermode one, 

and it leads to the effect of "repulsion" of the spectral levels. The distribution of 

inter-frequency intervals in the spectrum due to the influence of singular 

perturbations created by the rods under certain conditions can become similar to 

the Wigner distribution. It was previously theoretically established [8] that a 

thin metal rod eccentrically located in the resonator, in spite of the fact that its 

thickness d is sufficiently small, d << λ, where λ is the operating  wavelength, 

creates conditions sufficient for manifesting in the resonator spectrum of the 

main wave chaos  criterion for the Wigner distribution of inter-frequency 

intervals. 

In this connection, the question arises: does the condition for the 

appearance of the wave chaos depend on the number of singular 

inhomogeneities? Are there differences in the conditions of the realization of the 

wave chaos in the case of using not a single, as in [12], but a large number of 

thin metal rods? Since the singular rods are located at a distance of l > λ in the 

resonator, the interaction between them is sufficiently small, and the answer the 

question of the influence of a large number of rods on the "repulsion" of the 

levels in the resonator spectrum cannot be obtained a priori, as well as the 
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question of the correlation between the spectral levels, as well as their spectral 

rigidity. Since the system of a resonator with singular rods is chaotic (in the 

classical sense), then, for its theoretical description, the methods of classical 

dynamics can hardly be used. Therefore, the signs of wave chaos in such a 

system, we looked for by conducting experimental studies. 

 

2  Experiment and discussion 
 

The working model (see Fig. 1) was a quasi-optical aluminum 

multimode quasi-optical cylindrical cavity resonator  in the form of a cavity of 

130 mm in diameter and 16 mm in height. The resonator was designed to 

operate at frequencies of 26 ... 38 GHz. 

 

 
 

 

Fig. 1. Schematic representation of a quasi-optical cylindrical microwave 

resonator with rods (singular perturbations): 1 is the waveguide soldered into a 

resonator housing with a diffraction antenna for exciting HE-oscillations; 2, 3 

are upper and lower cover of the resonator; 4 are rods, i.e. singular perturbations 

(diameter of each rod of 0.7 mm), In the upper and lower cover of the resonator 

there are collets providing microwave contact of each rod with cavity covers. 

 

To excite electromagnetic microwave oscillations in the resonator, a 

waveguide diffractive antenna was used in the form of a piece of rectangular 

standard waveguide sealed in a resonator with a cross section of 7.2*3.4 mm
2
. 

The end of the waveguide entering the cavity of the resonator was covered by a 

copper diaphragm of 0.1 mm of a thickness with an aperture of 1.8 mm in a 

diameter. This hole served as an antenna for exciting oscillations in it. For 

separate excitation of the E- and H-modes, two different antennas were used. In 

one of them, designed to excite the H-mode, the long side of the rectangular 

waveguide aperture was directed along the resonator axis. Another antenna that 

served to excite the E-mode had the same structure as the first antenna for 

exciting the H-mode, but differed in that the long side of the waveguide hole 

was oriented in a perpendicular direction. 

 Owing to the high conductivity of the aluminum walls of the resonator, 

the quality factor of the resonator in the millimeter range was sufficiently high, 
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of the order of 10
3
, for both the H- and E- modes of the oscillations. It was 

found that the widths of the resonance lines in the frequency spectrum differ 

noticeably not only for each mode, but also within a single mode. This can be 

explained as follows. The Q-factor of the resonator and, accordingly, the width 

of the resonance line depends on the ohmic losses in its walls, and also on the 

interaction between different modes, which is responsible for transferring 

energy between them. Therefore, the random irregularities of the lateral surface 

walls, which significantly affect this interaction, can explain the difference in 

the quality factor of the resonance lines. 

To register the spectrum of the resonator with singular perturbations, a 

wide millimeter wave range meter P2-65 was used, which was connected to a 

computer. This attachment allowed to record automatically the whole spectrum 

of the resonator in the specified frequency range with a sufficiently high 

accuracy and within a relatively short time (40 s). With its help, measurements 

were made of the characteristics of numerous spectral lines. The total number of 

observed resonances in this frequency range was more than 80. At the same 

time, the relative error in measuring the amplitude-frequency characteristic of 

the resonator did not exceed 10
-4

, and the quality factor of the resonant lines was 

10
-3

. A fragment of the resonator spectrum with singular inhomogeneities is 

shown in Fig. 2. When the number of inhomogeneities (the number of singular 

rods) changes, the shape of the resonator spectrum did not change qualitatively, 

and the number of resonance lines in it remained practically constant. At the 

same time, the statistics of the spectrum concerning the distribution of inter-

frequency intervals changed significantly. 

 

 
f, GHz 

 

Fig. 2. The fragment of the frequency spectrum of a cylindrical cavity resonator 

with singular perturbations. 

 

The probability of inter-frequency intervals distribution is close to the 

Poisson interval distribution for an empty resonator or with small number of 

inhomogeneities. But with an increase in the number of rods (singularities) the 

probability of inter-frequency intervals distribution is replaced by a Wigner 

distribution with a wide maximum of characteristic at a value of the average 

interval s close to 1.  
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In order to study the spectral properties of the resonator related to wave 

chaos in the frequency range 27 ... 38 GHz, the resonance frequencies and Q 

factors of the resonance lines were measured. On the basis of these data, the 

statistics of the inter-frequency intervals and the correlation of the spectral lines 

were obtained. The distribution of inter-frequency intervals allowed us to 

determine the statistical properties of the resonator spectrum with singular 

perturbations, to compare them with the properties that follow from the theory 

of random matrices. Measurements of the correlation of the inter-frequency 

intervals for the spectral lines made it possible to establish how much these lines 

are statistically related. 

Let us consider the results of measurements of the resonator spectrum 

for various singular perturbations, Fig. 3 and 4. First of all, we note that the 

probability distribution of inter-frequency intervals, depending on the average 

distance between the levels s, is rather irregular. It follows that the spectrum of a 

resonator with singular inhomogeneities is random, which is characteristic of a 

system with wave chaos. 

 

 
Fig. 3.  The histogram for probability distribution of inter-frequency intervals 

for the resonator spectrum, in which there are no singular perturbations: 1 is 

Poisson distribution of inter-frequency intervals; 2 is Wigner distribution. 

 

In the absence of singular perturbations, according to the theory, the 

probability distribution of inter-frequency intervals close to the Poisson interval 

distribution, ),exp()( ssP   should be observed when there is a large 

probability )(sP  density at small intervals s and subsequent exponential decay 

at .5.0s  
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Fig. 4 - Histograms for the resonator spectrum, with singular rods: the case a) - 6 

rods; b) - 8 rods; c) - 10 rods, Wigner distribution of  inter-frequency intervals 

(solid curve) 

 

With an increase in the number of rods in the resonator, the maximum 

probability in the distribution of inter-frequency intervals shifts toward larger 

.s This can be related to the fact that in this case we are dealing not with a 

purely chaotic, or purely regular, but with a mixed state of the system, when 

regular and chaotic motions coexist together. It is important that with increasing 

number of rods (singular perturbations), the curves approximating normalized 

histograms approach the Wigner distribution. This means that if the number of 
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perturbations increases, the state of the system of a quasi-optical cylindrical 

microwave resonator, when the perturbations accumulate, approaches to wave 

chaos. In other words, to achieve the state of wave chaos, a sufficiently strong 

singular perturbation is necessary. 

Along with the distribution of the inter-frequency intervals, we also 

built the spectral rigidity dependence of the resonator spectrum under the 

conditions of the developed wave chaos. The spectral rigidity of the spectrum is 

an important characteristic of the system from the point of view of wave chaos. 

To evaluate it, we use the function ),(3 L where L is the length of the spectral 

interval. The concept of a function )(3 L for studying the statistical properties of 

a random spectrum was introduced by Dyson and Mehta [13] and is used to 

measure the spectral rigidity of a finite sequence of spectral levels, which can be 

obtained experimentally or by numerical calculations. For such a sequence, a 

graph of a step function with a constant average distance between them is 

constructed, which, on average, approaches a straight line. 

The statistical dependence of the function ),(3 L  gives an estimate of 

the deviation of this function from the corresponding straight line. To construct 

the spectral rigidity curve, we used the spectrum processing technique described 

in [13]. Fig. 5 shows that the experimental dependence )(3 L is significantly 

different from the linear one, which is the feature of a system with a regular 

spectrum. With increasing L, the spectral rigidity curve goes to the plateau, 

which, along with the Wigner distribution of the inter-frequency intervals, is a 

sign of wave chaos. Data are also obtained on the correlation between inter-

frequency intervals, which are consistent with the theory of random matrices:  

C (1) = - 0.258 for a resonator under conditions of wave chaos and C (1) = - 

0.005 for the same resonator, but in the absence of singular perturbations, when 

the system is regular. 

 

 

 
 

Fig. 5. Spectral stiffness curve )(3 L for a resonator with a H-mode of 

oscillations under conditions of wave chaos (10 rods-singular perturbations). L 
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is the length of the spectral interval for calculating the spectral rigidity; number 

1 denotes the regular integrable) system )(3 L = L / 15; 2 is the experimental 

data; 3 is the spectral rigidity function for a system corresponding to a Gaussian 

orthogonal ensemble, 00687.0ln)/1()( 2
3  LL  [14]. 

 

 

Conclusions 
 

 

The appearance of wave chaos has been studied experimentally in a quasi-

optical cylindrical cavity resonator under the influence of singular perturbations 

on microwaves. Such perturbations were created in the resonator with the help 

of thin metal rods inserted into it. It is established that the perturbations cause 

strong changes in the statistical properties of the resonator spectrum. The 

regular spectrum of the resonator, which has a Poisson distribution of the inter-

frequency intervals, under the influence of singular perturbations, is transformed 

into a Wigner spectrum distribution, which corresponds to the wave chaos. To 

implement such a transformation, it is necessary that the total singular 

perturbation be large enough for complete chaotization of the resonator 

spectrum. We have studied the main spectral properties of the resonator with 

singular perturbations such as the distribution of inter-frequency intervals, the 

spectral rigidity, and the correlation between the spectral lines under the 

conditions of wave chaos. Thus, at the singular perturbations increase in the 

resonator, the spectrum of the spectrum becomes randomized and the signs of 

wave chaos appear. 
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