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Abstract. Velocity gradient is the basis of many vortex recognition methods, such as Q 
criterion, Δ criterion, λ2 criterion, λci criterion and Ω criterion, etc.. Except the λci criterion, 

all these criterions recognize vortices by designing various invariants, based on the 

Helmholtz decomposition that decomposes velocity gradient into strain rate and spin. In 

recent years, the intuition of "no vortex in straight flows" has promoted people to analyze 
the vortex state directly from the velocity gradient, in which vortex can be distinguished 

from the situation that the velocity gradient has couple complex eigenvalues. A specious 

viewpoint to adopt the simple shear as an independent flow mode was emphasized by many 

authors, among them, Kolář (2004) proposed the triple decomposition of motion by 
extracting a so-called ‘effective’ pure shearing motion; Li et al. (2014) introduced the so-

called quaternion decomposition of velocity gradient and proposed the concept of eigen 

rotation; Liu et al. (2019) further mined the characteristic information of velocity gradient 

and put forward an effective algorithm of Liutex (namely eigen rotation), and then 
developed the vortex recognition method. However, there is another explanation for the 

increasingly clear representation of velocity gradient, that is the local streamline pattern 

based on critical-point theory. In this paper, the tensorial expressions of the right/left real 

Schur forms of velocity gradient are clarified from the characteristic problem of 𝛻𝒗. The 
relations between the involved parameters are derived and numerically verified. 

Comparing with the geometrical features of local streamline pattern, we confirm that the 

parameters in the right eigen-representation based on the right real Schur form of velocity 

gradient have good meanings to reveal the local streamline pattern. Some illustrative 
examples from the DNS data are presented. 

Keywords: Velocity gradient; Left/Right real Schur forms; Right/Left eigen-

representations; Local streamline pattern; Vortex recognition 
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1 Introduction 

The intuition of no vortex in straight flows becomes strong in 

the understanding of vortex identification. Lugt[1] presented that a 

vortex is the rotating motion of a multitude of material particles 

around a common center, while Robinson[2] proposed that a vortex 

exists when instantaneous streamlines mapped onto a plane normal 

to the vortex core exhibit a roughly circular or spiral pattern, when 

viewed from a reference frame moving with the center of the vortex 

core. Therefore, the fact - vorticity cannot distinguish between pure 

shearing motions and the actual swirling motion of a vortex (Jeong 

and Hussain[3]; Kida and Miura[4]; Cucitore et al.[5]) – has won 

support among the people to develop other ways instead of vorticity 

to identify a vortex. In the framework of classical flow theory, the 

vorticity, indicating an average angular velocity of fluid elements, 

appears as one of the unique natural choices for a vortex-

identification criterial measure. 

The fatal flaw of using vorticity to indicate the vortex is that 

we have to admit the vortex in straight flows. She et al.[6] found the 

tube-like feature of strong vortices in the DNS turbulence, 

Saffman[7] added that "we shall use this term to denote any finite 

volume of vorticity immersed in irrotational fluid", and recently Wu 

and Yang[8] proposed that "vortex is a specific region of vorticity 

field with tubular structure", and tried to consider the dynamic 

mechanism within the definition of vortex. In order to consider the 

effect of strain rate in addition to vorticity, several methods were 

developed to analyze the vortex under the requirement of the 

Galilean invariance (Jiang et al.[9]; Epps[10]). Most of them are 

derived from the velocity gradient 𝒅 = ∇𝒗, where the methods 
based on the scalar invariants (eigenvalues) of velocity gradient (or 

its sum decomposition) include Q criterion (Okubo[11]; Hunt et 

al.[12]; Weiss[13]),  criterion (Chong and Perry[14]), 𝜆2 criterion 

(Jeong and Hussain[3]) and 𝜆𝑐𝑖 criterion (Zhou et al.[15]; 

Chakraborty et al.[16]), among them only the 𝜆𝑐𝑖 criterion has 
nothing to do with the Helmholtz decomposition. 

After a lot of theoretical and practical exploration, the 

application of complex measures derived from 𝒅 has already 

revealed its importance in the analysis of vortical structures in 
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complicated flows. But the flow mechanism other than the 

Helmholtz decomposition seems to be difficult to construct. 

Kolář[17,18] proposed a triple decomposition by extracting of a so-

called ‘effective’ pure shearing motion, limited to planar flows. Li 

et al.[19] presented the quadruple decomposition of velocity 

gradient, namely dilatation, axial deformation along the principal 

axes of the strain-range sensor, planar motion, and pure shearing. 

Liu and his coworkers[20,21] realized such a decomposition is 

actually based on the real Schur form (Golub and van Loan[22]) of 

the velocity gradient, and constructed a systemic criterion called 

Liutex/Rortex. But the abandon of the Helmholtz decomposition 

means the mechanism of viscous interaction coming from the strain 

rate must be modified. 

An alternative idea making use of velocity gradient to catch 

flow patterns stems from critical point theory (Dallmann[23]; 

Vollmers et al.[24]; Perry and Chong[25]). Since Perry and 

Chong[25] pointed out the usefulness of critical-point concepts in 

the understanding of flow patterns, Chong et al.[26] proposed the 

use of the region where a couple of complex eigenvalue implies the 

appearance of a vortex, Zhou et al.[15] used the imaginary part of 

the complex eigenvalue of velocity gradient, and presented the local 

streamline pattern (LSP) to visualize a vortex, Wang et al.[27] also 

investigated the imaginary part 𝜆𝑐𝑖 of the complex eigenvalue of the 
velocity gradient as the pseudo-time average angular velocity of a 

trajectory moving circularly or spirally around the axis. In practice, 

many people thought it necessary to combine this methodology with 

the concentration of vorticity magnitude, namely dividing the 

vorticity into a rotation part and a shear part, to obtain a reasonable 

shape for the vortex. 

In this paper, we will focus on the vortex identification 

methods derived from the real Schur form of velocity gradient. In 

section 2, three studies starting from the complex eigenvalues of 

velocity gradient are summarized and compared with each other. In 

section 3, we focus on the tensorial representations and the 

relationship between different representations. The LSPs are 

classified in section 4, and the correspondence between the 

geometrical features and the parameters in the eigen-representations 
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is investigated. Discussion and Case study are presented in section 

5, while a brief conclusion is given in section 6.  

2. Vortex recognition methods from velocity gradient 

with complex eigenvalues 

For simplicity, the fluid is uniform and incompressible in this 

paper, that means, the divergence of velocity vanishes everywhere. 

For a three-dimensional flow, the matrix form of velocity gradient 

is written as 

𝛻𝒗 =

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑦
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

= [

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

] ≡ 𝒅. (1) 

When the velocity gradient has only one real eigenvalue, Zhou et 

al.[15] wrote the velocity gradient by1 

𝒅𝑇 = [𝒗𝑐𝑟 𝒗𝑐𝑖 𝒗𝑟]

[
 
 
 −

1

2
𝜆𝑟 𝜆𝑖 0

−𝜆𝑖 −
1

2
𝜆𝑟 0

0 0 𝜆𝑟]
 
 
 
[𝒗𝑐𝑟 𝒗𝑐𝑖 𝒗𝑟]−𝟏, (2) 

where 𝜆𝑟 is the real eigenvalue with 𝒗𝑟 as its eigenvector, while the 

two conjugate complex eigenvalues −1

2
𝜆𝑟 ± 𝑖𝜆𝑖 have corresponding 

eigenvectors 𝒗𝑐𝑟 ± 𝑖𝒗𝑐𝑖. In the local affine coordinate system 
{𝑦1, 𝑦2, 𝑦3} defined by bases {𝒗𝑐𝑟, 𝒗𝑐𝑖 , 𝒗𝑟}, the local streamline 

starting at point (𝑥1
0, 𝑥2

0, 𝑥3
0) can be solved from the velocity field 

𝒗 =
𝑑𝐫

𝑑𝑡
= 𝒅𝑇 ∙ 𝐫 as 

𝑦3(𝑡) = 𝑥
3

0
𝑒𝜆𝑟𝑡 , (3.1) 

𝑦1(𝑡) = 𝑒−1
2
𝜆𝑟𝑡 [𝑥

1

0
cos(𝜆𝑖𝑡) + 𝑥

2

0
sin(𝜆𝑖𝑡)] , (3.2) 

𝑦2(𝑡) = 𝑒−1
2
𝜆𝑟𝑡 [𝑥

2

0
cos(𝜆𝑖𝑡) − 𝑥

1

0
sin(𝜆𝑖𝑡)] . (3.3) 

Zhou et al.[15] pointed out that “the local flow is either stretched or 

compressed along the axis 𝒗𝑟, while on the plane spanned by the 

vectors 𝒗𝑐𝑟 and 𝒗𝑐𝑖, the flow is swirling”, as shown in Fig. 1. That 

means the normal of plane (𝒗𝑐𝑟, 𝒗𝑐𝑖), or the right eigenvector of the 

                                                 
1According to the matrix notation, say the equation (1) in Chong et al.[26], the 

velocity gradient used by Zhou et al.[15], is actually 𝒗𝛻, so we denote it by 𝒅𝑇 in 

this paper. We also rearrange the order of eigenvalues and eigenvectors. 
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real eigenvalue of 𝒅, is referred to as the rotation direction of local 

vortex, and the left eigenvector 𝒗𝑟 indicates the direction we will 

define as the extension direction of local vortex. In addition, Zhou 

et al.[15] used the imaginary part of the complex eigenvalue pair as 

the local swirling strength of the vortex. 

 
Fig. 1. The LSP of velocity gradient tensor pointed out by Zhou et al (1999). 

Unlike the two-dimensional flow (Kolář[17,18]), in which the 

rotation and extension directions of the vortex are the same and 

definitely perpendicular to the plane, in the three-dimensional flow 

both rotation and extension directions of the vortex are to be 

determined. According to the Schur theorem (Golub and von 

Loan[22]), there are real Schur forms for a real matrix with the real 

eigenvalue 𝜆𝑟 (the only one if not specified), say 
𝒅 = 𝑷∗𝑇𝑫𝑅𝑷∗ = 𝑷𝑇𝑫𝐿𝑷 (4.1) 

with 

𝑫𝐿 = [

𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

0 0 𝐷33

] ,𝑫𝑅 = [

𝐷11
∗ 𝐷12

∗ 0
𝐷21

∗ 𝐷22
∗ 0

𝐷31
∗ 𝐷32

∗ 𝐷33
∗

] , (4.2) 

and 𝐷33
∗ = 𝐷33 = 𝜆𝑟, 𝒏3 ∙ 𝒅 = 𝜆𝑟𝒏3, 𝒅 ∙ 𝒎3 = 𝜆𝑟𝒎3. It is easy to 

testify that 𝒏3 is equivalent to 𝒗𝑟 while 𝒎3 indicates the axis of 
(𝒗𝑐𝑟, 𝒗𝑐𝑖).  

After Kolář’s proposition and practice for two-dimensional 

flows, Li et al.[19] first introduced an orthonormal frame 
{𝒏1, 𝒏2, 𝒏3} (right hand if not specified) to express 𝑫𝐿 as in Table 

1, and called 𝜓 the proper rotation. Years later, based on the same 
left real Schur form (see Table 1), Liu et al.[20,21] proposed the 
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rigid-body rotation vector by combining the parameter 𝜙 with the 

direction 𝒏3, and presented an effective algorithm for calculating 

the involved parameters and achieved a lot of applications through 

cooperation.  

As listed in Table 1, Zhou, Li and Liu started from the same 

(left) characteristic problem of velocity gradient tensor, Li and Liu 

introduced the same orthonormal frame, used the same parameter to 

characterize the strength of rotation, but both of them paid no 

attention to the extension direction. 

Table 1. Three representations of velocity gradient tensor ∇𝒗 with one real eigenvalue 𝜆𝑟 and its 

left eigenvector 𝒗𝑟 or 𝒏3 

 
① Zhou et al. 

(𝜆𝑐𝑖) 

② Li et al. (Proper 

rotation) 

③ Liu et al. 

(Liutex） 
Remarks 

Representatio

n 
[

−
1

2
𝜆𝑟 𝜆𝑖 0

−𝜆𝑖 −
1

2
𝜆𝑟 0

0 0 𝜆𝑟

] [

−
1

2
𝜆𝑟 𝜓 + 𝛾 𝛽

−𝜓 −
1

2
𝜆𝑟 𝛼

0 0 𝜆𝑟

] [

−
1

2
𝜆𝑟 𝜙 + 𝑠 𝜉

−𝜙 −
1

2
𝜆𝑟 𝜂

0 0 𝜆𝑟

] 

② and ③ 

are 

orthonorma

l frames,  

① is affine 

frame 

Rotation axis 
the axis of plane 

(𝒗𝑐𝑟 ,𝒗𝑐𝑖) 
𝒏3 𝒏3 

① is 

rotation 

plane, 

② and ③ 

are the 

same 

Rotation 

strength 
𝜆𝑖 𝜓 𝜙 

② and ③ 

are the 

same 

Extension 

direction 

Stretch/compress 

direction 𝒏3 
− − 

No 

definition 

in ② and 

③ 

3. Three forms of tensorial representation for the 

velocity gradient 

Dividing the fluid domain into the regions with or without 

vortex is the primary objective in vortex identification, which can 

be worked out by the feature that the characteristic polynomial of 

velocity gradient tensor has complex roots or not. 
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3.1 Spectral representation under the affine frame in the 

vortex region 

For the velocity gradient 𝒅, the characteristic equations of its 

left characteristic problem 𝑵 ∙ 𝒅 = 𝜆𝑵 and its right characteristic 

problem 𝒅 ∙ 𝑵 = 𝜆𝑵 are the same. Assume that the characteristic 

polynomial has eigenvalues {−
1

2
𝜆3 ± 𝜄𝛽,  𝜆3} with the unit 

imaginary number 𝜄 = √−1, and the corresponding right 

eigenvectors are {𝑵1 ± 𝜄𝑵2, 𝑵3} satisfying 

𝒅 ∙ 𝑵3 = 𝜆3𝑵3, 𝒅 ∙ (𝑵1 ± 𝜄𝑵2) = (−
1

2
𝜆3 ± 𝜄𝛽) (𝑵1 ± 𝜄𝑵2); (5) 

and the corresponding left eigenvectors are {𝑵1 ∓ 𝜄𝑵2, 𝑵3} 
satisfying 

𝑵3 ∙ 𝒅 = 𝜆3𝑵
3, (𝑵1 ∓ 𝜄𝑵2) ∙ 𝒅 = (−

1

2
𝜆3 ± 𝜄𝛽) (𝑵1 ∓ 𝜄𝑵2). (6) 

From (5) and (6), the spectral representation of velocity gradient 

tensor 

𝒅 = 𝜆3𝑵3 ⊗ 𝑵3 + Re [(−
1

2
𝜆3 + 𝜄𝛽) (𝑵1 + 𝜄𝑵2) ⊗ (𝑵1 − 𝜄𝑵2)] , (7.1) 

with the combination of two right-handed frames {𝑵1, 𝑵2, 𝑵3} and 

{𝑵1, 𝑵2, 𝑵3} is form-invariant by requiring the dual relations 𝑵𝑖 ∙
𝑵𝑗 = 𝛿𝑗

𝑖  2. The dual relations show that the two right-handed frames 

{𝑵1, 𝑵2, 𝑵3} and {𝑵1, 𝑵2, 𝑵3} are uniquely interdependent in the 

spectral representation. An equivalent expression of (7.1) is 

𝒅 = 𝜆3𝑵3 ⊗ 𝑵3 −
1

2
𝜆3(𝑵1 ⊗ 𝑵1 + 𝑵2 ⊗ 𝑵2) + 𝛽(𝑵1 ⊗ 𝑵2 − 𝑵2 ⊗ 𝑵1), (7.2) 

which coincides with the matrix expression given by Zhou et 

al.[15].  

    It is obvious in the spectral representation (7) that the real 

eigenvector, 𝑵3 or 𝑵3, can be determined to be only one non-zero 

real factor difference as long as the tensor product 𝑵3 ⊗ 𝑵3 is 

constant, while the complex eigenvector, 𝑵1 + 𝜄𝑵2 or 𝑵1 + 𝜄𝑵2, 

can be determined to be only one non-zero complex factor 

                                                 
2 The dual conditions can be solved explicitly. Assume that {𝑵1, 𝑵2, 𝑵3} with the 

triple product [𝑵1, 𝑵2, 𝑵3] = (𝑵1 × 𝑵2) ∙  𝑵3 = √𝑔 > 0 is known, the 

corresponding {𝑵1, 𝑵2, 𝑵3} can be expressed by 𝑵𝑖 = 1

2√𝑔
−1

𝜖𝑖𝑗𝑘𝑵𝑗 × 𝑵𝑘 , and 

vice versa. 
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difference as long as the tensor product (𝑵1 + 𝜄𝑵2) ⊗ (𝑵1 − 𝜄𝑵2) 
is invariant. Let alone the size changes of 𝑵1, 𝑵2, 𝑵3, consider the 

basic transforms including the sign changes of 𝑵1, 𝑵2, 𝑵3 and 

exchanges of 𝑵1 and 𝑵2, there are 16 possible frames where half of 
them are right-handed. Among the 8 right-handed frames, four of 

them {𝑵1, 𝑵2, 𝑵3}, {−𝑵1, −𝑵2, 𝑵3}, {𝑵2, −𝑵1, 𝑵3} and 
{−𝑵2, 𝑵1, 𝑵3} result in the same spectral representation as (7), and 

if 𝑵3 changes to its opposite −𝑵3, the remaining four frames 
{𝑵1, −𝑵2, −𝑵3}, {−𝑵1, 𝑵2, −𝑵3}, {𝑵2, 𝑵1, −𝑵3} and 
{−𝑵2, −𝑵1, −𝑵3} will yield the same form of representation but 𝛽 

changes to −𝛽. Therefore, if we limit 𝛽 to a positive number, the 

directions of real eigenvectors 𝑵3 and 𝑵3 are uniquely determined, 

and there are four equivalent right-handed frames for the spectral 

representation (7). 

3.2 Eigen-representations under the orthonormal frames in the 

vortex region 

In this subsection, we will denote the orthonormal frame based 

on 𝑵3 by the left orthonormal frame, and refer to the tensorial form 

of the matrix expression of velocity gradient under this frame (Li et 

al.[19]; Liu et al.[21]) as the left eigen-representation. We propose 

the right eigen-representation under the right orthonormal frame 

based on 𝑵3, and derive the relation between it and the spectral 
representation (7).  

 

Theorem 1: For the case that the characteristic polynomial of 

velocity gradient tensor has complex roots, there exists a unique 

right-handed orthonormal frame {𝒎1,𝒎2,𝒎3}, and the right eigen-

representation 
𝒅 = 𝜆3⌊𝒎3 ⊗ 𝒎3⌋ + (𝑅 + 𝜏3)𝒎1 ⊗ 𝒎2 − 𝑅𝒎2 ⊗ 𝒎1 + 𝒎3 ⊗ (𝜏1𝒎1 + 𝜏2𝒎2) (8) 

under {𝒎1,𝒎2,𝒎3}, with 𝑅 > 0, 𝜏3 > 0 and 𝜏1 > 0 (or 𝜏2 > 0 

when 𝜏1 = 0), where the symmetric traceless base ⌊𝒎3 ⊗ 𝒎3⌋ is 

defined by ⌊𝒎3 ⊗ 𝒎3⌋ ≡ 𝒎3 ⊗ 𝒎3 −
1

2
𝒎1 ⊗ 𝒎1 −

1

2
𝒎2 ⊗

𝒎2. If the coefficient of 𝒎2 ⊗ 𝒎1 is negative, 𝒎3 cannot change 

to −𝒎3; If 𝜏1 = 𝜏2 = 0, {−𝒎1, −𝒎2,𝒎3} is an equivalent frame; 

if 𝜏3 = 0, {−𝒎2,𝒎1,𝒎3} also becomes an equivalent frame. 
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In order to guarantee the uniqueness of correspondence 

between (7) and (8), we need to regulate the eigenvectors in (7). As 

mentioned, the four right-handed frames {𝑵1, 𝑵2, 𝑵3}, 
{−𝑵1, −𝑵2, 𝑵3}, {𝑵2, −𝑵1, 𝑵3} and {−𝑵2, 𝑵1, 𝑵3} are 

indistinguishable according to the basic eigen-parameters 𝜆3 and 𝛽. 

The requirement of an obtuse angle between 𝑵1 and 𝑵2 to 

distinguish {𝑵1, 𝑵2, 𝑵3} and {𝑵2, −𝑵1, 𝑵3}, and the sign of 𝒎1 ∙
𝑵1 or 𝒎3 ∙ 𝒅 ∙ 𝒎1 to distinguish {𝑵1, 𝑵2, 𝑵3} and {−𝑵1, −𝑵2, 𝑵3}. 
Because of the dual relations, the treatment to the right-handed 

frames {𝑵1, 𝑵2, 𝑵3} is also workable to the right-handed frames 
{𝑵1, 𝑵2, 𝑵3}. 

Now we start from (8) to achieve the spectral representation 

(7). Since the bases {𝒎1,𝒎2,𝒎3} and the parameters 

𝜆3, 𝑅, 𝜏1, 𝜏2, 𝜏3 are known, we first have 𝑵3 = 𝒎3 and 𝛽 =

√𝑅(𝑅 + 𝜏3). To make 𝑵1 and 𝑵2 unique, we regulate them to have 

the same size, and the included angle between 𝑵1 and 𝒎1 to be 

acute. Because both 𝑵1 and 𝑵2 are in the plane normal to 𝑵3, they 

can be expressed by unit vectors 𝒎1 and 𝒎2, while their sizes are 

further required to meet the requirement 𝑵1 × 𝑵2 = 𝒎3. From (8) 

and the characteristic relation (𝑵1 − 𝜄𝑵2) ∙ 𝒅 = (−
1

2
𝜆3 +

𝜄𝛽) (𝑵1 − 𝜄𝑵2), we obtain 

𝑵1 = √
𝑅𝛽

2
(
𝒎1

𝛽
−

𝒎2

𝑅
) ,𝑵2 = √

𝑅𝛽

2
(
𝒎1

𝛽
+

𝒎2

𝑅
) , (9.1) 

or 

𝑵1 − 𝜄𝑵2 = (1 − 𝜄)√
𝑅𝛽

2
(
𝒎1

𝛽
− 𝜄

𝒎2

𝑅
) . (9.2) 

Assume that 𝑵3 = 𝒎3 + 𝐶1𝒎1 + 𝐶2𝒎2, combining with 𝑵3 ∙ 𝒅 =

𝜆3𝑵
3 and (8) results in (

3

2
𝜆3 𝑅

−
𝛽2

𝑅

3

2
𝜆3

)(
C1

𝐶2
) = (

τ1

𝜏2
), which can be 

solved to get 

𝑵3 = 𝒎3 +

3
2

𝜆3𝜏1 − 𝑅𝜏2

9
4 𝜆3

2 + 𝛽2
𝒎1 +

3
2

𝜆3𝜏2 +
𝛽2

𝑅
𝜏1

9
4𝜆3

2 + 𝛽2
𝒎2. (10) 



142   Xu et al. 
 

 

Finally, making use of the orthogonality 𝑵1 ∙ 𝑵1 = 𝑵2 ∙ 𝑵2 = 1 

and 𝑵1 ∙ 𝑵2 = 𝑵2 ∙ 𝑵1 = (𝑵1 + 𝜄𝑵2) ∙ 𝑵3 = 0, we have 

𝑵1 + 𝜄𝑵2 = (1 + 𝜄)√
1

2𝑅𝛽
(𝛽𝒎1 + 𝜄𝑅𝒎2 −

𝛽𝜏1 + 𝜄𝑅𝜏2

3
2𝜆3 − 𝜄𝛽

𝒎3) . (11) 

The above results for eigenvectors can be testified by substituting 

them into the spectral representation (7), which will yield the right 

eigen-representation (8) of velocity gradient under the orthonormal 

frame {𝒎1,𝒎2,𝒎3}. 
The inverse relations can be obtained as follows. When the 

eigenvalues {−
1

2
𝜆3 ± 𝜄𝛽,  𝜆3} are given, the right eigenvectors 

{𝑵1 ± 𝜄𝑵2, 𝑵3} are determined to some extent. We further choose 

the right-handed frame {𝑵1, 𝑵2, 𝑵3} by making the coefficient of 

𝑵1 ⊗ 𝑵2 in (7.2) positive (If not so, use the equivalent frame 
{𝑵1, −𝑵2, −𝑵3} instead) and an obtuse angle between 𝑵1 and 𝑵2 

(If not so, use the equivalent frame {−𝑵2, 𝑵1, 𝑵3} instead); then 

normalize 𝑵3 to a unit vector and isomorphize 𝑵1 and 𝑵2 in 

advance through a rotation of 𝜃 around the axis 𝑵3 so that the real 

part and the imaginary part of (𝑵1 + 𝜄𝑵2)𝑒−𝜄𝜃 have the same size. 

Now, if all these requirements are met, namely (a) {𝑵1, 𝑵2, 𝑵3} is 

right-handed, (b) 𝑵3 is a unit vector, (c) 𝑵1 and 𝑵2 are 

isomorphized and their included angle is obtuse, it is easy to 

calculate the orthonormal frame {𝒎1,𝒎2,𝒎3} and the parameters 

𝜆3, 𝛽, 𝑅, 𝜏1, 𝜏2, 𝜏3 in the right eigen-decomposition (8): 
1) Set 𝒎3 being the normalized 𝑵3; 

2) Calculate 𝑅 and 𝒎1,2 from the isomorphized 𝑵1, 𝑵2 by 

𝑅 = 𝛽
|𝑵1+𝑵2|

|𝑵1−𝑵2|
≤ 𝛽, 𝒎1,2 =

𝑵2±𝑵1

|𝑵1±𝑵2|
; 

3) Calculate other parameters as 𝜏3 = (𝛽2 − 𝑅2) 𝑅⁄ , 𝜏1 =

𝒎3 ∙ 𝒅 ∙ 𝒎1, 𝜏2 = 𝒎3 ∙ 𝒅 ∙ 𝒎2; 

4) Finally, if 𝜏1 < 0, or 𝜏1 = 0, 𝜏2 < 0, using the equivalent 

frame {−𝑵1, −𝑵2, 𝑵3} to recalculate 𝒎1,2, and so on. 
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Similarly, in order to build up the relation between the left eigen-

representation under the right-handed orthonormal frame 

{𝒏1, 𝒏2, 𝒏3} 
𝒅 = 𝜆3⌊𝒏3 ⊗ 𝒏3⌋ + (𝑅∗ + 𝜏3

∗)𝒏1 ⊗ 𝒏2 − 𝑅∗𝒏2 ⊗ 𝒏1 + (𝜏1
∗𝒏1 + 𝜏2

∗𝒏2) ⊗ 𝒏3 (12) 

and the spectral representation (7), we set 𝑵3 to be 𝒏3, and 𝑵1 and 

𝑵2 

𝑵1 = √
𝑅∗𝛽

2
(
𝒏1

𝑅∗ −
𝒏2

𝛽
) ,𝑵2 = √

𝑅∗𝛽

2
(
𝒏1

𝑅∗ +
𝒏2

𝛽
) , (13) 

or 

𝑵1 + 𝜄𝑵2 = (1 + 𝜄)√
𝑅∗𝛽

2
(
𝒏1

𝑅∗ + 𝜄
𝒏2

𝛽
) (14) 

satisfying the conditions: (𝑵1, 𝑵2) ⊥ 𝑵3, 𝑵1 × 𝑵2 = 𝒏3, 𝒅 ∙

(𝑵1 + 𝜄𝑵2) = (−
1

2
𝜆3 + 𝜄𝛽) (𝑵1 + 𝜄𝑵2), and the included angle 

between 𝑵1 and 𝒏1 being acute. Assume that 𝑵3 = 𝒏3 + 𝐷1𝒏1 +

𝐷2𝒏2, the linear equations (

3

2
𝜆3 −

𝛽2

𝑅∗

𝑅∗ 3

2
𝜆3

)(
𝐷1

𝐷2
) = (

τ1
∗

𝜏2
∗) from 𝒅 ∙

𝑵3 = 𝜆3𝑵3 can be solved as 

𝑵3 = 𝒏3 +

3
2

𝜆3𝜏1
∗ +

𝛽2

𝑅∗ 𝜏2
∗

9
4𝜆3

2 + 𝛽2
𝒏1 +

3
2

𝜆3𝜏2
∗ − 𝑅∗𝜏1

∗

9
4𝜆3

2 + 𝛽2
𝒏2. (15) 

Due to the orthogonality with 𝑵1 + 𝜄𝑵2, we set 𝑵1 − 𝜄𝑵2 =

(1 − 𝜄)√
1

2𝑅∗𝛽
(𝑅∗𝒏1 − 𝜄𝛽𝒏2 + 𝐷𝒏3) with an undetermined 

parameter D, and figure out it from the relation (𝑵1 − 𝜄𝑵2) ∙ 𝑵3 =
0, that is 

𝑵1 − 𝜄𝑵2 = (1 − 𝜄)√
1

2𝑅∗𝛽
(𝑅∗𝒏1 − 𝜄𝛽𝒏2 −

𝑅∗𝜏1
∗ − 𝜄𝛽𝜏2

∗

3
2𝜆3 − 𝜄𝛽

𝒏3) . (16) 

The expansion after the substitution of the above results into the 

spectral representation (7) also results in the left eigen- 

representation (12) of velocity gradient under the orthonormal 

frame {𝒏1, 𝒏2, 𝒏3}. The inverse relations of left eigen-
representation can also be obtained in a similar way to those of right 

eigen-representation. 

Both right and left eigen-representation are unique in the case 

of the characteristic equation having complex roots. Since these two 



144   Xu et al. 
 

 

decompositions share the same eigenvalues, it is easy to find that 

the parameters 𝜆3, 𝛽 in their representations must be completely 

identical, but other parameters and the orthonormal frame are in 

general not the same. Therefore, we denote parameters in the left 

eigen-representation by 𝑅∗, 𝜏1
∗, 𝜏2

∗, 𝜏3
∗ instead of 𝑅, 𝜏1, 𝜏2, 𝜏3. It can 

be deduced that 𝑅 and 𝑅∗ have the following transformation 
relations: 

𝑅∗ = 𝑅√(1 +
𝜏3

𝑅
)
𝑐0

2(1 + 𝑐1
2) + 𝑐0

−2(1 + 𝑐2
2) − √4𝑐1

2𝑐2
2 + [𝑐0

2(1 + 𝑐1
2) − 𝑐0

−2(1 + 𝑐2
2)]2

𝑐0
2(1 + 𝑐1

2) + 𝑐0
−2(1 + 𝑐2

2) + √4𝑐1
2𝑐2

2 + [𝑐0
2(1 + 𝑐1

2) − 𝑐0
−2(1 + 𝑐2

2)]2
 , (17.1) 

𝑐0 = √
𝛽

𝑅
, 𝑐1 =

3
2

𝜆3𝜏1 − 𝑅𝜏2

9
4𝜆3

2 + 𝛽2
, 𝑐2 =

3
2

𝜆3𝜏2 +
𝛽2

𝑅
𝜏1

9
4𝜆3

2 + 𝛽2
; (17.2) 

𝑅 = 𝑅∗√(1 +
𝜏3

∗

𝑅∗
)
𝑐0

∗2(1 + 𝑐∗
1
2) + 𝑐0

∗−2(1 + 𝑐∗
2
2) − √4𝑐∗

1
2𝑐∗

2
2 + [𝑐0

∗2(1 + 𝑐∗
1
2) − 𝑐0

∗−2(1 + 𝑐∗
2
2)]2

𝑐0
∗2(1 + 𝑐∗

1
2) + 𝑐0

∗−2(1 + 𝑐∗
2
2) + √4𝑐∗

1
2𝑐∗

2
2 + [𝑐0

∗2(1 + 𝑐∗
1
2) − 𝑐0

∗−2(1 + 𝑐∗
2
2)]2

 , (18.1) 

𝑐0
∗ = √

𝛽

𝑅∗ , 𝑐1
∗ =

3
2

𝜆3𝜏2
∗ − 𝑅∗𝜏1

∗

9
4 𝜆3

2 + 𝛽2
, 𝑐2

∗ =

3
2

𝜆3𝜏1
∗ +

𝛽2

𝑅∗ 𝜏2
∗

9
4𝜆3

2 + 𝛽2
. (18.2) 

The deduction process and more relations are given in the Appendix 

A. 

3.3 Eigen-representation under the right orthonormal frame in 

the non-vortex region 

The special case of the characteristic equation having three real 

roots {𝜆1, 𝜆2, 𝜆3} (𝜆1 + 𝜆2 + 𝜆3 = 0) is rarely discussed in the 

literature. We find its tensorial representation can be written in a 

similar form under an orthogonal frame. For simplicity, consider 

three roots be distinct and 𝜆3 be the one with the largest module. 
Assume 

𝒅 = 𝜆1𝑵1 ⊗ 𝑵1 + 𝜆2𝑵2 ⊗ 𝑵2 + 𝜆3𝑵3 ⊗ 𝑵3 (19) 

being the spectral representation of this case, where both 
{𝑵1, 𝑵2, 𝑵3} and  {𝑵1, 𝑵2, 𝑵3} are right-handed and there is an 

obtuse included angle between 𝑵1 and 𝑵2. Further normalize 𝑵3 of 

𝜆3 to be unit base 𝒎3, make use of 𝜆1,2 = −1

2
𝜆3 ± 𝛽, define 𝛽2 =

𝑅(𝑅 + 𝜏3), and isomorphize 𝑵1 and 𝑵2 as 

𝑵1 = √
𝑅𝛽

2
(
𝒎1

𝛽
−

𝒎2

𝑅
) , 𝑵2 = √

𝑅𝛽

2
(
𝒎1

𝛽
+

𝒎2

𝑅
) , (20) 
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we can get the orthonormal frame {𝒎1,𝒎2,𝒎3}, and express the 

other bases satisfying the orthogonal relations 𝑵𝑖 ∙ 𝑵𝑗 = 𝛿𝑗
𝑖 as 

𝑵1 = √
1

2𝑅𝛽
(𝛽𝒎1 − 𝑅𝒎2 −

𝛽𝜏1 − 𝑅𝜏2

3
2𝜆3 − 𝛽

𝒎3) ,𝑵2 = √
1

2𝑅𝛽
(𝛽𝒎1 + 𝑅𝒎2 −

𝛽𝜏1 + 𝑅𝜏2

3
2 𝜆3 + 𝛽

𝒎3) (21) 

𝑵3 = 𝒎3 +

3
2

𝜆3𝜏1 − 𝑅𝜏2

9
4 𝜆3

2 − 𝛽2
𝒎1 +

3
2

𝜆3𝜏2 − 𝜏1
𝛽2

𝑅
9
4𝜆3

2 − 𝛽2
𝒎2. (22) 

Substitution into (19) yields the representation under the frame 

{𝒎1,𝒎2,𝒎3} 
𝒅 = 𝜆3⌊𝒎3 ⊗ 𝒎3⌋ − (𝑅 + 𝜏3)𝒎1 ⊗ 𝒎2 − 𝑅𝒎2 ⊗ 𝒎1 + 𝒎3 ⊗ (𝜏1𝒎1 + 𝜏2𝒎2). (23) 

The above representation is also unique under the similar constricts. 

It can be seen from the comparison that the representation under 

three real roots and the representation with two conjugate complex 

roots are different only to one sign of the term 𝒎1 ⊗ 𝒎2. 

4. Local streamline pattern (LSP) and its geometric 

parameters 

In the representations based on the real Schur forms, an 

orthonormal frame must be set up first to reveal the parameter 

structures of velocity gradient. The frame varies point by point 

according to the velocity gradient, such a representation cannot be 

viewed as a sum decomposition because the frame is integrated. In 

this paper, the local streamline pattern will be used to uncover the 

meanings of parameters in the representations.  

4.1 Planar flows 

In planar flows, the traceless tensor of velocity gradient has 

standard matrix expression ( 0 ±
𝛽2

𝑅

−𝑅 0
) under some orthogonal 

frame, with 𝛽2 = 𝑅(𝑅 + 𝜏). Following a moving point to 

investigate flow pattern around it, we can use the linearized local 

velocity field through the local velocity gradient. Under the local 

coordinate system defined by the chosen frame, the local streamline 

passing through the neighboring point (𝑥0, 𝑦0) satisfies the equation 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑢 = −𝑅𝑦 ,

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑣 = ±

𝛽2

𝑅
𝑥;   𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, (24.1) 

and can be solved as 
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𝑥(𝑡) =

(

 
 

𝑥0𝑐𝑜𝑠𝛽𝑡 −
𝑅

𝛽
𝑦0𝑠𝑖𝑛𝛽𝑡

1

2
(𝑥0 +

𝑅

𝛽
𝑦0) 𝑒𝛽𝑡 +

1

2
(𝑥0 −

𝑅

𝛽
𝑦0) 𝑒−𝛽𝑡

)

 
 

,

  𝑦(𝑡) =

(

 
 

𝛽

𝑅
𝑥0𝑠𝑖𝑛𝛽𝑡 + 𝑦0𝑐𝑜𝑠𝛽𝑡

1

2
(
𝛽

𝑅
𝑥0 + 𝑦0) 𝑒𝛽𝑡 −

1

2
(
𝛽

𝑅
𝑥0 − 𝑦0) 𝑒−𝛽𝑡

)

 
 

. (24.2)

 

Eliminating the parameter t, we obtain the local streamline pattern 

as: 

𝑥2 ±
𝑅

𝑅 + 𝜏
𝑦2 = 𝑥0

2 ±
𝑅

𝑅 + 𝜏
𝑦0

2, (25) 

which means that (1) for the case of two conjugate complex roots, 

the streamline is an ellipse centered at the origin with the semi-axis 

ratio √𝑅 (𝑅 + 𝜏)⁄ , as shown in Fig. 2a; (2) for the case of two real 

roots, the streamline is a hyperbola as shown in Fig. 2b, where 

√𝑅 (𝑅 + 𝜏)⁄  gives the slope of characteristic line. The close ellipse 

of streamline is the symbol of vortex, while 𝛽 indicates angular 

frequency and 𝜏 𝑅⁄  the shape. 

 

 
Fig. 2. Local streamline pattern of two-dimensional flows at point where the velocity 
gradient tensor has: (a) complex eigenvalues, (b) real eigenvalues. 
 

4.2 Three-dimensional flows 

In three-dimensional flows, the local streamline 𝒙(𝑡) with 

starting point 𝒙(0) = 𝒙𝟎 is determined by 𝒙̇(𝑡) = 𝒙(𝑡) ∙ 𝒅. Zhou et 
al.[16] figured out the streamline pattern under the affine frame 
{𝒗𝑟 , 𝒗𝑐𝑟, 𝒗𝑐𝑖}, and proposed the parameter 𝜆𝑖 as the strength of the 
vortex. Now, we present the local streamline patterns under the 

orthonormal frames {𝒎1,𝒎2,𝒎3} and {𝒏1, 𝒏2, 𝒏3}, respectively. 
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Under the frame {𝒎1,𝒎2,𝒎3}, the radius vector can be denoted 

by 𝒓 = 𝑥𝑖𝒎𝑖, and the streamline equations are 
𝒅 = 𝜆3⌊𝒎3 ⊗ 𝒎3⌋ + (𝑅 + 𝜏3)𝒎1 ⊗ 𝒎2 − 𝑅𝒎2 ⊗ 𝒎1 + 𝒎3 ⊗ (𝜏1𝒎1 + 𝜏2𝒎2) 

𝑑𝑥1(𝑡)

𝑑𝑡
= −

𝜆3

2
𝑥1 − 𝑅𝑥2 + 𝜏1𝑥3,

𝑑𝑥2(𝑡)

𝑑𝑡
= ±(𝑅 + 𝜏3) 𝑥1 −

𝜆3

2
𝑥2 + 𝜏2𝑥3,

  
𝑑𝑥3(𝑡)

𝑑𝑡
= 𝜆3𝑥3. (26)

 

Denoted by 𝑐1 =
3

2
𝜆3𝜏1−𝑅𝜏2

9

4
𝜆3

2±𝛽2
, 𝑐2 =

3

2
𝜆3𝜏2±

𝛽2

𝑅
𝜏1

9

4
𝜆3

2±𝛽2
, these equations can be 

worked out 

𝑥1(𝑡) = 𝑒
−

1

2
𝜆

3
𝑡

(

 
 

(𝑥
1

0
− 𝑐1𝑥3

0
) 𝑐𝑜𝑠𝛽𝑡 −

𝑅

𝛽
(𝑥

2

0
− 𝑐2𝑥3

0
)𝑠𝑖𝑛𝛽𝑡

1

2
[𝑥

1

0
− 𝑐1𝑥3

0
−

𝑅

𝛽
(𝑥

2

0
− 𝑐2𝑥3

0
)]𝑒𝛽𝑡 +

1

2
[𝑥

1

0
− 𝑐1𝑥3

0
+

𝑅

𝛽
(𝑥

2

0
− 𝑐2𝑥3

0
)] 𝑒−𝛽𝑡

)

 
 

+

𝑐1𝑥3

0
𝑒

𝜆
3
𝑡
, (27.1)

 

𝑥2(𝑡) = 𝑒
−

1

2
𝜆

3
𝑡

(

 
 

𝛽

𝑅
(𝑥

1

0
− 𝑐1𝑥3

0
)𝑠𝑖𝑛𝛽𝑡 + (𝑥

2

0
− 𝑐2𝑥3

0
)𝑐𝑜𝑠𝛽𝑡

−
1

2
[
𝛽

𝑅
(𝑥

1

0
− 𝑐1𝑥3

0
) − 𝑥

2

0
+ 𝑐2𝑥3

0
] 𝑒𝛽𝑡 +

1

2
[
𝛽

𝑅
(𝑥

1

0
− 𝑐1𝑥3

0
) + 𝑥

2

0
− 𝑐2𝑥3

0
] 𝑒−𝛽𝑡

)

 
 

+

𝑐2𝑥3

0
𝑒

𝜆
3
𝑡
, (27.2)

 

𝑥3(𝑡) = 𝑥
3

0
𝑒𝜆3𝑡 , (27.3) 

which means under the frame {𝒎1,𝒎2,𝒎3} the streamline looks 
like an elliptical helix on the contracted conical surface with 

eccentric extension:  

(𝑥1 − 𝑐1𝑥3)
2 ±

𝑅

𝑅 + 𝜏3
(𝑥2 − 𝑐2𝑥3)

2 =
𝑥3

0

𝑥3
[(𝑥1

0 − 𝑐1𝑥3
0)2 ±

𝑅

𝑅 + 𝜏3
(𝑥2

0 − 𝑐2𝑥3
0)2] , (28) 

as shown in Fig. 3(b), where the matrix expression of velocity 

gradient under the frame {𝒎1,𝒎2,𝒎3} is 

𝑫𝑅 = [
−0.04 2 0
−1 −0.04 0
1 1 0.08

]. 

In comparison with (10), the extension direction is actually along 

with the left eigenvector 𝑵3.  

    If the frame changes to be {𝒏1, 𝒏2, 𝒏3}, we obtain the streamline 

equations 
𝑑𝑥(𝑡)

𝑑𝑡
= −

𝜆3

2
𝑥 − 𝑅∗𝑦,

𝑑𝑦(𝑡)

𝑑𝑡
= ±(𝑅∗ + 𝜏3

∗)𝑥 −
𝜆3

2
𝑦,

𝑑𝑧(𝑡)

𝑑𝑡
= 𝜏1

∗𝑥 + 𝜏2
∗𝑦 + 𝜆3𝑧 (29) 

with the starting point 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 𝑧(0) = 𝑧0. The 

explicit solutions of the streamline are: 
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𝑥(𝑡) = 𝑒
−1

2
𝜆

3
𝑡

(

 
 

𝑥0𝑐𝑜𝑠𝛽𝑡 −
𝑅∗

𝛽
𝑦0𝑠𝑖𝑛𝛽𝑡

1

2
(𝑥0 −

𝑅∗

𝛽
𝑦0) 𝑒𝛽𝑡 +

1

2
(𝑥0 +

𝑅∗

𝛽
𝑦0) 𝑒−𝛽𝑡

)

 
 

, (30.1) 

𝑦(𝑡) = 𝑒
−1

2
𝜆

3
𝑡

(

 
 

𝛽

𝑅∗ 𝑥0𝑠𝑖𝑛𝛽𝑡 + 𝑥
2

0
𝑐𝑜𝑠𝛽𝑡

−
1

2
(
𝛽

𝑅∗ 𝑥0 − 𝑦0) 𝑒𝛽𝑡 +
1

2
(

𝛽

𝑅∗ 𝑥0 + 𝑦0) 𝑒−𝛽𝑡

)

 
 

, (30.2) 

𝑧(𝑡) = 𝐶3𝑒
𝜆3𝑡 +

𝜏1
∗

2
𝑒

−1

2
𝜆

3
𝑡

(

 
 
 
 
 
 

𝑥0 + 𝜄
𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 + 𝜄𝛽

𝑒𝜄𝛽𝑡 +
𝑥0 − 𝜄

𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 − 𝜄𝛽

𝑒−𝜄𝛽𝑡

𝑥0 −
𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 + 𝛽

𝑒𝛽𝑡 +
𝑥0 +

𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 − 𝛽

𝑒−𝛽𝑡

)

 
 
 
 
 
 

−

𝛽𝜏2
∗

2𝑅∗
𝑒

−1

2
𝜆

3
𝑡

(

 
 
 
 
 
 

𝜄𝑥0 −
𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 + 𝜄𝛽

𝑒𝜄𝛽𝑡 −
𝜄𝑥0 +

𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 − 𝜄𝛽

𝑒−𝜄𝛽𝑡

𝑥0 −
𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 + 𝛽

𝑒𝛽𝑡 −
𝑥0 +

𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 − 𝛽

𝑒−𝛽𝑡

)

 
 
 
 
 
 

, (30.3)

 

with 

𝐶3 = 𝑧0 −
𝜏1

∗

2

(

 
 
 
 
 
 

𝑥0 + 𝜄
𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 + 𝜄𝛽

+
𝑥0 − 𝜄

𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 − 𝜄𝛽

𝑥0 +
𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 + 𝛽

+
𝑥0 −

𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 − 𝛽

)

 
 
 
 
 
 

−
𝛽𝜏2

∗

2𝑅∗

(

 
 
 
 
 
 

𝜄𝑥0 −
𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 + 𝜄𝛽

−
𝜄𝑥0 +

𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 − 𝜄𝛽

𝑥0 −
𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 + 𝛽

−
𝑥0 +

𝑅∗

𝛽
𝑦0

−
3

2
𝜆3 − 𝛽

)

 
 
 
 
 
 

. (30.4) 

From the first two solutions of 𝑥(𝑡) and 𝑦(𝑡), we get the pattern of 
the local streamline as: 

𝑥2 ±
𝑅∗

𝑅∗ + 𝜏
3
∗ 𝑦2 = 𝑒

−𝜆
3
𝑡
(𝑥0

2 ±
𝑅∗

𝑅∗ + 𝜏
3
∗ 𝑦0

2) , (31) 

which means under the frame {𝒏1, 𝒏2, 𝒏3} the streamline looks like 

an elliptical helix on the contracted conical surface with z-axis as its 

center, with the same pattern as (28), say in Fig. 3(b), but the z-axis 

is along the extension direction and so with no explicit description 

of the base plane.  
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Now, we have three kinds of views of local streamline pattern 

for the same velocity gradient with only one real eigenvalue: (i) 

Zhou’s view from the deformed frame, (ii) Li’s view from the 

orthonormal frame of the left eigen-representation, (iii) our view 

from the orthonormal frame of the right eigen-representation. Under 

the affine frame of eigenvectors, the streamline formula (3) results 

in a pattern of circular helix becoming small with the parameter t if 

the real eigenvalue 𝜆𝑟 is positive, the pattern equation is 
𝑦1

2(𝑡) + 𝑦2
2(𝑡) = 𝑒−𝜆𝑟𝑡[(𝑥1

0)2 + (𝑥2
0)2]. (32) 

The streamline formula (30) gives a pattern of elliptical helix under 

the frame {𝒏1, 𝒏2, 𝒏3} becoming small with the parameter t if the 

real eigenvalue 𝜆3 is positive, while the streamline formula (27) 

under the frame {𝒎1,𝒎2,𝒎3} presents a pattern of elliptical helix 

with monotonous z-position and eccentrically contracted with the z-

coordinate.  

It is noticeable that the LSP is objective, namely the streamline 

passing through the same point is unique whatever the frame and 

the corresponding representation are chosen. The question is in 

which representation the derived parameters makes up a good 

geometric description of the local streamline pattern? After careful 

investigation, we find the following geometric features of LSP: 

(1) There is a plane through the origin, called the base plane 

with 𝒎3 as its normal, except the streamlines on the plane no 
streamline goes through this plane. The unit vector can be made 

unique by the sign of 𝛽 in (7) or R in (8). 
(2) There are two typical directions for the vortical streamlines: 

one is the rotation axis defined by 𝒎3, another is the extension 

direction defined by 𝑵3 adjusted through 𝑐1, 𝑐2 or 𝜏1, 𝜏2 in the frame 
{𝒎1,𝒎2,𝒎3} as in (10) or directly 𝒏3 along which the streamline 

is stretch far away the base plane (𝜆3 > 0) or compressed close to 

the base plane (𝜆3 < 0). 

(3) Any streamline out of the base plane lies on an elliptical 

cone with the extension direction as its axis, spirals up (𝜆3 > 0) or 

down (𝜆3 < 0) along the rotation axis 𝒎3. The speed of rotation is 

determined by the parameter 𝛽, as pointed out by Zhou et al.[15].  

(4) The streamline on the base plane rotates to or away from 

the center, namely the origin, in the form of ellipse with 𝜏3 𝑅⁄  
indicating the ellipticity. Other streamlines projected onto the base 
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plane have the same the form of ellipse, but eccentricity occurs 

linearly according to the distance from the base plane, and the size 

is inversely proportional to the height from the base plane. 

Therefore, besides the basic parameters 𝜆3, 𝛽, it is very clear 

that the parameter set {𝑅, 𝜏1, 𝜏2, 𝜏3} of the right eigen-representation 
perfectly indicates the geometric features of LSP. As a contrast, the 

parameter set {𝑅∗, 𝜏1
∗, 𝜏2

∗, 𝜏3
∗} of the left eigen-representation has no 

such obvious geometric meaning, except that 𝜏3
∗ 𝑅⁄  indicating the 

ellipticity of shapes cut from the cone of the streamline with the 

planes perpendicular to the extension direction 𝒏3. The direction 𝒏3 
Li et al. and Liu et al. refer to as the rotation axis is actually the 

extension direction of local streamlines, that has been pointed out 

by Zhou et al. The real rotation axis of local streamlines is 𝒎3, 
which was also realized by Zhou et al., but not defined explicitly. 

When the parameters 𝜏1, 𝜏2 vanish, the right eigen-representation 

becomes identical to the left eigen-representation, the difference 

between two eigen-representation can be characterized by the 

(acute) included angle between 𝑵3 and 𝑵3, the cosine of it has 

formula: 

𝑐𝑜𝑠(𝑵3, 𝑵
3) =

9
4

𝜆3
2 + 𝛽2

√(
9
4

𝜆3
2 + 𝛽2)

2

+ (
3
2

𝜆3𝜏1 − 𝑅𝜏2)
2

+ (
3
2

𝜆3𝜏2 +
𝛽2

𝑅
𝜏1)

2

. (33)
 

 

 
Fig. 3. Local streamline pattern of velocity gradient with a unique real eigenvalue: (a) the 

base plane and the streamline on it, (b) local streamline pattern, (c) the projection of an 

above streamline on the base plane. 
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Fig. 4. Local streamline pattern of velocity gradient with three real eigenvalues: (a) the 

foci plane of streamlines normal to 𝒎3, namely the eigenvectors related to the eigenvalue 

with the maximal module, (b) two saddle planes of streamlines normal to the eigenvectors 
related to two eigenvalues with smaller modules, (c) local streamline pattern divided by 

three base planes, (d) local streamline pattern removing three base planes. 

The local streamline pattern for the velocity gradient with three 

real eigenvalues has more isolated regions of streamlines. For the 

case of one eigenvalue having a maximal module, say the velocity 

gradient tensor has the matrix expression 

𝑫𝑅 = [
−0.5 −0.3 0
−0.2 −0.5 0
0.3 0.3 1.0

] 

under the frame {𝒎1,𝒎2,𝒎3}, the local streamline pattern is 
divided into eight regions, as illustrated in Fig. 4(c). Besides the 

base plane characterized by 𝒎3 as the foci plane of streamlines (see 

Fig. 4(a)), the other two coordinate planes defined by the rest 

eigenvectors also keep the streamlines on the planes, but in the form 

of saddle plane, see Fig. 4(b). Any streamline not on the coordinate 

planes will be confined in eight isolated regions (Fig. 4(d)), each 

streamline is located on a hyperboloid, as formulated in (28). 

5. Discussion and Case study 

5.1 Discussion 

Let’s see a simple example first. The Taylor-Couette flow 

between two concentric cylinders is the simplest curved flow. In the 
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case of layer flow with the boundary conditions 𝑣𝜃(𝑟1) =

Ω1𝑟1, 𝑣𝜃(𝑟2) = Ω2𝑟2, the exact solution from the N-S equations 

reads 

𝑣𝜃(𝑟) =
Ω2𝑟2

2
− Ω1𝑟1

2

𝑟
2

2
− 𝑟

1

2
𝑟 +

(Ω1 − Ω2) 𝑟
2

2
𝑟

1

2

𝑟
2

2
− 𝑟

1

2
𝑟−1, (34) 

which yields the velocity gradient as 

𝒅 =
Ω2𝑟2

2
− Ω1𝑟1

2

𝑟
2

2
− 𝑟

1

2
(𝒆𝑟⨂𝒆𝜃 − 𝒆𝜃⨂𝒆𝑟) −

(Ω1 − Ω2) 𝑟
2

2
𝑟

1

2

𝑟
2

2
− 𝑟

1

2
𝑟−2(𝒆𝑟⨂𝒆𝜃 + 𝒆𝜃⨂𝒆𝑟). (35) 

For simplicity, set 𝑟2 = 2𝑟1 = √2𝑟0, Ω2 = −Ω1 = Ω0, the velocity 

gradient reduces to 

𝒅 = (
4

3

𝑟
0

2

𝑟2
+

5

3
)Ω0𝐞𝑟⨂𝐞𝜃 + (

4

3

𝑟
0

2

𝑟2
−

5

3
)Ω0𝐞𝜃⨂𝐞𝑟. (36) 

 

 
Fig. 5. The property of Liutex in the Taylor-Couette flow: (a) local streamlines for the 

velocity gradient at point A in vortex region, (b) local streamlines for the velocity gradient 

at point B in non-vortex region, (c) division of vortex and non-vortex regions. 

According to the classical model, this flow has constant angular 

velocity of rotation 5

3
Ω0 everywhere, but the model of LSP shows 

that the fluid has no rotation when 𝑟 < 0.8944𝑟0 (𝑟1 = 𝑟0 √2⁄ ), and 
variable angular velocity elsewhere, as shown in Fig. 5. Constant 

rotation, varying rotation or even no rotation, which one is more 

intuitive? 
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The use of LSP in the identification of vortex emphasizes that 

there is no vortex in the straight flows, which can be said to be a 

breakthrough to the classical viewpoint of flow motion. The real 

Schur forms of velocity gradient starts with the eigenvector of the 

real eigenvalue, and brings insight into the local streamline pattern 

investigated by the observer moving with the local fluid particle. 

The precondition to associate this viewpoint with the vortex is that 

the vortex is carried along by the mainstream and so it is more 

suitable to investigate the vortex following the current particle. But 

such a presupposition is basically wrong, and will bring illusion. We 

would like to point out several fallacies in the use of LSP viewpoint: 
(1) Sum decomposition: the eigen-representations are not a kind of 

sum decomposition, because the algebraic structures of its 
components indicated by parameters, say 𝜆3, 𝑅, 𝜏1, 𝜏2, 𝜏3, are 
not invariant under frame transformation. 

(2) Rigid-body rotation: there are streamlines revolving around 
some center, but no fluid element rotates like a rigid body, even 
in the average sense. 

(3) Frame transformation: the orthonormal frame is derived from 
the velocity gradient, which varies point by point. It is unsuitable 
to move the transformation inside the gradient operator, say 
𝑫𝐿 = 𝑷𝒅𝑷𝑇 ≠ 𝑷𝛁(𝑷𝒗) = 𝑷𝛁(𝑽). 

Now we present an example to show the invariance of local 

streamline. For a particle, recast at the origin with zero velocity, has 

the velocity gradient in the right real Schur form 

𝑫𝑅 = [
−0.0193773 0.240057 0.0
−0.113056 −0.0193773 0.0
0.063467 0.099629 0.0387546

] . (37) 

The basic parameters read 𝜆3 = 0.0387546, 𝛽 = 0.164742, and 

the parameters in the right eigen-representation are 𝑅 =
0.113056, 𝜏1 = 0.063467, 𝜏2 = 0.099629, 𝜏3 = 0.127001. 

Under the frame {𝒎1,𝒎2,𝒎3}, the streamline passing through the 

point (2.97518,−4.30261, 0.1) is shown in Fig. 6(a). After a frame 
transformation 

(𝒏1, 𝒏2, 𝒏3) = (𝒎1,𝒎2,𝒎3) (
0.916866 0.345346 −0.200229
−0.183951 0.810662 0.555868
0.354286 −0.472825 0.806795

) , (38) 

we obtain the left real Schur form of the velocity gradient under the 

frame (𝒏1, 𝒏2, 𝒏3) 
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𝑫𝐿 = [
−0.0193773 0.212251 0.149917
−0.127868 −0.0193773 0.0220819

0 0 0.0387546
] . (39) 

the local streamline passing through the same spatial point, namely 

(3.55474,−2.50777, −2.90672) in the new frame, is illustrated in 
Fig. 6(b). It is obvious that two streamlines are actually the same 

(Fig. 6(c)). 

 
Fig. 6. A local streamline (a) viewed under the frame {𝒎1,𝒎2,𝒎3} passing through the 

point (2.97518,−4.30261, 0.1), and (b) viewed under the frame (𝒏1, 𝒏2, 𝒏3) passing 

through the point (3.55474,−2.50777,−2.90672). Two views are completely merged in 

(c). 

5.2 Case study 

In this subsection, we try to verify the relation between the 

right and left eigen-representations by analyzing the vortex features 

in the late transition process of the flat boundary flow with Mach 

number of 0.5, through the DNS data provided by Liu Chaoqun's 

research group, as shown in Fig. 7. 

 
Fig. 7. The DNS data of the flat boundary flow with Mach number of 0.5, shown with 

criterion Ω = 0.52. 
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Theodorsen[28] pointed out that the horseshoe-shape vortex, 

now usually called the hairpin vortex, is the basic structure in the 

turbulent boundary layer flow. We pick up a typical hairpin vortex 

in the above DNA data, and find that the unit vectors 𝒎3 and 𝒏3 are 
apparently different in its leg part, while they tend to be consistent 

in its head part and at the junction of the vortex leg with the vortex 

ring, as shown in Fig. 8(left). Randomly taking 30 samples of R and 

R∗ from the leg and head, respectively, a stable positive correlation 

between them is obvious as predicted by the formulae (17) and (18), 

or shown in Fig. 8(right). 

 

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

 vortex leg

 vortex head

R
*

R

 
Fig. 8. The distribution of included angle between 𝒎3 and 𝒏3 on a typical hairpin-vortex. 

In the left Liutex lines extracted from the middle field with typical vortices, the blue color 

in the head and junction shows the small included angle while the red color mainly in the 

leg shows the large included angle. The right is the correlation between R and R∗ using 30 

random samples from the leg and head, respectively. 
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Fig. 9. A real local streamline and its direction features observed following a fluid particle 

in the leg of a typical vortex. 

 

Finally, we take a point A from the vortex leg, which has 

coordinates (488.114, 11.6319, 2.25222) in the DNS data and the 

velocity at this point is 𝒗𝐴 =
(0.847403,−0.0226804,−0.0415701), and the velocity gradient 

𝒅𝐴 = [
0.0321266 −0.0202696 −0.000168884
0.169304 0.000339247 −0.258384

−0.146806 0.207205 −0.0341335
] . (40) 

The real local streamlines from the original flow field, in 

comparison the LSPs discussed before are about the local linearized 

field, are observed by following the motion of the particle A. A real 

local streamline through the point a little deviating from the 

intersection point A, say (488.114,11.5319, 2.25222), is 

illustrated in Fig. 9, where the 𝒎3 and 𝒏3(Liutex) lines through the 
point A are also presented. It is very clear that the local rotation axis 

at the point A is 𝒎3 while the extention of the local streamline is 

well consistent with the Liutex line. Such an observation completely 

coincides with the LSP analysis in the previous section. 

Conclusions 

In this paper, the proposed vortex identification methods based 

on the real Schur forms of the velocity gradient have been revisited 

and developed. The tensor forms of left/right real Schur forms, 

called the eigen-representations now, are obtained and the relations 

between them are clarified, while a similar eigen-representation in 

the case of three real roots is also proposed. The right eigen-

representation is recommended through the investigation on the 
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geometric meaning of parameters, which is based on the analysis of 

the local streamline pattern (LSP). By the discussion and case study, 

we conclude that a presupposition needs to be further confirmed that 

all vortices are carried along by the current velocity. 

The following viewpoints would be important for the future 

studies: 

(1) The eigen-representation methods are non-classical and 

cannot be analyzed by a modified deformation model. 

(2) Different eigen-representations present the same LSP, with 

features of a rotation direction/speed and a deviated extension 

direction, and a projection shape in the base plane, while 𝛽 is more 
suitable to indicate the rotation speed. 

(3) Since the parameters in the right eigen-representations are 

more sensible to the geometrical features of the LSP, the right eigen-

representation is better in characterizing the vortex features of the 

LSP. 

The original intention of making use of the eigen-

representations is to reflect the intuition that there is no vortex in the 

straight laminar flow, but the eigen-representations destroy the spirit 

of classical deformation analysis. It is questionable whether a more 

reasonable explanation can be proposed in the vortex identification 

of the Taylor-Couette flow between two concentric cylinders. 

However, in any case, the analysis of LSP based on velocity 

gradient breaks through the classical deformation analysis and 

strives to pursue an authenticity description of the vortex to some 

extent, which is worthy of affirmation. In fact, there is a more direct 

and novel thinking, that is, "the rotation of fluid happens in any 

curved flow, but the vortex begins with a core of rotation", which 

will be discussed in another paper of ours. 
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Appendix A 

Making use of notation (17.2), the eigenvectors 𝑵1, 𝑵2 in (11) can be written in terms 

of 𝒎1,𝒎2,𝒎3 by 

𝑵1 = √
1

2
(𝑐0𝒎1 − 𝑐0

−1𝒎2 − (𝑐0𝑐1 − 𝑐0
−1𝑐2)𝒎3),

  𝑵2 = √
1

2
(𝑐0𝒎1 + 𝑐0

−1𝒎2 − (𝑐0𝑐1 + 𝑐0
−1𝑐2)𝒎3), (A. 1)

 

and 𝑵3 = 𝒎3. We will deduce the orthonormal bases 𝒏1, 𝒏2, 𝒏3 and parameters 

𝑅∗, 𝜏1
∗, 𝜏2

∗, 𝜏3
∗ in the left eigen-representation. In virtue of the notations 

𝐴2 = 𝑵1 ∙ 𝑵1 =
1

2
[𝑐0

2(1 + 𝑐1
2) + 𝑐0

−2(1 + 𝑐2
2) − 2𝑐1𝑐2], (A. 2.1) 

𝐵2 = 𝑵2 ∙ 𝑵2 =
1

2
[𝑐0

2(1 + 𝑐1
2) + 𝑐0

−2(1 + 𝑐2
2) + 2𝑐1𝑐2], (A. 2.2) 

𝑵1 ∙ 𝑵2 = 𝐴𝐵𝑐𝑜𝑠𝛾 =
1

2
[𝑐0

2(1 + 𝑐1
2) − 𝑐0

−2(1 + 𝑐2
2)]. (A. 2.3) 

we first isomorphize the modules of the real part and imaginary part of 𝑵1 ± 𝜄𝑵2 by a 

planar rotation, namely two vectors of the real part and imaginary part of 

(𝑵1 + 𝜄𝑵2)𝑒
−𝜄𝜃 = (𝑵1𝑐𝑜𝑠𝜃 + 𝑵2𝑠𝑖𝑛𝜃) + 𝜄(𝑵2𝑐𝑜𝑠𝜃 − 𝑵1𝑠𝑖𝑛𝜃) (A. 3) 

have the same size, yielding the unique rotation angle 𝜃 by 

tan2𝜃 =
𝐵2 − 𝐴2

2𝐴𝐵𝑐𝑜𝑠𝛾
=

2𝑐1𝑐2

𝑐0
2(1 + 𝑐1

2) − 𝑐0
−2(1 + 𝑐2

2)
, −

𝜋

2
<  θ ≤

𝜋

2
(A. 4) 

if the included angle between 𝒏1 and 𝒎1 is confined to be acute, namely 𝒎1 ∙ 𝒏1 > 0. 

Then using the formula 

𝒏1,2 =
𝑵2 ± 𝑵1

|𝑵2 ± 𝑵1|
~

𝑵2𝑐𝑜𝑠𝜃 − 𝑵1𝑠𝑖𝑛𝜃 ± (𝑵1𝑐𝑜𝑠𝜃 + 𝑵2𝑠𝑖𝑛𝜃)

|𝑵2𝑐𝑜𝑠𝜃 − 𝑵1𝑠𝑖𝑛𝜃 ± (𝑵1𝑐𝑜𝑠𝜃 + 𝑵2𝑠𝑖𝑛𝜃)|
, (A. 5) 

we obtain 

𝒏1 =
√2[𝑐0𝒎1𝑐𝑜𝑠𝜃 + 𝑐0

−1𝒎2𝑠𝑖𝑛𝜃 − (𝑐0𝑐1𝑐𝑜𝑠𝜃 + 𝑐0
−1𝑐2𝑠𝑖𝑛𝜃)𝒎3]

√𝐴2 + 𝐵2 + √(𝐵2 + 𝐴2)2 − 4𝐴2𝐵2 sin2 𝛾

, (𝐴. 6.1)
 

𝒏2 =
√2(−𝑐0𝒎1𝑠𝑖𝑛𝜃+𝑐0

−1𝒎2𝑐𝑜𝑠𝜃+(𝑐0𝑐1𝑠𝑖𝑛𝜃−𝑐0
−1𝑐2𝑐𝑜𝑠𝜃)𝒎3)

√𝐴2+𝐵2−√(𝐵2+𝐴2)2−4𝐴2𝐵2 sin2 𝛾

, (A. 6.2)

and consequently 

𝒏3 = 𝒏1 × 𝒏2 =
2(𝒎3 + 𝑐1𝒎1 + 𝑐2𝒎2)

𝐴2 + 𝐵2 + √(𝐵2 + 𝐴2)2 − 4𝐴2𝐵2 sin2 𝛾
=

𝒎3 + 𝑐1𝒎1 + 𝑐2𝒎2

√1 + 𝑐1
2 + 𝑐2

2
, (A. 6.3) 

which coincides with (10). According to the definition (12), we can calculate 
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𝜏1
∗ = 𝒏1 ∙ 𝒅 ∙ 𝒏3, 𝜏2

∗ = 𝒏2 ∙ 𝒅 ∙ 𝒏3, 𝑅∗ = −𝒏2 ∙ 𝒅 ∙ 𝒏1, 𝜏3
∗ =

𝛽2

𝑅∗ − 𝑅∗. (A. 7) 

There is a more direct formula of 𝑅∗ from the expressions (13), say 

𝑅∗ = 𝛽
|𝑵1𝑐𝑜𝑠𝜃 + 𝑵2𝑠𝑖𝑛𝜃 − 𝑵2𝑐𝑜𝑠𝜃 + 𝑵1𝑠𝑖𝑛𝜃|

|𝑵1𝑐𝑜𝑠𝜃 + 𝑵2𝑠𝑖𝑛𝜃 + 𝑵2𝑐𝑜𝑠𝜃 − 𝑵1𝑠𝑖𝑛𝜃|
. (A. 8) 

Substitution of (A.2) and (A.4) yield 

𝑅∗2 = 𝛽2
𝐴2 + 𝐵2 − √(𝐵2 + 𝐴2)2 − 4𝐴2𝐵2 sin2 𝛾

𝐴2 + 𝐵2 + √(𝐵2 + 𝐴2)2 − 4𝐴2𝐵2 sin2 𝛾
, (A. 9) 

or expressed by as (17) in terms of the parameters 𝑅, 𝜏3, 𝑐0, 𝑐1, 𝑐2. 

 


