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Abstract. In this paper, we point out an “affinity” between the system of agents
trading in cryptocurrencies and statistical mechanics. In particular, we try to extend
the concept of entropy in the sense of Boltzmann to a model in which the particles
are replaced by N economic subjects (agents), that are completely described by their
ability to buy and to sell a certain quantity of cryptocurrencies. In addition, by
applying this model to the closing prices we show that entropy can be used as an
indicator to forecast the price trend of cryptocurrencies.
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1 Introduction

The concept of entropy was first introduced by Clausius[23], whose definition
was applied to a thermodynamic system that performs a transformation. Since
the mid-19th century, entropy has been a key element linking mechanics to
thermodynamics; however, this entropy suffered from a conceptual problem
which, as demonstrated by Gibbs[28], was revealed in the case of identical gases
(Gibbs Paradox ). He solved this problem by changing the count of states. On
the other hand, Boltzmann[16] presented his statistical interpretation of ther-
modynamic entropy, managing to link the macroscopic properties of a system
with the microscopic ones. Based on Gibbs, in 1949 Shannon[8] developed a
theory capable of evaluating the amount of information that is lost in receiving
a message from a source to a recipient. This form of entropy was generalized
by Rényi[3], Tsallis[7], Adler et al.[15] (in topology), redefined by Pincus[19]
(approximate entropy) and - more recently - by Chen et al.[27] as a time series
regularity measure.
The application of entropy in sectors such as economics or finance is linked to
the work of Brissaud[4] that assimilated entropy to disorder, so as to make this
tool that has always been applied the physics part of the economy. The forms
of entropy most used in this case are Shannon entropy and the generalizations

Received: 6 July 2020 / Accepted: 12 April 2021
c© 2021 CMSIM ISSN 2241-0503



92 Grilli and Santoro

by Rényi and Tsallis, who contributed to creating a new line of application for
the management of financial portfolios. For example, these new types of en-
tropy has been used by Philippatos and Wilson[6], Usta and Kantar[10], Jana
et al.[22], Gulko[17], and Dionisio et al.[2].
What we want to demonstrate in this paper is that it is possible to assimilate
a cryptocurrency system to a thermodynamic system. In this way, we are able
to determine entropy in the sense of Boltzmann so that we can make price
predictions related to the possibility that they move in a more or less wide
range; unlike all the recent applications concerning theories based on Shannon
entropy and its derivations. Innovation is linked to the reinterpretation of the
monetary system of cryptocurrencies. In this sense, we can apply physical the-
ories to a social science. Once the system has been described, our goal is to
verify that entropy calculated in the physical sense also occurs in the economic
context to allow us to make assumptions on how the process could move in the
next future. This type of conjecture has been presented by Sergeev[20], Zakiras
et al.[26] and Smith and Foley[9]. In particular McCauley[13], based on this
previous theory, maintains that the illiquidity of the markets does not allow for
the application of the concepts of statistical mechanics.
The paper structure is the following: in Section 2 we analyze cryptocurren-
cies and their key characteristics, focusing on the fact that they have a supply
limit; in Section 3 we describe the evolution of a system of a particle in statis-
tical thermodynamics and how to determine its entropy, subsequently applying
these notions to our monetary system; in Section 4 we define the theoretical
assumptions we can link to the system created previously to study the price
evolution in these currency markets and we analytically describe the calculation
of entropy using real data; finally in section 5 some conclusions are drawn.

2 Cryptocurrency

Cryptocurrencies represent a digital currency system with no guarantee institu-
tion and no transaction control. The main cryptocurrencies, by media coverage
or by the possibility that some financial intermediaries offer to use them as a
payment instrument, are: Bitcoin, Ethereum and Ripple. Unlike traditional
financial assets, their value is not based on tangible assets such as the economy
of a country or a company, but it is based on the security of an algorithm that
tracks transactions. Their definition is controversial since by some entities [11]
they are considered intangible assets (IFRS) while according to the German
financial supervisory authority (BaFin) they are officially financial instruments
[5]. All the cryptocurrencies have been based on the Bitcoin, a currency cre-
ated by Nakamoto[24] who in 2009 released a software capable of implementing
transactions. The currency itself is a unique alphanumeric string that repre-
sents a certain transaction, a transaction which will then be entered in a public
register called blockchain.
The blockchain is the fulcrum of these systems and is essentially a register in
which the data of the owners of the currency are entered, transactions occur
in an encrypted manner. The blockchain is a data structure consisting of a
list of transaction blocks linked together so that each refers to the previous
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one in the chain. A block is a data structure that aggregates transactions to
include them in the public register. The block is made of a header, containing
metadata, followed by a long list of transactions. A complete block, with all
transactions, is, thus, 1000 times larger than the block header [1]. The in-
tegrity of the blockchain network is guaranteed through consensus algorithms
such as Proof-of-Work (PoW) and Proof-of-Stake (PoS), that solve the Byzan-
tine Generals Problem[12] (problem of consent in the presence of errors). A
consensus algorithm is a mechanism used by the network to reach consensus,
i.e. ensuring that the protocol rules are followed and that transactions occur
correctly so that coins can only be spent once.
The cryptocurrency generation process is called mining, which adds money to
the supply. Cryptocurrencies are “minted” during the creation of each block at
a fixed and decreasing rate [1]: each block generated on average every 10 min-
utes contains new currency. For example, if we consider Bitcoin, every 210000
blocks the currency issue rate decreases by 50% (the availability of new coins
grows as a geometric series every 4 years). It is estimated that around the
year 2140, the production of the last block will be reached (6930000) and the
number of coins produced will tend to its upper limit of 21 million (precisely
20999999.97690000), value introduced by Nakamoto himself and contained in
the variable “MAX MONEY” as can be read in the source code present on
GitHub. This value represents a sanity check, especially used to avoid bugs in
which it is possible to generate currency from nothing and therefore moving
towards a situation in which the blockchain diverges into different potential
paths (called fork).

3 Methodology

The main assumption in this paper is that the prices of cryptocurrencies behave
like a thermodynamic system, so it is possible to determine entropy by using
the Boltzmann formula. In order to present the theoretical framework and the
methodology, we need to briefly introduce the main physical results. In Statis-
tical Mechanics a macroscopic system is made up of N molecules (N ∼ 1024

is the Avogadro’s constant) whose mechanics provide the evolution of 6N dy-
namic variables describing completely the microscopic states of this system.
Motion in the phase space can be studied using the 3N position components
and the 3N momenta components, indicated with {qi} and {pi} whose evolu-
tion is driven by Hamilton’s equations. Mechanics, therefore, provides a very
detailed description of the system contrary to thermodynamics which studies
the collective variations; for this reason, the mechanical point of view can be
defined microscopic and the thermodynamic one macroscopic. The study of the
system from a microscopic point of view concerns experimental observation on
one or a few molecules.
Everything that happens from the microscopic side can be expressed in macro-
scopic terms through thermodynamics, defined in this case as a large amount of
microscopic variables. We consider an isolated system of N particles described

Source: https://github.com/bitcoin/bitcoin/blob/master/src/amount.h
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by the 3N coordinates and the 3N momenta in a 6N -dimensional space at
a certain time t. Particles are subject to the laws of classical mechanics and
therefore X(t) evolves according to Hamilton’s equations. Since the Hamilto-
nian H(p, q) does not depend on time, the energy E is a conserved quantity
during motion and develops on a fixed hypersurface. We want, for example,
to measure an observable A(X) (a function defined in the phase space) of the
system in thermodynamic equilibrium, but since the scale of macroscopic times
is much larger than the microscopic one, we can consider a datum as the result
of a system that has gone through a large series of microscopic states; this im-
plies that the observable must be compared with an average performed along
with the evolution of the system calculated over very long times Ā. The calcu-
lation of Ā would require knowledge of both the microscopic state at a certain
moment and the determination of the corresponding trajectory in the phase
space, which corresponds to a practically inexhaustible request. To determine
the observable, the ergodic theory intervenes, according to which each energy
surface is completely accessible to any motion with the given energy and the
average residence time in a certain region is proportional to its volume. If
these conditions are satisfied, the average Ā can be calculated as the average of
A(X) in which the states with the fixed energy contribute with equal weight.
In applications it is convenient to consider on average all states with energy
within a fixed range [E,E +∆E]; furthermore, we are only interested in some
macroscopic properties such as particle number N and the volume V . There
is an infinite number of systems that satisfy these conditions: these form the
Gibb’s ensemble which is represented by a set of points in the phase space
characterized by a density function ρ(p, q, t) defined so that ρ(p, q, t) d3Np d3Nq
corresponds to the number of representative points of the system during the
instant t contained in the infinitesimal volume of the phase space d3Np d3Nq.
Furthermore, since energy, volume and number of particles are constants of
motion, the total number of systems in an ensemble is conservative.
We can thus introduce the postulate of equal a priori probability who claims
that when a macroscopic system is in thermodynamic equilibrium its state can
be with equal probability each of those which satisfies the macroscopic condi-
tions of the system. This postulate implies that the system under consideration
belongs to an ensemble called microcanonic with density function

ρ(p, q) =

{
ρ∗ if E < H(p, q) < E +∆

0 otherwise
(1)

where ρ∗ is constant and all members of the ensemble have the same number
of particles and equal volume.
We can define Γ (E) the volume occupied by the microcanonical ensemble in
the phase space as:

Γ (E) ≡
∫
E<H(p,q)<E+∆E

d3Np d3Nq (2)
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and Σ(E) the volume bounded by the energy surface E:

Σ(E) ≡
∫
H(p,q)<E

d3Np d3Nq (3)

so that

Γ (E) = Σ(E +∆E)−Σ(E). (4)

Entropy, then, can be defined as:

SΓ =

∫
E≤H≤E+∆E

d3Np d3Nq ρ(−κB ln ρ)

=

∫
E≤H≤E+∆E

d3Np d3Nq
1

Γ

(
−κB ln

1

Γ

)
=

1

Γ
κB ln Γ

∫
E≤H≤E+∆E

d3Np d3Nq

=
1

Γ
κB ln Γ · Γ = κB ln Γ (E)

(5)

where κB ∼ 1.3806 ∗ 10−23 is the Boltzmann constant. To analytically cal-
culate Γ (E), which represents the number of states accessible to the system
at temperature T , we must consider that a microcanonical ensemble is made
up of J identical copies of the closed system, each of which is located in a
microstate (pi,qi) of the phase space. Being all on the same hypersurface E,
we can divide it into cells of equal size, where in each there are ji systems such
that J =

∑
i ji. To define the system it is necessary to find the most probable

distribution of the ji microstates, that is, to count the total number of ways in
which we can obtain a certain macrostate. In the Boltzmann paradigm with
an ideal gas consisting of identical particles under the same conditions, we can
say that

Γ (E) =
J !∏
i ji!

(6)

The idea that entropy is connected to volumes in the phase space finds its ori-
gin in the Helmholtz Theorem, whose goal is to exactly bring thermodynamics
down from mechanics.
Let us now try to translate this physical theory into a financial dress. Viaggiu et
al.[25] have developed a representation of an economic model relating to money
from a thermodynamic point of view. In their description the ensemble is made
up of the N interacting economic subjects, entirely described by two variables
{xi, yi} which represent money and credit/debt capacity and which are not
conjugated in the sense of mechanics Hamiltonian. The key characteristic is to
consider a representative function of the total currency as a conservative law,
to be able to exploit the ergodic hypothesis.
Our idea is to go back to their hypothesis by applying it to the case of cryp-
tocurrencies. We consider a model in which the particles are replaced by N
economic subjects (agents) who intend to trade in cryptocurrencies (compared
only to a reference currency, such as the USD). These agents are completely
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described by 2 variables, which we can, however, identify as {xi, yi}, where xi
and yi indicate, respectively, the ability to buy and to sell a certain quantity of
cryptocurrencies (both expressed in monetary terms). The latter hypothesis is
possible according to the fact that the market to which we refer is influenced
only by the supply and demand leverage. As for [25], even if the complete
Hamiltonian formalism is not respected, we can consider as a conserved quan-
tity the total number of cryptocurrencies in circulation which by their definition
is constant over a suitable time interval through the function M(xi, yi) (as in
the particular case of Bitcoins for which the supply limit is fixed at 21 million).
However, since the supply limit has not yet been reached by any cryptocur-
rency we consider this quantity constant concerning the currency in circulation
in a precise time t, therefore:

M =

N∑
i=1

xi + yi. (7)

In this sense, the sum of the ability to sell and buy of the N agents fully
describes the cryptocurrencies in circulation. The ergodic hypothesis allows
us, given a certain function f(xi, yi), to express its average with respect to the
time in terms of an average over the ensemble at fixed M :

f̄ =

∫
M=const

f(x, y)ρ(x, y) dx dy (8)

where ρ(x, y) denotes the probability distribution of the ensemble. Through
these assumptions we can verify the economic transformations through ther-
modynamics; in particular, as in statistical mechanics, we can calculate the
volume in the phase space [25] . If we integrate over all the available volume
of the configuration space spanned by {x, y} with M̄ = m (where M̄ denotes
the average over the whole configuration space) we have

∫
M̄=m

dNx dNy = 0.
So introducing a thick shell ∆ where ∆� m we can define:

Γ (m) =

∫
m<M<m+∆M

dNx dNy

k2N
(9)

where dNx dNy is understood as the phase space and k is a normalization
factor such that Γ is dimensionless. This functional represents the number
of microscopic realizations of the system under examination and allows us to
calculate the entropy S as described in the equation (5).

4 The model

In this section, however, we try to define, through a new type of approach, how
it is possible to calculate entropy considering essentially the prices obtainable
from the currency markets (FOREX).
First, we know that cryptocurrencies are used by an approximate number of
economic entities equal to 44 million (based on the number of blockchain port-
folios[21]) for which N � 1. We also know that every subject in our system
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is fully described by its ability to buy and sell ({xi, yi}). Let us consider that
these two variables are summarized in the last prices of the cryptocurrency on
the currency markets, a type of price used to keep track of changes in the value
of an asset throughout a session. In this sense, the latest prices allow us to
understand whether, compared to the previous session, the ability to buy or
sell prevailed. We can summarize this price capability in the sentence “prices
describe the strength with which agents position themselves in the phase space”.
The key point is that we can use the function M (described above) because in
a certain time t the quantity of cryptocurrencies is constant and quantifiable,
in this way we can go back to the previous economic model and determine Γ
as described in the equation (9). Analytically, we do not consider the number
of economic subjects present in the market but indirectly deduce their “po-
sition” in the phase space from the difference between the closing prices. In
particular, first we cluster the closing price series based on a certain reference
interval (5 days); as for each cluster there is a maximum and a minimum price,
we calculate the difference in terms of necessary steps to pass from one to the
other obtaining a certain value of gap G (this assumption is based on the
idea that the distance between maximum and minimum is a measure of the
dispersion of agents in our phase space); to calculate the “volume” occupied
by the disposition of the agents we use combinatorial analysis, therefore:

Γ = G5 (10)

Once the value of Γ is determined, entropy can be calculated by using the
Boltzmann formula:

S = κB ln Γ. (11)

Finally, precisely because Boltzmann’s constant is of the order of Avogadro’s
number, we can “rationalize” this entropy value obtained by multiplying it by
1023. Our data analysis shows that in situations where entropy is drastically
reduced, in the following phase it must grow in an “almost obligatory” way; this
in terms of cryptocurrency prices indicates that in situations in which the gap
between the maximum and the minimum is drastically reduced in the transition
from one cluster to another “almost compulsorily” follows a situation in which
it is certainly wider than the previous one. This type of price-based entropy
defines how agents move in the phase space, so it allows us to understand if
there is more movement towards one area rather than another.

4.1 Dataset

The empirical analysis has been applied to the closing prices of three cryp-
tocurrencies, all related to the US dollar (USD), that are:

• Tether, whose price with 4 decimal places requires a step equal to 0.0001;
• Bitcoin Cash, whose price with 2 decimal places requires a step equal to

0.01;
• Litecoin, whose price with 3 decimal places requires a step equal to 0.001.

Source: Investing.com



98 Grilli and Santoro

Prices are considered with a daily time frame over 1 year, from 1/1/2019 to
31/12/2019 and they are clustered in 5 days. To make the figures more clear,
the 1-year interval has been divided into 4 trimesters. Furthermore, to better
test the idea, the same test was carried out also on daily prices at 1 minute of
1/4/2020 recorded from 10:56 to 11:52, instead of clustered in 5 minutes. The
difference from the daily case is that these prices were collected, always from
the same source, but observed on different currency markets.

4.2 Numerical examples

We can start the analysis from the annual case. The first cryptocurrency
analyzed is Tether (USDT/USD), whose price moves in a neightborhood of 1
and consists of 4 decimal places; distinguish the trend of entropy compared to
prices in the 4 ranges previously defined.

(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 1: Prices (blue) and entropy (orange) Tether in the period 1/1 - 31/12

As can be seen graphically, when entropy reaches a point of relative mini-
mum falling below a certain threshold (it therefore undergoes a sharp reduction)
it is forced in the next cluster to grow, almost as if to rebalance itself. In terms
of prices, this implies that in the cluster in which the entropy descent occurred
there was a very small gap and, in the subsequent cluster, since entropy in-
creases the gap also increases. In this case, the range of variation of prices is
very “narrow” and every movement is important. It is possible, however, to no-
tice for example looking at the figure 1 (d) what is the gap value and therefore
the entropy threshold that, if “under”-passed, will cause an immediate growth
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in the next future.
The next cryptocurrency analyzed is Bitcoin Cash (BCH/USD):

(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 2: Prices (blue) and entropy (orange) Bitcoin Cash in the period 1/1 -
31/12

In this case the figure 2 (d) shows how the gap threshold below which a sharp
drop in entropy occurs can also be quite high (especially in currencies where
high volatility allows it to to move many points from one price to another).
The last cryptocurrency we have considered is Litecoin (LTC/USD):
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(a) Closing prices and en-
tropy 1/1 - 31/3

(b) Closing prices and en-
tropy 1/4 - 29/6

(c) Closing prices and en-
tropy 30/6 - 27/9

(d) Closing prices and en-
tropy 28/9 - 31/12

Fig. 3: Prices (blue) and entropy (orange) Litecoin in the period 1/1 - 31/12

Also in this cryptocurrency all the situations defined above occur, in par-
ticular from the figure 3(d) it can be seen how, following the fact that the first
4 clusters are growing despite the gap value being quite low, the gap threshold
to define the drastic descent of entropy is quite low. As for the case of 1-minute
prices, we can summarize the trend of the different cryptocurrencies together
as shown in figure 4 which shows how all the assumptions made in the previous
case are also respected for prices of this type
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(a) Tether (b) Bitcoin Cash

(c) Litecoin

Fig. 4: Prices (blue) and entropy (orange) of cryptocurrencies based on 1 minute

In particular, the hypotheses made previously are very evident in the case
of the Tether (figure 4 (a)).

4.3 Possible effects on prediction

Thanks to previous results we can use entropy as an indicator to make pre-
dictions on the price trend of cryptocurrencies in the currency markets. For
example, we can suppose that we are in a certain cluster X where entropy has
declined sharply. As previously defined, we expect entropy to grow in the next
cluster and this leads to an increase in the price gap. The hypothesis we can
make is that the value of the gap in the cluster X+1 is at least one unit higher
than the value in the cluster X: we can use this information to understand
what the future price range will be. In this case, knowing the value of the
gap in the cluster X, we can create a bifurcation that represents the possible
evolution of the price in the event of a bullish or bearish trend. Assuming,
moreover, that the first cryptocurrency price close enough to the last price of
the previous cluster what we can expect is such a situation: if the second clos-
ing price of the cluster X + 1 is higher than the previous price in the same
cluster and assuming an upward trend we can assume that the series of prices
continues in an area that we have defined as Gap−; while if the second closing
price of the cluster X + 1 is lower than the previous price in the same cluster
and assuming a bearish trend we can assume that the price series continues in
an area that we have defined as Gap+. Such information can be fundamental
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for example for an investor who intends to choose the ideal moment to enter
(or exit) the market or balance any price limits.

5 Conclusions

In this paper, we have defined a similarity between a thermodynamic system
and a currency system. Thanks to this assumption, we have shown how it’s
possible to apply Boltzmann’s entropy to cryptocurrencies. This system is
characterized by the presence of N subjects interested in buying (or selling) this
type of currency. Assuming that the quantity of money at a certain moment t
is fixed and determinable, it is possible to hypothesize that the position of each
economic entity is summarized by the last price of the cryptocurrency itself in
the currency markets, as an indicator characterized by the ability to buy and
sell. With this hypothesis, it was possible to determine the entropy using the
Boltzmann formula, dividing the time interval into clusters and calculating the
gap between the different prices. This analysis has shown that when entropy
falls sharply then it must necessarily grow shortly; which in terms of price
corresponds to a situation in which the gap between maximum and minimum
is wider than the previous one.
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