
Chaotic Modeling and Simulation (CMSIM) 2: 163–173, 2020

Reservoir-computing machine-learning
algorithms as observers of spatio-temporal chaos

Lucas Illing and Noah Shofer

Department of Physics, Reed College, Portland, Oregon, 27708, USA (E-mail:
illing@reed.edu)

Abstract. We demonstrate that reservoir computing can be utilized as an observer
not only of chaotic temporal dynamics, such as those produced by the Rössler sys-
tem, but also for two-dimensional dynamics generated by an optoelectronic system.
Our optoelectronic experimental system consists of a spatial-light modulator with
self-feedback that generates complex two-dimensional spatio-temporal patterns. The
observer successfully cross-predicts the dynamics at all spatial locations based on
observed time series from a selected subset of locations. The observer consists of
reservoir computing subnetworks that receive input and predict local regions in space
only, making the proposed observer resource efficient.
Keywords: Optoelectronic Systems, Spatio-temporal Chaos, State Observer, Chaotic
modeling, Recurrent Neural Networks, Reservoir Computing, Simulation, Chaotic
simulation..

1 Introduction

A common problem in nonlinear dynamics is the observer problem; the re-
construction of all system variables from a smaller set of known variables.
Typically, observers are used if some but not all state variables of a dynamical
system of interest can be measured and a mathematical model is known; an
observer using the mathematical model may then be used to reconstruct all
dynamical state variables from the available time series. For nonlinear sys-
tems this task is generally nontrivial and a variety of estimation methods exist,
including Kalman filters [1], synchronization schemes [2], a path integral for-
malism [3], and adaptive observers [4–7].

Alternatively, black-box machine learning techniques can be used as ob-
servers. The data that is necessary to train such a machine learning algorithm
can either be generated by a mathematical model that captures the process
of interest, if such a model is available, or training data can be experimental
data, if data of all state variables is obtained through extensive measurements.
Either way, after training, neither model nor complete experimental data is
required for the reconstruction of dynamical variables from new observations.

Received: 30 March 2019 / Accepted: 15 January 2020
c© 2020 CMSIM ISSN 2241-0503

164 L. Illing and N. Shoefer

Neural networks have been very successful in a variety of tasks, including
tasks such as image classification and speech recognition [8]. One particular
subset of neural network architectures, known as reservoir computing, is es-
pecially suited for time-series data generated by dynamical systems and has
been used successfully for short-term prediction, attractor reconstruction, and
observation of chaotic systems.

Reservoir computing was first proposed independently by Jaeger [9] as echo
state networks and Maass et al. [10] as liquid state machines, before merging
into a single field. Reservoir computing belongs to the class of recurrent neu-
ronal networks, networks in which the internal nodes are connected recurrently
instead of in layers, which makes such networks a high dimensional (driven)
dynamical system [11]. The structure of the internal connections is chosen in-
dependent of the task and remains unaltered by the training process. For any
given task, the reservoir is given an input time series and dynamically gener-
ates an output. The task-specific desired output is achieved during a training
period by adjusting the post-processing function that maps the state of the
internal nodes to the output variables. Typically, the training is done by linear
regression. From a dynamical systems point of view, reservoir computers are
driven systems that exhibit generalized synchronization between the reservoir
internal dynamics and the dynamical system that generates the input data [12].

Recently, several authors have used reservoir computers as observers for
nonlinear dynamical systems [13,14], such as the Lorenz system, as well as
coupled-map-lattices with several variables per spatial location [15]. Never-
theless, observer inference of dynamical systems with two-dimensional spatial
extent is still a challenge.

In this paper, we first explore what aspects of reservoir computing are
necessary to successfully infer unobserved variables of a temporally chaotic
system, the Rössler system, and then present a method that uses a group
of reservoir computers to serve as a resource efficient observer of the two-
dimensional coupled-map-lattice dynamics of an optoelectronic system.

2 Spatio-temporal dynamics generated by an
optoelectronic system

We generate spatio-temporal dynamics with an experimental realization of a
coupled map lattice. In our experiment, a liquid-crystal spatial light modulator
is used to control, in a spatially resolved fashion, the polarization of a laser
beam and thereby modulate the beam’s irradiance. The coupling between
different spatial locations across the laser beam is achieved through electronic
feedback, in a fashion similar to previous work by Hagerstrom et al. [16].

The optoelectronic system that generates the coupled-map-lattice dynamics
is shown schematically in Fig. 1. A continuous-wave beam from a helium-neon
laser is used as light source. After controlling the size and brightness of the
beam, the polarization state of the light across the transverse beam profile
is controlled in a spatially resolved fashion by a combination of a λ/4 wave
plate and a spatial light modulator. The spatially resolved polarization state

Chaotic Modeling and Simulation (CMSIM) 2: 163–173, 2020 165

�

4
<latexit sha1_base64="DfbEqHO9Nt9kVKGBb4QNBNJr9CI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlqQZcFNy4r2Ac0oUwmk3boZBJmJkqJ/RQ3LhRx65e482+ctllo64GBwzn3cO+cIOVMacf5tkobm1vbO+Xdyt7+weGRXT3uqiSThHZIwhPZD7CinAna0Uxz2k8lxXHAaS+Y3Mz93gOViiXiXk9T6sd4JFjECNZGGtpVL5KY5B43kRDP8uZsaNecurMAWiduQWpQoD20v7wwIVlMhSYcKzVwnVT7OZaaEU5nFS9TNMVkgkd0YKjAMVV+vjh9hs6NEqIokeYJjRbq70SOY6WmcWAmY6zHatWbi/95g0xH137ORJppKshyUZRxpBM07wGFTFKi+dQQTCQztyIyxqYLbdqqmBLc1S+vk26j7l7WG3fNWqtR1FGGUziDC3DhClpwC23oAIFHeIZXeLOerBfr3fpYjpasInMCf2B9/gCMPZQi</latexit>

PBS
<latexit sha1_base64="qI99a7ahVf6PHkXX75qnITUcF30=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHbRRI9ELx4xyiPChswODUyYnd3M9BrJhr/w4kFjvPo33vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxhdT/3mI2gjInWP4xj8kA2U6AvO0EoPHYQnTGtXd5NuseSW3RnoMvEyUiIZat3iV6cX8SQEhVwyY9qeG6OfMo2CS5gUOomBmPERG0DbUsVCMH46u3hCT6zSo/1I21JIZ+rviZSFxozDwHaGDIdm0ZuK/3ntBPuXfipUnCAoPl/UTyTFiE7fpz2hgaMcW8K4FvZWyodMM442pIINwVt8eZk0KmXvrFy5PS9VK1kceXJEjskp8cgFqZIbUiN1wokiz+SVvDnGeXHenY95a87JZg7JHzifP5jqkNA=</latexit>

Computer
<latexit sha1_base64="Ji9Y+OJOVBR0s7mzPx+yzjR9Yls=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInspuFfRY6MVjBfsB7VKy6bQNTTZLkhXr0l/ixYMiXv0p3vw3Zts9aOuDgcd7M8zMC2POtPG8b6ewsbm1vVPcLe3tHxyW3aPjtpaJotCikkvVDYkGziJoGWY4dGMFRIQcOuG0kfmdB1CayejezGIIBBlHbMQoMVYauOW+gUeTNqSIEwNqPnArXtVbAK8TPycVlKM5cL/6Q0kTAZGhnGjd873YBClRhlEO81I/0RATOiVj6FkaEQE6SBeHz/G5VYZ4JJWtyOCF+nsiJULrmQhtpyBmole9TPzP6yVmdBOkLMqeiuhy0Sjh2EicpYCHTAE1fGYJoYrZWzGdEEWozUCXbAj+6svrpF2r+pfV2t1VpV7L4yiiU3SGLpCPrlEd3aImaiGKEvSMXtGb8+S8OO/Ox7K14OQzJ+gPnM8fjASTnQ==</latexit>

Camera
<latexit sha1_base64="iePrOIv1R2zw0BXCPLfQMsjSvVA=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8kXDxiIo8ENmR2GGDC7Ow600skG77DiweN8erHePNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY1+Z+a8K1EZF6wGnM/ZAOlRgIRtFKfhf5E6Y1GnJNZ71iyS27C5B14mWkBBnqveJXtx+xJOQKmaTGdDw3Rj+lGgWTfFboJobHlI3pkHcsVXaN8dPF0TNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOLj1U6HiBLliy0WDRBKMyDwB0heaM5RTSyjTwt5K2IhqytDmVLAheKsvr5NmpexdlSv316VqJYsjD2dwDpfgwQ1U4Q7q0AAGj/AMr/DmTJwX5935WLbmnGzmFP7A+fwBMTuSUg==</latexit>

SLM
<latexit sha1_base64="ljZ66i7BZBmWwRHSNRj4tH1gOE0=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DHgxYNCRPPAJITZSW8yZHZ2mekVw5K/8OJBEa/+jTf/xkmyB00saCiquunu8mMpDLrut7O0vLK6tp7byG9ube/sFvb26yZKNIcaj2Skmz4zIIWCGgqU0Iw1sNCX0PCHlxO/8QjaiEjd4yiGTsj6SgSCM7TSQxvhCdO765txt1B0S+4UdJF4GSmSDNVu4avdi3gSgkIumTEtz42xkzKNgksY59uJgZjxIetDy1LFQjCddHrxmB5bpUeDSNtSSKfq74mUhcaMQt92hgwHZt6biP95rQSDi04qVJwgKD5bFCSSYkQn79Oe0MBRjixhXAt7K+UDphlHG1LehuDNv7xI6uWSd1oq354VK+Usjhw5JEfkhHjknFTIFamSGuFEkWfySt4c47w4787HrHXJyWYOyB84nz+jnZDX</latexit>

I.C.
<latexit sha1_base64="cZ4IG4beS3sGZwhM3qEr0Y6JmNU=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgadmtih4Lveitgv2AdinZNNuGZpMlmRXL0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhYngBjzv2ymsrW9sbhW3Szu7e/sH5cOjllGppqxJlVC6ExLDBJesCRwE6ySakTgUrB2O6zO//ci04Uo+wCRhQUyGkkecErBStwfsCbI7t+5O++WK53pz4FXi56SCcjT65a/eQNE0ZhKoIMZ0fS+BICMaOBVsWuqlhiWEjsmQdS2VJGYmyOYnT/GZVQY4UtqWBDxXf09kJDZmEoe2MyYwMsveTPzP66YQ3QQZl0kKTNLFoigVGBSe/Y8HXDMKYmIJoZrbWzEdEU0o2JRKNgR/+eVV0qq6/oVbvb+s1K7yOIroBJ2ic+Sja1RDt6iBmogihZ7RK3pzwHlx3p2PRWvByWeO0R84nz/GipDg</latexit>Laser

<latexit sha1_base64="hf0gIrLXdU4wnQrstBWeYZZIusE=">AAAB83icbVA9SwNBEN2LXzF+RS1tFoNgFe6ioGXAxsIigvmA3BH2NpNkyd7esTsnhiN/w8ZCEVv/jJ3/xk1yhSY+GHi8N7M788JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqebQ5LGMdSdkBqRQ0ESBEjqJBhaFEtrh+Gbmtx9BGxGrB5wkEERsqMRAcIZW8n2EJ8zu7AN62itX3Ko7B10lXk4qJEejV/7y+zFPI1DIJTOm67kJBhnTKLiEaclPDSSMj9kQupYqFoEJsvnOU3pmlT4dxNqWQjpXf09kLDJmEoW2M2I4MsveTPzP66Y4uA4yoZIUQfHFR4NUUozpLADaFxo4yokljGthd6V8xDTjaGMq2RC85ZNXSatW9S6qtfvLSr2Wx1EkJ+SUnBOPXJE6uSUN0iScJOSZvJI3J3VenHfnY9FacPKZY/IHzucPi0SR9g==</latexit>

B.E.
<latexit sha1_base64="lD4bzLcz0cavExTCiKP/zI7C//Q=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgadmtih6LInisYD9gu5Rsmrah2WRJZsWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5USK4Ac/7dgorq2vrG8XN0tb2zu5eef+gaVSqKWtQJZRuR8QwwSVrAAfB2olmJI4Ea0Wjm6nfemTacCUfYJywMCYDyfucErBS0AH2BNm1e+tOuuWK53oz4GXi56SCctS75a9OT9E0ZhKoIMYEvpdAmBENnAo2KXVSwxJCR2TAAksliZkJs9nJE3xilR7uK21LAp6pvycyEhszjiPbGRMYmkVvKv7nBSn0r8KMyyQFJul8UT8VGBSe/o97XDMKYmwJoZrbWzEdEk0o2JRKNgR/8eVl0qy6/plbvT+v1C7yOIroCB2jU+SjS1RDd6iOGogihZ7RK3pzwHlx3p2PeWvByWcO0R84nz++3pDb</latexit>

I.O.
<latexit sha1_base64="i1JzGvbpKYjNQJIEQJTW9dWacfU=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgadmtih4LXvRkBfsB26Vk07QNzSZLMiuWpT/DiwdFvPprvPlvTNs9aOuDgcd7M8zMixLBDXjet1NYWV1b3yhulra2d3b3yvsHTaNSTVmDKqF0OyKGCS5ZAzgI1k40I3EkWCsaXU/91iPThiv5AOOEhTEZSN7nlICVgg6wJ8hu3Tt30i1XPNebAS8TPycVlKPeLX91eoqmMZNABTEm8L0Ewoxo4FSwSamTGpYQOiIDFlgqScxMmM1OnuATq/RwX2lbEvBM/T2RkdiYcRzZzpjA0Cx6U/E/L0ihfxVmXCYpMEnni/qpwKDw9H/c45pREGNLCNXc3orpkGhCwaZUsiH4iy8vk2bV9c/c6v15pXaRx1FER+gYnSIfXaIaukF11EAUKfSMXtGbA86L8+58zFsLTj5ziP7A+fwB2NKQ7A==</latexit>

Fig. 1. Schematic of the optoelectronically experiment that generates lattice dynam-
ics. The light source is a helium neon laser. The beam size and brightness are set
by a beam expander (B.E.) and an irradiance controller (I.C.). The polarization is
set by a combination of a quarter-wave plate (λ/4) that is oriented at 45◦ degree
with respect to the linear polarization of the incoming light and a 16-bit Meadowlark
Optics liquid-crystal spatial-light-modulator (SLM) with 512 × 512 pixels and a full
2π phase stroke. The beam then passes through a polarizing beam splitter (PBS)
and imaging optics (I.O.) that images the front face of the spatial light modulator
onto the imaging sensor of a Thorlabs DCC1545M monochrome camera. The image
is read real-time by a computer and the computer sets the phase shift of the SLM
pixels.

is then converted to a spatially resolved irradiance variation by a polarizing
beam splitter that selects one linear polarization and passes it on to a camera
that records the irradiance.

To create the two-dimensional coupled-map-lattice sites, the center region
of both the spatial light modulator and the camera are partitioned into an
16× 16 array of square regions. In our setup, each of the 16× 16 lattice sites
corresponds to a 10 × 10 pixel patch on the spatial light modulator, which is
sharply imaged onto a corresponding 23 × 23 pixel patch on the camera. At
each iteration, t, the spatial-light-modulator phase-shift of each pixel in each
one of the 16× 16 patches is set to some phase φti,j (i, j = 1, 2, . . . , 16) and the
polarization optics then results in the following nonlinear relationship between
this phase-shift and the irradiance I that is detected by the camera,

I(φti,j) =
1

2

(
1− cos(φti,j)

)
. (1)

An example of an image of a 6× 6 lattice, as seen by the camera, is shown in
Fig. 2. The irradiance I(φti,j) is calculated from such an image by averaging
the 0-255 grayscale values of the 23× 23 camera pixels that comprise a single
lattice site.

Finally, to implement lattice dynamics, the spatial-light-modulator phase-
shift at iteration t + 1 is obtained from on the detected irradiances at time
t. Lattice sites are coupled to their own state and those of neighbors by the

166 L. Illing and N. Shoefer
46 Chapter 6. Coupled Map Lattices

Figure 6.4: A snapshot of the experimental lattice. This lattice was initialized so that
each node was randomly set to a value between 0 and 2⇡.

R. Each lattice was initialized such that the starting phase shift of each node was
randomly assigned from a uniform distribution on [0, 2⇡). The algorithm used for
both the 1-dimensional lattices and 2-dimensional lattices can be seen in Appendix
B.

6.3.2 Experimental Implementation

The setup used to generate CMLs experimentally is shown in Fig. 6.3. There were
three primary components used to generate the experimental CMLs: beam generation
and clean-up, intensity modulation, and imaging/update computation. The general
scheme of the experimental setup was to use a spatial light modulator (SLM) in
combination with other optics to modulate the intensity of a laser beam across its
cross-sectional area, which is treated as a lattice. The irradiance of the light at
di↵erent nodes in the “lattice” could then be recorded with a camera, and a new
phase shift could be applied by the SLM based on the measured irradiance.

The beam generation and clean-up stage of the experiment was designed to pro-
duce a vertically polarized beam that had close to uniform irradiance over a large
region of its cross-sectional area. This stage consisted of a 632.8 nm HeNe laser as
the light source, a beam expander, a �/2 plate, a polarizing beam splitter, and an-
other �/2 plate. Additionally, there is an iris just outside of the output coupler for the
laser, and at the focal point of the beam expander. The beam emitted from the laser
is reflected by mirrors through the beam expander, where it is expanded roughly 8
times. The expanded beam then passes through the first �/2 plate, which rotates the
linearly polarized laser light to some angle. When the light then passes through the
polarizing beam splitter, the vertical component of the light is discarded, and only
the horizontally polarized component of the beam is passed on. The combination of

Fig. 2. An image of an 6× 6 experimental lattice as seen by the camera in the laser
cross-section. Each lattice site is randomly set to a phase shift between 0 and 2π.

update equation

φt+1
i,j = 2πα

I(φti,j) +

ε

4R2

R∑

k,l=−R

[
I(φti+k,j+l)− I(φti,j)

]

 , (2)

where α is an overall constant that controls the temporal dynamics of the
uncoupled lattice sites, ε is the coupling strength, and R is the radius about the
i, jth site that are coupled to the i, jth site. We use fixed boundary conditions,
as these provided more interesting dynamics on a smaller lattice size.

A wide variety of dynamics were observed, depending on the chosen param-
eter values, including various steady state patterns and period-two patterns as
well as highly complex dynamically evolving patterns that were without any
discernible spatial correlations between neighboring lattice sites. The coupled-
lattice dynamics used in this paper for the purpose of testing the local observer
reservoir computers were created using parameter values of α = 0.5, ε = 1, and
R = 3. The resulting dynamics was in an intermediate regime of complexity, in
which there were clearly discernible spatial structures with length scales that
extended across several lattice sites and that evolved in time. Snapshots of the
resulting dynamics are depicted in Fig. 3.

The pattern-evolution continued over the entire experiment (tens of thou-
sands of cycles), i.e. the dynamics was either non-transient or corresponded to
an extremely long transient. We checked that the spatio-temporal evolution
was non-periodic on a short timescale (tens of cycles). Visually it had all the
hallmarks of spatio-temporal chaos. We expect such spatio-temporal chaos to
be typical for this system because numeric investigations of the coupled map
lattice Eq. (2) have found large parameter regions of chaos [16].

3 Reservoir Computing

3.1 The reservoir computing paradigm

Reservoir computing is a technique used to simplify the training and implemen-
tation of recurrent neural networks. The primary difference between reservoir
computing and other recurrent neural networks is the training method. In-
stead of using error backpropagation to adjust the connection weights between

Chaotic Modeling and Simulation (CMSIM) 2: 163–173, 2020 167

Fig. 3. Snapshots of spatio-temporal dynamics
2 Chapter 1. The Basics of Reservoir Computing

x(t)

u(t) y(t)

Figure 1.1: A cartoon diagram of a RC-type RNN.

such as tanh(·), that saturates for large values. The time-dependent output y(t) of
the RNN is given by [1, 2]:

y(t + 1) = f out[Wout(x(t + 1),u(t + 1)]) (1.3)

where f out is some function applied individually to the elements of output vector and
[·, ·] denotes concatenation of two vectors. While sometimes f out is some nonlinear
function, many simple networks (including the networks used in this thesis), have
f out = 1. In this case, the output from the network is simply y(t + 1) = Wout[x(t +
1),u(t + 1)].

1.2 Training Recurrent Neural Networks

Similarly to FFNNs, RNNs are trained by updating the connection weights between
input, output, and network nodes. The goal of training is ultimately to minimize the
error between the output generated by the RNN, y, and the target output y. There
are a variety of error functions that can be used, but commonly employed is the root
mean square error (RMSE), given by [4]:

E(y,y) =
1

L

LX

i=1

vuut 1

T

TX

n=1

(yi(n) � yi(n))2 (1.4)

where E(·, ·) is the error between two signals, T is the total number of time steps over
which the error is computed, and y designates the “target” signal vector to which the
network output is being trained. Note also that the first sum is over all L dimensions
of the output. Sometimes, however, the RMSE is computed individually for each
dimension of the output, in which case the first sum is absent.

Fig. 4. General structure of reservoir computing: an input vector u(t) ∈ RK is
mapped by a weight matrix Win (represented by blue arrows) to the reservoir state
vector x(t) ∈ RN , which is, in turn, mapped to the output vector y(t) ∈ RL by the
weight matrix Wout (represented by green arrows). Internal connections within the
reservoir (red arrows) are specified by W.

internal nodes, only the output weights are adjusted. Not only does this allow
quick training of relatively large recurrent neural networks, but it can achieve
a high degree of accuracy for many tasks [17].

As shown in Fig. 4, a reservoir computing architecture has three main layers:
the input layer, the internal nodes that form the reservoir, and the output layer.
The input is given by a vector u(t) ∈ RK , which is mapped onto the internal
reservoir nodes by an input weight matrix Win ∈ RN×K . The internal node
dynamics is described by a state vector x(t) ∈ RN and the reservoir network
structure is set by the connection matrix W∈ RN×N . The reservoir computing
output vector is y(t) ∈ RL and is obtained from the state vector x(t) via the
output weight matrix Wout ∈ RL×N .

The internal nodes each have a one-dimensional update equation with a
nonlinear activation function, which we chose in accordance with previous work
on reservoir computing [11,13,18–20] as:

x(t+ 1) = tanh (Win u(t) + Wx(t) + ξ) , (3)

where ξ is a constant bias term. The constant bias term serves to push the
tanh activation function into the nonlinear or saturation regimes [13]. A small
constant noise term ν, typically in the range of ν = 0.001 → 0.01, is often

168 L. Illing and N. Shoefer

added to the “input” during output weight training. The noise term helps to
“immunize” the reservoir against unexpected changes in the input u(t), since
it helps prevent overfitting to a specific dataset (see [9] for details). Although
it is sometimes helpful to use both linear and nonlinear output functions, for
this work only linear output is used. As such, the output equation is:

y(t+ 1) = Wout x(t+ 1). (4)

The three weight matrices are generated as follows:
We implement reservoir computing using python 3.6. Internal node con-

nection weights W are generated using NetworkX’s [21] gnp_random_graph()
function. This function creates an N × N adjacency matrix with a specified
density dW . The adjacency matrix specifies whether two nodes are connected
by assigning W̃i,j = 1 if the ith and jth nodes are connected and W̃i,j = 0
if they are not. However, since in general we want both positive and nega-
tive connection weights, we rescale each nonzero entry in W̃ by multiplying it
by a random number drawn from the uniform distribution (−σW , σW), where
σW = 1 in this work. All random matrix entries are generated using the
Python Random library function uniform(), while p is generated using the
Numpy library function random.random(). The matrix W̃ is then rescaled to
the user-specified spectral radius ρ by [18]

W =
ρ

|λmax|
W̃, (5)

where W̃ is the initial unscaled connection matrix, λmax is the greatest mag-
nitude eigenvalue of W̃, and W is the rescaled connection matrix, which now
has a largest eigenvalue of magnitude ρ.

To create Win, we first generate an all-zero matrix of the correct size and
specify a density din. Then, for each i, j-entry in the connection matrix, a
random number p is drawn. If p < din, a random number from (−σin, σin) is
placed in the entry. Otherwise, the entry is left as 0. Usually σin ∈ (0, 1), with
different values of σin corresponding to more or less driving of the reservoir by
the input.

The output weight matrix Wout is the only matrix that is input dependent.
It is determined during training, which is achieved using a method called ridge
regression. When using this training method, the reservoir is provided with an
input vector u for a training phase of τ time steps. Also given is a corresponding
output target ytarget. The output matrix Wout is then given by [11]:

Wout = TTM
(
MTM + βI

)−1
(6)

where β is the ridge regression parameter, I is the N × N identity matrix,
M ∈ Rτ×N is the reservoir internal state collecting matrix, which consists of
state vectors x from τ time steps, and T ∈ Rτ×L is the teacher matrix, which
consists of the target outputs.

3.2 Observer of numerical data: Temporal chaos

To start, we first test the performance of reservoir computing as a black-box
observer of nonlinear dynamical systems on the example of the chaotic Rössler

Chaotic Modeling and Simulation (CMSIM) 2: 163–173, 2020 16924 Chapter 4. Reservoir Computers as Observers: Linear vs. Nonlinear Reservoirs

(a) (b)

(c)

Figure 4.1: Linearly generated Rössler system components. The solid blue line is the
trace generated by the RC, while the dashed red line is the actual component of the
attractor. (a) The ỹ and z̃ components generated by x̃. (b) The x̃ and z̃ components
generated by ỹ. Note that the solid blue line is under the dashed red line, but can’t
be seen since the RC trace and actual components are close together. (c) The x̃ and
ỹ components generated by z̃.

RMSE, along with standard deviation, for each generated component is shown in
Table 4.2. Note that the standard deviation was computed from 100 instantiations
of the reservoir. Example traces for the components generated by driving the RC
with each of x̃, ỹ, and z̃ are shown in Fig. 4.1. These were generated using the same
network parameters as were used to calculate the average RMSE.

It can be seen clearly from both the average RMSE and the example traces that
both the x̃ and z̃ components of the Rössler attractor can be generated to high
accuracy by driving the linear reservoir with ỹ. To some extent, a linear reservoir can
also generate ỹ and z̃ when driven by x̃, but not nearly as accurately, and it can not
generate x̃ or ỹ from z̃. This is perhaps surprising, especially due to the qualitative

Table 4.2: RMSE for linear RC generated Rössler attractor components.

Driving Component x̃ RMSE ỹ RMSE z̃ RMSE

x̃ N/A 0.306 ± 0.004 0.340 ± 0.004
ỹ (2 ± 1.6)⇥ 10�4 N/A (8.4 ± 0.2)⇥ 10�4

z̃ 0.5878 ± 0.0006 0.796 ± 0.004 N/A

Fig. 5. Output generated, after training, by a reservoir computing structure with
purely linear activation functions in its reservoir. The solid blue line is the reservoir
computing output, while the dashed red line is the actual value that is obtained by
numeric integration of the Rössler equation. (a) Variables ỹ and z̃ are inferred from
input x̃. (b) Variables x̃ and z̃ are inferred from input ỹ. Note that the solid blue
line is under the dashed red line, but the lines are nearly indistinguishable due to the
excellent reservoir computing performance.

system

ẋ = −y − z (7a)

ẏ = x+ a y (7b)

ż = b+ z(x− c) (7c)

with parameter values of a = 0.5, b = 2.0, and c = 4.0.
We numerically integrate Eq. (7) and provide one of the three variables as

input. The other two variables are used, during the training phase, as the target
outputs that the reservoir computing structure is trained to reproduce. We then
continue to integrate, drive the system with one of the three variables and test
how close the reservoir-computing-generated output is to the two unobserved
variables. This is done 100 times for each variable, to minimize the effect of
any individual reservoir characteristics and to obtain a variance estimate.

To facilitate mutual comparison between the three variables, we use unit
scaled versions of x, y, and z, which we denote as x̃, ỹ, and z̃. For example, x̃
is defined by

x̃(t) =
x(t)− 〈x(t)〉√
〈[x(t)− 〈x(t)〉]2〉

, (8)

where 〈·〉 denotes the time average.
Reservoir computers have successfully been used as observers for the Rössler

nonlinear system [12] and our results confirm this finding. The trained reservoir
computers do act as observers and do successfully cross-predict variables that
are not given as input.

To gain further insight into properties of the reservoir computing approach
that leads to successful black-box observers, we investigated the tanh activation
function in Eq. (3). This sigmoidal activation function of the reservoir nodes
is both nonlinear and saturates for large inputs; both properties are believed

170 L. Illing and N. Shoefer

Table 1. Root mean square error (RMSE) of the reservoir-computing-generated un-
observed variables compared to the true output for the Rössler system.

Activation Function x̃ RMSE ỹ RMSE z̃ RMSE

Quadratic input 0.004± 0.002 0.002± 0.001
Linear input 0.307± 0.003 0.342± 0.004

Quadratic 0.003± 0.002 input 0.003± 0.001
Linear (2.0± 1.4)× 10−4 input (8.4± 0.2)× 10−4

to be important. The linearity of this activation function for small input sig-
nals is thought to be important for memory, and there is a trade-off between
nonlinearity and memory [22]. To test which of these aspects is essential, we
replace the tanh function by the following second-order Taylor expansion,

tanh(1 + x) ≈ 0.76159 + 0.41997x− 0.31985x2. (9)

Keeping terms to quadratic order yields an activation function that retains
both a linear and nonlinear part but has no saturation. Dropping the quadratic
term yields a purely linear activation function that has neither nonlinearity nor
saturation.

Performing observation tests, as described above, for a reservoir of 250
nodes, we find that saturation is essential when the reservoir-computing-structure
is driven by the z̃-variable of the Rössler system. For our implementation of
reservoir computing, the output was found to be unstable for both the linear
and quadratic reservoir in the sense that the output grows without bound.

In contrast, bounded output is obtained when the reservoir computing al-
gorithm is driven by the x̃ or ỹ variables of the Rössler system (see Fig. 5). The
root mean square error is used as a measure of the deviation of the reservoir
output from the truth, i.e. the values obtained by direct integration of Eq. (7).

As seen in Tab. 1, if x̃ is used to drive the reservoir, the quadratic nonlinear
activation function performs well in cross-predicting both the ỹ and z̃ variables,
whereas the linear activation function has an error that is two order of mag-
nitude greater, indicating that the nonlinearity is important but saturation is
not a necessary ingredient.

More interestingly, when ỹ is used as input, the linear activation function
outperforms the quadratic nonlinear reservoir in inferring both x̃ and z̃. This
indicates that memory alone is sufficient and neither nonlinearity nor satura-
tion is required. There apparently exists some linear mapping from ỹ to the
unmeasured variables.

3.3 Observer of experimental data: Spatio-temporal chaos and
local modeling

The observation task becomes much more difficult when one goes beyond purely
temporal chaos, such as in the Rössler system, and considers spatio-temporal
dynamics. Indeed, the authors are not aware of any work where reservoir

Chaotic Modeling and Simulation (CMSIM) 2: 163–173, 2020 171

Fig. 6. A representation of the local observer scheme. Each local observer receives
4 (or 2) observed nodes from each 4 × 4 block of lattice sites. Note that the actual
observer scheme uses 16 local observers. Only 4 are shown here for clarity.

computing is used to cross-predict spatio-temporally chaotic dynamics of un-
observed spatial sites from measurements at a few selected sites in systems of
spatial dimensions larger one. We, also, where unsuccessful with this obser-
vation task for the optoelectronic coupled-map-lattice dynamics of our exper-
imental system when using a single reservoir. We speculate that this may be
due to the unfavorable scaling of the necessary reservoir size with the dimension
and complexity of the dynamical system that one tries to observe.

Taking inspiration from convolutional neural networks, we, therefore, use
several independent reservoir computing structures that act in tandem as the
observer of the spatio-temporal lattice dynamics. Each reservoir computing
structure is given 4 (or 2) coupled-map-lattice sites as an input and produces
as output the dynamics of a 4 × 4 patch of coupled-map-lattice sites. That
is, of the 16 lattice sites in a 4 × 4 patch the dynamics of 12 (or 14) sites is
completely unknown and has to be inferred, while the dynamics of 4 (or 2)
“observer” sites is known from measurements. The inferred sites are spatially
adjacent to the “observer” sites, which means that each independent reservoir
computing structure acts as a local observer. Since the coupled-map-lattice is
only locally connected, this strategy is presumably resource efficient because the
relevant dynamics for inference of a given site is less likely to be overwhelmed
by irrelevant dynamics of distant sites. Additionally, reducing the number of
variables that have to be inferred means that the number of internal nodes in
the reservoir can be chosen much lower, again increasing efficiency.

A cartoon diagram of the local observer reservoir setup is shown in Fig. 6.
The coupled map lattice used has 16× 16 nodes, so we use 16 individual reser-
voirs in tandem as our complete observer. Each reservoir computer is instanti-
ated independently, meaning each has a unique set of matrices W, Win, and,
after training, Wout.

To test the effectiveness the local observers, iterations of the coupled-lattice-
map experiment are collected, the first 2000 of which are discarded to get rid
of transients and the next 18000 coupled-lattice-map iterations are used as the
training dataset. Each individual local-observer reservoir-computing-structure
is supplied with the dynamics of the appropriate subset of input sites and
output sites. The training returns Wout for each local observer.

172 L. Illing and N. Shoefer

Table 2. Network parameters for each local RC.

Parameter Value

Reservoir size (N) 1000
Spectral radius (ρ) 1.1

Reservoir density (dW) 0.1
Input density (din) 1.0
Input radius (σin) 0.95

Bias (ξ) 1
Training length (τ) 18,000

Regularization parameter (β) 10−2

After training, which is done off-line, the coupled-lattice-map experiment is
run with the last iteration of the training dynamics as the first iteration of the
data run. At each iteration, the state of the “observer” site is passed to the
respective local observer, and the trained local observers infer the dynamics of
the unobserved lattice sites.

For the 4-observer per block configuration, we found a root mean squared
error of 0.067±0.006, while for the 2-observer per block configuration, we found
a root mean squared error of 0.109±0.007. Both errors were calculated from 500
iterations of lattice dynamics, and averaged over 10 runs. Each run was trained
using the same data, and the lattice dynamics used, evolved independently for
each run from the last iteration of the training dataset. As expected, the
performance is better for the 4-observer per block configuration, but in either
configuration unobserved spatiotemporally complex dynamics are inferred with
good accuracy.

4 Conclusion

This paper details a novel reservoir computing method by which relatively
small reservoirs can be used in assembly to infer unobserved dynamics of a
two-dimensional spatio-temporally chaotic coupled-map-lattice. Depending on
the number of supplied observer nodes, the inference of the dynamics is more
or less robust. An ongoing direction of research is to quantify the degree of
model sufficiency and develop a sound statistical procedure that can be used
to test for unmodeled dynamics.

References

1. E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza,
E. Kalnay, and D. J. Patil, A local ensemble Kalman filter for atmospheric data
assimilation, Tellus A 56, 415–428 (2004).

2. D. R. Creveling, P. E. Gill, and H. D. Abarbanel, State and parameter estimation in
nonlinear systems as an optimal tracking problem, Phys. Lett. A 372, 2640–2644
(2008).

3. J. C. Quinn and H. Abarbanel, State and parameter estimation using Monte Carlo
evaluation of path integrals, Q. J. R. Meteorol. Soc. 136, 1855 - 1867 (2010).

Chaotic Modeling and Simulation (CMSIM) 2: 163–173, 2020 173

4. Q. H. Zhang, Adaptive observer for multiple-input-multiple-output (MIMO) linear
time-varying systems, IEEE T. Automat. Contr. 47, 525–529 (2002).

5. B. R. Andrievskii, V. O. Nikiforov, and A. L. Fradkov, Adaptive observer-based
synchronization of the nonlinear nonpassifiable systems, Automat. Rem. Contr.
68, 1186–1200 (2007).

6. D. C. Yu and U. Parlitz, Estimating parameters by autosynchronization with dy-
namics restrictions, Phys. Rev. E 77, 066221-7 (2008).

7. L. Illing, A. M. Saunders, and D. Hahs, Multi-parameter identification from scalar
time series generated by a Malkus-Lorenz water wheel, Chaos 22, 013127 (2012).

8. Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436 (2015).
9. H. Jaeger, The “Echo State” Approach to Analysing and Training Recurrent Neural

Networks, (2001).
10. W. Maass, T. Natschläger, and H. Markram, Real-Time Computing Without Sta-

ble States: A New Framework for Neural Computation Based on Perturbations,
Neural Comp. 14, 2531–2560 (2002).

11. M. Lukos̆evic̆ius and H. Jaeger, Reservoir computing approaches to recurrent
neural network training, Comput. Sci. Rev. 3, 127–149 (2009).

12. Z. Lu, B. R. Hunt, and E. Ott, Attractor reconstruction by machine learning,
Chaos 28, 061104 (2018).

13. Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott, Reservoir ob-
servers: Model-free inference of unmeasured variables in chaotic systems, Chaos
27, 041102 (2017).

14. J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free Prediction of
Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing
Approach, Phys. Rev. Lett. 120 (2018).

15. R. S. Zimmermann and U. Parlitz, Observing spatio-temporal dynamics of ex-
citable media using reservoir computing, Chaos 28, 043118 (2018).

16. A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll,
Experimental observation of chimeras in coupled-map lattices, Nature Physics 8,
658–661 (2012).

17. A. Goudarzi and C. Teuscher, in Proceedings of the 3rd ACM International Con-
ference on Nanoscale Computing and Communication (ACM Press, 2016), pp.
1–6.

18. H. Jaeger, A tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the ”echo state network” approach, (2002).

19. M. Lukos̆evic̆ius, in Neural Networks: Tricks of the Trade, edited by G. Montavon,
G. Orr, and K.-R. Müller (Springer-Verlag, Berlin Heidelberg, 2012), pp. 659–
686, 2nd ed.

20. H. Jaeger, M. Lukos̆evic̆ius, D. Popovici, and U. Siewert, Optimization and appli-
cations of echo state networks with leaky- integrator neurons, Neural Networks
20, 335–352 (2007).

21. A. A. Hagsberg, D. A. Schult, and P. J. Swart, in Proceedings of the 7th Python
in Science Conference, edited by G. Varoquaux, E. Vaught, and J. Millman
(Pasadena, CA USA, 2008), pp. 11–15.

22. M. Inubushi and K. Yoshimura, Reservoir Computing Beyond Memory-
Nonlinearity Trade-off, Scientific Reports 7 (2017).

