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Abstract. The analysis of chaos role in the modeling the phase transition kinetics 

(percolation model, Ising’s model, a model of melting nanoparticles) was shown. 

 
It was discovered and quantitatively described the role of scale in these phase transitions 

(PT).  On an example of the stochastic simulation algorithm of percolation it was shown 

that the final measure models is a number of features that define the region's large-scale 

constant L. Thus, with decreasing L: 
• percolation threshold P* increases; 

• region scattering (band phase transition) increases; 

• fractal dimension of nano-object is reduced. 

 
The quantitative relationships of these parameters on a large-scale field constant L were 

established. It is shown that the probability of connecting cluster well described by 

Fermi-Dirac-Grabar distribution: 

W (L) = 1 / (1 + exp ((P*-P) / L)). 

A functional dependence of threshold a percolation P * from the fractal dimension of the 

space D (Cartesian approach prof. Grabar) was realised: 

P * = 1 - ln ((D + 1) / 2) 

Keywords: Chaos, Phase transitions, Percolation, Percolation threshold, Fractal 
dimension, The clipping cluster. 
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1. Introduction 
 

Simulation of percolation is used for quantitative studies of phase transitions 

and the study of nano-objects properties. Usually, phase transition means the 

instant change of system state with little change in the control parameters 

(Fig.1). Indeed, in percolation problems with the size of the area L  ∞ holds 

kinetics such as Fig. 1. But more often in the researches of real systems have to 

take place with finite fields where the kinetics of the phase transition is smeared 

in time and space (Fig. 2), and this requires further study. 

 

 
 

Fig. 1. The phase transition as a critical 
event 

Fig. 2. The phase transition is smeared in 
time kinetic process 

 

 

 

2. Stochastic modeling percolation on finite fields 
 

Modern achievements of percolation theory are widely used in materials, 

electrical conductivity, filtration theory, chemistry, biochemistry, virology, 

physics of strength and reliability of structures, information models, models of 

manipulation of consciousness, etc. [1-6]. 

 

The availability of powerful computers and advanced algorithms contribute to 

the further expansion of interest in the problem of percolation in a variety of 

areas. However, since such problems connecting the clusters modeling tasks are 

D - dimensional combinatorics, the theoretical analysis of all possible 

strumming even for two-dimensional grid of 5 × 5 contains ~ 25! ~ 10
25

 options, 

and, of course, is available today are limited to numerical methods. At the same 

time the task 5 × 5 or 50 × 50 do not have much value to practical problems of 

Strength Physics heterogeneous structures, materials science, nanotechnology, 

conductivity, meteorology, communication and the like. 

 

On the other hand, the accumulation of a significant amount of numerical 

simulation results for large values of L should lead to serious theoretical 
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generalizations, and possibly to the theoretical analysis techniques, as the 

development method renormalization-group.  

 

Over the past 20 years we have developed a number of algorithms and made 

significant static percolation study [1-2] in a variety of tasks for 3 ≥ D ≥ 1.   

Fig. 3 shows the results of numerical simulation of percolation on a 3D finite 

areas to LE [5, 10, 20, 40, 80; 160] made by us to study the effect of scale on the 

kinetics of the phase transition. 

 

As can be seen from Fig.3, the kinetics of the phase transition depends 

essentially on the size of the lattice. And not only. The threshold value P*, at 

which the phase transition probability W = 0,5, also significantly varies with the 

size of the region L: with L decreasing P* values are increasing. Using 

Cartesian approximation prof. Grabar [2]: 

2

1
ln1*




D
P  (1) 

where P* - percolation threshold, D - fractal dimension of the space, it is easy to 

see that with decreasing L fractal dimension of finite-dimensional regions 

decreases! It is possible to establish that nanovolumes fractal dimension of the 

nanoparticles is less than three, may explain their unique properties. 

 
Fig.3. The possibility of connecting cluster W(P) in the 3-D problem percolation when n 

= 5, 10, 20; 40, 80; 160 and 106-107 repeats for each value of P. 
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In this blur FI decreased with increasing L. when L → ∞ phase transition 

kinetics very close to the stage of Fig. 1 when in passing through the percolation 

threshold, the value of p → p* occurrence probability cluster connecting 

changes almost discontinuously: 

maxmin WW 
 

In our case Wmin = 0; Wmax = 1. 

 

In [1-2, 5-6] to approximate the kinetics of AF on finite-dimensional areas we 

proposed a modified distribution of Fermi- Dirac-Grabar (FDG): 

)(

minmax
min

*1
PPL

e

WW
WW







 

For normalization of the above conditions (Wmin = 0; Wmax = 1) we have: 

)( *

1

1
PPLe

W


  (2) 

When L → ∞ equation (2) describes a singular "step" type function. In this case 

L was dependent on not only the slope FP (FP blur width) but also the 

percolation threshold P *. The presence of communication between the 

percolation threshold and the fractal dimension of the space D equation (1) 

allowed a new role treated percolation threshold P* in the AF. 

 

Fig.4 shows the percolation threshold on the size L of finite-dimensional region 

constructed according to Fig. 3: 

 

 
Fig. 4. The dependence of the percolation threshold of size P * L for 3D nanoparticles 
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As appears from Fig. 4, at L > 30 ... 50 virtually disappears zoom effect on the 

percolation threshold P*. 

 

 

3. Percolation model of Ferhlyuyst 

 

Let the probability of appearance of new interconnecting clusters W from 

probability P of the given cell at the predetermined finite-dimensional region 

described by the Malthus model: 

WL
dp

dW
  for    p < p* 

We define the boundary conditions: 

0
0




W
P    2

1

*




W
PP  

where: 

)( *

2

1
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
  

However, since the region is finite-dimensional (limited resources available 

cells), then use the approximation: 


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Separate the variables: 

Ldp
WW

dW


 )1(
 

where: 

CLp
W

W


1
ln  (4) 
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Substituting in (4) the boundary condition 
2

1

*




W
PP

 

then:  

01ln

2

1
1

2

1

ln * 



CLp  

from whence *LpC   

This allows you to: 

*
1

ln LpLp
W
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after transformation 
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Or, dividing by the numerator, we have: 

)( *1

1
ppL

e
W




  (5) 

Thus, we have received a modified version of the Fermi-Dirac distribution. It is 

worth noting that this type of probability distributions connecting clusters 

prof. Grabar was [1-2] in numerical studies of percolation. Similar dependences 

Aliyev [7] used in the study of the kinetics of degradation of phase transitions in 

semiconductors and objectives of high-temperature superconductivity, as well as 

in his writings used prof. B. Rolov [8]. 

 

  
Fig. 5. Simulation: L = 10, D = 3 Fig. 6. Simulation: L = 20, D = 3 
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Fig. 7. Simulation: L = 40, D = 3 Fig. 8. Simulation: L = 80, D = 3 

 

 
Fig. 9. Simulation: L = 160, D = 3 

 

Fig. 5-9 shows the results of numerical simulation results of the approximation 

of percolation on a 3D Cartesian areas when L = 10; 20; 40, 80; 160, 

respectively, relation (5) into the linearized coordinates: 









 1

1
ln

1*

WL
PP  

High values of the correlation coefficient (r > 0,99) suggest that the model (6) 

adequately describes the kinetics of W(P) - the probability of connecting cluster 

on finite field in a Cartesian partition. It is easy to see that the solution (5) is a 

variant of the modified Ferhlyuyst model. It is known that the model Ferhlyuyst 

worked well in problems of population dynamics is in resource-limited settings. 

 

The resulting distribution function W (p) (5) (blurring function percolation 

phase transition) compared with an accuracy of a Riemann integral (Fig.10) for 
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the approximation precision of computer simulations (106-107 repeats) 

occurrence joining the cluster. 

 

As can be seen from Fig. 5-9, we can speak of the equality of data fitting results 

as a function of (5), and the Riemann integral (integral of the normal 

distribution function (6): 

dx
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Fig. 10a. Riemann integral (normal 

distribution) for 1;0*  xх  

Fig. 10b. Approximation Riemann 
integral FDG distribution (in the range of 

values of Z = [- 5, + 5]) 

 

However, for equal values of the reliability forecast (5) has advantages over (6): 

 It has a simple and clear physical interpretation; 

 easily differentiated and integrated by quadrature’s; 

 It does not require cumbersome numerical methods; 

 allowing when L → ∞ describe correctly even in the case of AF step (critical 

conditions). 

 

In addition, the use of statistics FDG (5) for the simulation of random events can 

explain the physical nature of the ubiquitous spread of normal distribution of 

random variables, treating it as a result of the internal competition of species in 

the problems of animate and inanimate nature in resource-limited settings. 

 

Fig. 11 shows the 3D fractal dimension of the nanoparticles on their size, 

obtained by processing of the numerical simulation results and Cartesian 

approach prof. Grabar (1). Depending on the Fig. 11 can be divided into two 

fundamentally different areas: 
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
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The L* value of the correlation radius we called percolation. For D ~ 3 

30...50~*L  

Thus, for most metals lattice parameter ao ~ 2 ... 5 A0 , The characteristic size of 

the nanoparticles: 

AaLd 0

0* )250...60(  

which is close to the actual size of nanoparticles, and can give some explanation 

of the physical features of the behavior of nanomaterials. From this perspective, 

there is an increased interest in obtaining the function P*(L) from first 

principles, but now our efforts have not been successful. 

 

 
Fig.11. The fractal dimension of the nanocluster L × L × L 

 

When L ≥ L* a further increase in the field does not affect the fractal dimension 

of nanoclusters (Fig. 11). Thus, L = L*, the title correlation radius is a threshold 

finite field above which does not alter the kinetics of the process. The kinetics of 

the objects animate and inanimate nature is a large number of analogues: a 

critical mass of uranium in a nuclear reaction; the maximum number of friends - 

the number of Dunbar, the limiting density of population (PT breeding locusts, 

swarming bees etc.); flashpoint fuel, the critical mass of snow on a mountain 

slope, leading to avalanche etc. 

 

Fig.12 shows the dependence of the percolation threshold of the value of the 

width of the strip length L (a) and layer thickness L × L. Firstly, the graphics 

update data demonstrate percolation threshold P * with a smooth transition from 

D = 1 to D = 2 (a) and from D = 2 to D = 3 (b). Their comparison with Fig.4 and 

Fig. 11 shows the kinetics of similarity. Secondly, the presence of dependencies 
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and Fig. 12 Cartesian approximation prof. Grabar (1) enable for a given P* 

determine fractal dimension of any quasi-fractal. 
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Fig. 12a. R* changes depending on the 

layer thickness for space R1R2 for L = 
200, 400, 800, 10000; for L = 200, 

Р*(H) = 0,483H – 0.442 + 0.59 
 

Fig. 12b. R* changes depending on the 

layer thickness for the space from R2R3 

for L = 200, Р*(H) = 0,286H – 0.845 + 0.31 

Fig. 13-15 [9-12], the number depending on the melting point of metallic 

nanomaterials on the nanoparticle size and revealed similarity of these kinetics 

dependencies Fig. 4, Fig. 11 and Fig. 12: 

 

 
Fig. 13. The melting point of the aluminum nanoparticles on their radius  

(Recovered from Lai et al Applied Physics Letters, 1998, v. 72, 1098-1100). 
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Fig. 14 Dependence of the melting temperature of 

titanium nanoparticles of size and geometric shape 

(r - for the scope of - the radius of a cube - the rib, for 
the cone - the height of the cylinder - height) [10] 

 

Fig. 15. The dependence of the 

melting temperature of gold 

nanoparticles on their size [12] 

 

Conclusions 
 

1. Statistical modeling percolation confirm the accuracy of the Cartesian 

approach prof. Grabar of the functional dependence of the percolation 

threshold of the fractal dimension of the space: )2/)1ln((1*  DP
 

and 

discloses a deep physical relationship between fractal dimension space and 

percolation threshold in this space. 

2. Modeling of W(P) on finite models allows to show that for typical 

nanoparticles sizes of d ≤ (30 ... 50) a0 - their fractal dimension is less than 

three (D < 3), which allows a new approach to the explanation of 

phenomenal properties of nanoparticles and nanomaterials. 

3. The mathematical simplicity (5), the possibility of a quadrature analysis the 

forward and inverse problems of the statistical analysis is an additional 

incentive for application distribution FDG study both phase transition 

kinetics, and to study the problems of random variables, especially - in 

multidimensional problems and limited statistical samples. 

4. The similarity of the fractal dimension kinetics dependency of nanoparticle-

scale finite-dimensional region and the melting temperature of the scale of 

nanoparticles is a consequence of the fractal dimension on the melting 

temperature.  

5. Distribution of FDG is not only quantitatively describes the distribution of 

the random value close to the normal distribution, but also to explain the 

physical nature of this "normality", as a consequence of the growth of 

percolation clusters (or their equivalent) in the conditions of competition for 

scarce resources. 
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