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1 Department of Physics and Department of Information Systems and Technologies,
Yeditepe University, Ataşehir, İstanbul, Turkey
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(E-mail: engin.kandiran@gmail.com)

3 Department of Physics, Yeditepe University,Ataşehir,Istanbul, Turkey and The
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Abstract. The Matinyan Yang Mills Higgs System (abbreviated MYMH), a general-
ization of the truncations of the Toda Lattice, is a classical Hamiltonian system given
below. It is well known that the Toda lattice is, while its truncations are not inte-
grable [1]. Approximate integrals for the Toda system have been constructed. The
present Hamiltonian has similar algebraic terms with somewhat different coefficients
than the Toda truncations.
The MYMH system has been used for modelling the suppression of chaotic behavior
in the classical Yang Mills system. [2] This has become necessary in light of our re-
cent understanding on the stability of the universe and the mechanism for the onset
of instability. In recent work, this analysis was done by numerical simulation. In
this study, we present results for analyzing the possible candidates for approximately
conserved quantities (approximate invariants) in light of our work on the Toda trun-
cations. One possible approach is to start from the basic second order invariants,
the energy and the angular momentum component which cease to be invariant in the
higher orders. [3] The other approach would be to construct higher order invariants
by selecting suitable combinations constructed from the truncated expressions which
will have a higher degree Poisson bracket than the truncation order.
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1 Introduction

The Matinyan Yang Mills Higgs System (abbreviated MYMH) is a classical
Hamiltonian system given by:
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2
+
x2y2

2
+

1

2
g(x2 + y2)− 1

2
y2 +

1

8
x4 +

1

4
py4 (1)

Received: 14 April 2017 / Accepted: 10 March 2018
c© 2018 CMSIM ISSN 2241-0503



228 Hacinliyan et al.

The present Hamiltonian has similar algebraic terms with somewhat different
coefficients than the second and fourth order Toda truncations. The Higgs
term py4/4 is an important reason for the onset of stability.

ẋ = px (2a)

ẏ = py (2b)

ṗx = −xy2 − gx− 1

2
x3 (2c)

ṗy = −x2y − gy + y − py3 (2d)

where g, p ∈ <
Let us analyze the characteristic equation of the system in natural basis:

0 0 1 0
0 0 0 1

−y2 − g − 1
2x

2 0 0 0
0 −x2 − g + 1− py2 0 0


The corresponding eigenvalues found from characteristic equation are:

λ1,2 = ±
√
−g − py2 − x2 + 1 and λ3,4 = ±

√
−2g−x2−2y2

√
2

It is clear that two of the eigenvalues are purely imaginary, while the other
two start out as real ± values but as x2 and y2 increases due to the the positive
eigenvalue, they also become purely imaginary.The system thus transitions into
local stability.
In addition to the argument above, one can derive the Lyapunov function
1
2 (x2 + y2) with the approximate time derivative containing dominant large x
and y terms:
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To derive this relation start with ẍ and ÿ which are :

ẍ = −xy2 − gx− 1

2
x3 (4a)

ÿ = −x2y − gy + y − p

4
y3 (4b)

Then it is easy to calculate the quantity:

xẍ+ yÿ = −gx2 + (1− g)y2 − 1

2
x4 − p

4
y4 (5)

The time derivative is:

d(xẋ+ yẏ)

dt
= −gx2 + (1− g)y2 − 1
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In the case of x� 1 and y � 1:
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This shows that in that limit fourth power terms will dominate second power
terms. Since before this occurs, a stage where O(x2), O(y2) terms will be
the comparable to the fourth degree terms, an initial instability which will
transition to semi stability followed by asymptotic stability can be seen.

2 Finding Approximate Integrals of Hamiltonian System

The Hamiltonian H provides an integral of motion I (without explicit time
dependence) where the Hamiltonian H(x, y, px, py) becomes invariant under
the flow generated by the Hamilton equations of motions and therefore I and
H satisfies the Poisson bracket (henceforth referred to as PB) relation[I,H] = 0.

In this section, we consider the problem of finding approximately conserved
quantities of the example Hamiltonian system given in the introduction.

We use the condition that the PB of the partial sums of the Hamiltonian
truncated to given order n and partial sums of the truncations to order n of
invariant should give a PB that vanishes to degree at least n and if possible to
a higher degree l > n. If the bracket vanishes at a higher order, the truncation
may be looked upon as a better approximate integral. To this end, we evaluate
PBs of the partial sums for truncated YMH Hamiltonian to successive homoge-
neous orders and the analytic isolating integral given by Iij . We generate lists
of the first four order truncations for YMH Hamiltonian HT and the original
Toda third integral Iij where j term is considered to define the truncation order
given by HT .

HT (1) = 0 (8a)

HT (2) =
p2x + p2y
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HT (3) = 0 (8c)

HT (4) =
x2y2

2
+
x4
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+
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The corresponding truncations of Iii can be of interest as approximately con-
served quantities.

Iii(0) = 0 (9a)

Iii(2) = (pxy − xpy) (9b)

Iii(3) = 4(3pxx
2 − 6p2ypx − 6xypy + 2p3x − pxy) (9c)

Iii(4) = 24(pxy − xpy)(x2 + y2) (9d)

Notice that (pxy−xpy) is related to the rotational symmetry about the z-axis.

It is possible to construct a candidate third integral involving the linear
combination these quantities. This proposed integral is composed of only third
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degree, but not fourth degree terms. Furthermore, Iii(2) is not present in the
integral.
The terms (x2+y2) and (xpy−ypx) repeatedly appear in the Toda truncations.
[4], [5].We will see that (xpy − ypx) will be immaterial in YMH case. Similar
results covering the existence of approximate integral in Toda case ,for specific
values of parameters can be found in [1]. In order to generalize this to the
YMH system, we construct the following candidate third integral

1

2
(p2x + p2y) +

c1
2

(x2 + y2) + c3(pyx− pxy) + (c4x+ c5y)(x2 + y2) (10)

where, for the following specific values of the parameters
2c2 = c1, 4c1 = g2, g2 = 1, c3 = 0. this third integral ansatz has a zero third
degree Poisson Bracket with the Hamiltonian. However, the fourth order
degree terms present in the Poisson Bracket cannot be reduced by a similar
approach.

We generate the Poisson Brackets(PBs) of list elements of HT (j1) and
Iii(j2). According to the truncations of HT (j) and Iii(j) given above, the PBs
of the partial sums of equal terms up to fifth order truncations are obtained.

Then, we introduce definition of partial sums of HT (j) and Iii(j) given by:

Iiss(n) =

n∑
j=1

Iii(j) (11a)

HTs(n) =

n∑
j=1

HTs(n) (11b)

We use these above definitions to calculate the PB of the partial sums of the
list elements of truncated Toda Hamiltonian HT and the isolating integrals Iii
by defining:

{HTs(n); Iiis(n)} (12)
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where n = 1, . . . ,∞.

According to the truncations of HT (j) and Iii(j) given above, the PBs of
the partial sums of equal terms up to fifth order truncations are obtained as

[HTs(1), Iiis(1)] = 0 (13a)

[HTs(2), Iiis(2)] = 12xy (13b)

[HTs(3), Iiis(3)] = 4(−6gp2yx+ 6p2yx− 12gpypxy + 18pypxy + pypx

+ 6gp2xx− 6gy2x+ 6y2x− xyg + 3gx3 (13c)

[HTs(4), Iiis(4)] = 2(−12p2yy
2x+ 24p2yxy − 6p2yx

3 − 12gp2yx

− 24bpxpyy
3 − 24pxpyy

2) +O(5)terms (13d)

In the third order the PB gives third degree terms and fourth order term
gives fifth degree terms.If we recall that order n terms are homogeneous poly-
nomials of degree n, the fact that the PB of fourth order terms is fifth degree
is an indicator of an approximate conservation rule.

3 Simulation Results for YMH System

In this section, we have simulated the YMH System under the different set of
initial conditions.One can see the simulation results for the case where g=p=0
and initial conditions (x, y, px, py) = (1.0, 1.0, 1.0, 1.0) in Fig. 3.

Fig. 1. :Simulation of YMH System (g=p=0)

In Fig. 2, px(t) vs. x(t) is plotted for the same case.

Secondly, we have changed the parameter values p=1.5 and g=1.0 with the
same initial conditions and have obtained the following results given in Fig 3:
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Fig. 2. Px(t) vs x(t) (g=p=0)

Fig. 3. Simulation Results for g=2.0 and p=1.5
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In Fig. 3, px(t) vs. x(t) is plotted for the second case. In Fig 3, it can be

Fig. 4. Px(t) vs x(t)

seen that around the point (0,0) there is limit cycle which creates intuitions
that there will be a stable regime followed by a transition to chaos via period
doubling bifurcations for these parameter values. We analyze the simulation
values for investigating chaotic parameters. Firstly, we try to determine the
delay time. We used mutual information analysis to find delay time as 5. Then,

Fig. 5. Mutual Information Analysis

we find the embedding dimension of the system using False Nearest Neighbors
analysis. Plot of analysis is given Figure 6 and we found that the embedding
dimension is 2.
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Fig. 6. False Nearest Neighbors

Then, we applied the largest Lyapunov exponent test to see the chaotic
behavior of the system using delay time and embedding dimensions. We have
found the largest Lyapunov exponent as 0,0625.It is a positive value which
means there is a chaos on the system for the given parameter values

Fig. 7. Largest Lyapunov Exponent Test

4 Conclusion

The Matinyan-Yang Mills Higgs system starts from instability but reaches an
asymptotically semi stable state. This has been verified both by the asymptotic
behavior of the Lyapunov function and by numerical simulation. The present
study hence shows the dual role of the Higgs field by both initiating unstability
and transitioning to asymptotic stability.
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