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Abstract: In this paper, an Adaptive Backstepping Neural Network control approach is 

used for a class of affine nonlinear systems which describe the pump model in the strict 

feedback form. The close loop signals are semi globally uniformly ultimately bounded 

and the output of the system is proven to follow a desired trajectory. Simulation results 

are presented to show the effectiveness of the approach proposed in order to control the 

pump output. 

 

1 Introduction 
Recent technological developments have forced control engineers to deal with 

extremely complex systems that include uncertain and possibly unknown 

nonlinearities, operating in highly uncertain environments. Man has two 

principal objectives in the scientific study of his environment: he wants to 

understand and to control. The two goals reinforce each other, since deeper 

understanding permits firmer control, and, on the other hand, systematic 

application of scientific theories inevitably generates new problems which 

require further investigation, and so on. 

 Adaptive control [1], [10] is a powerful tool that deals with modeling 

uncertainties in nonlinear (and linear) systems by on line tuning of parameters. 

Very important research activities include on-line identification [11], [13] and 

pattern recognition inside the feedback control loop. Nonlinear control includes 

two basic forms of systems, the feedforward systems and the feedback systems. 

The strict feedback systems can be controlled using the well known 

backstepping [1], [4], [15] technique. The purpose of backstepping is the 

recursive design of a controller for the system by selecting appropriate virtual 

controllers. Separate virtual controllers are used in order to stabilize every 

equation of the system. In every step we select appropriate update laws. The 
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strict feedforward systems can be controlled using the forwarding technique that 

is something like backstepping but in reverse order. Other cases of systems that 

can be converted to the previous forms are part of a larger class of systems that 

are called interlaced systems as described by [17], and [18]. In these systems we 

combine backstepping and forwarding techniques together in order to 

recursively design feedback control laws. Interlaced systems are not in feedback 

form, nor in feedforward form.  These systems have a specific methodology that 

differs from backstepping and forwarding. We don’t start from the top equation, 

neither from the bottom.  

Other special cases of systems are part of other forms that we call mixed 

interlaced and we introduce their study in the present paper. The methodology is 

based on classical interlaced systems and is developed by the authors. We want 

to make the systems solvable by one of the well known backstepping and 

forwarding methods. This can be reached after some specific steps that convert 

the system into a known form. We start from the middle equation and we 

continue with the top. The previous method is based on classical interlaced 

forms that are introduced by [17] and [18] and can be extended to more 

complicated systems. 

A lot of researchers developed a series of results that generalized and 

explained the basic idea of nonlinear control. Teel [19] in his dissertation 

introduced the idea of nested saturations with careful selection of their 

parameters to achieve robustness for nonlinear controllers. After Teel [19], [17] 

proposed a new solution to the problem of forwarding that is based on a different 

Lyapunov solution.  

 In this paper we control a pump which is a fifth order nonlinear model, but for 

simplification purposes we use a third order reduced model that exists in the 

literature. The pump has inherent structural uncertainties with high degrees of 

uncertainty, thus we are forced to use our non-linear adaptive control techniques. 

 

2 Problem Analysis 

A. System Pump Description 

Consider a Pump model found in the literature [20] which is presented by the 

following well known scheme. (The various variables are explained later in the 

paper. Here we give the basic figure) 
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Fig 1: Schematic representation of a general Pump mechanical design 

  

Assume we have second order dynamics  
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  Where 
c

x is the piston linear displacement, a quantity that can always be 

measured. 

 Consider certain volume within the hydraulic actuator 

( ) ( )0
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a d a a d d
V V S lα α= − ; the dynamics of pressure within the control 

actuator are: 
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where the actuator ingoing/outgoing flow is 
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Remark 1: The outgoing actuator flow has been assumed to be positive, i.e., 

0 0
c a

x Q> ⇔ > . 

Remark 2: The valve stroke is modelled as 
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( ) 2

1 2c c c
f x a x a x= + .          (4) 

The dynamic behaviour of the disc is governed by the following torque 

equations: 
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 The output flow of the pump is given by: 
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( ) ( ) ( )

tan , 0

tan , 0

p p d d c

p p d d a c c

Q K l x

Q K l Q x x

ω α

ω α

= >

= − <
               (7)   

       

    The mechanical link between the disc and the actuator is provided by the 

following equation (assuming that the angle is small, we linearize the tangent) 

 

 ( )tan
a d d d d

x l lα α= ≈ ,                 (8)    

 

 Under all the above assumptions the fifth order nonlinear model for the pump 

is given by: 
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 Assuming negligible valve dynamics we may get a reduced third order model 

as follows: 
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and  
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The pump is commanded assuming action on the actuator flow, and then we 

get: 
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and 
c s s

x b i= . 
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Equation  (11) can be expressed in (or transformed to) the following 

nonlinear state space form: 

 

1
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where
1 2

[ , ,... ] , 1,... , ,T i

i i
x x x x R i n u R y R= ∈ = ∈ ∈    are state variables, input 

and output respectively. More accurately for the pump model (11) we have 
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Our purpose is to construct a specific adaptive Neural Network controller (the 

proof is omitted due to space) such that: 

i) all the signals in the close loop remain semi globally ultimately 

bounded 

ii) the output signal y follows a desired trajectory signal yd, with 

bounded derivatives up to ( 1)m th+  order. 

In order to approximate some unknown nonlinearities we use Neural 

Networks [2], [3], [5], [9], [16]. This approximation is guaranteed within some 

compact sets Ω. 

Since (.)
i

g , 1,...i n=  are smooth functions, they are therefore bounded 

within some compact set. According to the previous we can make two 

assumptions. 

Assumption 1: The signs of (.)
i

g  are bounded for example there exist 

constants 
1 0
(.) (.) 0

i i
g g≥ >  such that,

1 1 0
(.) (.) (.)

i i i
g g g≥ ≥ , n

n
x R∀ ∈ Ω ⊂ .  

Assumption 2: There exist constants (.) 0
id

g >  such that 

(.) (.)
i id

g g≤ n

n
x R∀ ∈ Ω ⊂ . 

 

B. RBF Neural Networks 

 

      Dynamical Neural Networks are well established tools used in the control of 

nonlinear and complex systems. We use RBF Neural Networks [6] in order to 

approximate the nonlinear functions of our systems [14], [15]. The idea behind 

this is described fully at [2], [3], [7], [8], [9], [15]. The RBF NN we use are of 

the general form (.) (.)F θ ξΤ= , where pRθ ∈ is a vector of regulated weights  

and (.)ξ  a vector of RBF’s. It has been shown that given a smooth function 
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F: RΩ → , where Ω  is a compact subset of mR  ( m  is an appropriate integer) 

and 0ε > , there exists an RBF vector mξ: R pR→  and a weight vector * pRθ ∈  

such that 
*Τ

F(x)-θ ξ(x) ε≤ .x∀ ∈ Ω   Here ε is called the network reconstruction 

error. The optimal weight vector is chosen as an appropriate value that 

minimizes the reconstruction error over Ω . 

 
Fig 2: Schematic representation of RMF Neural Networks 

 

C. Controller Design 

In [15], a desired feedback control law was initially proposed for system (13) 

and Neural Networks are used to parameterize the desired feedback control law. 

Finally adaptation laws are used to tune the weights of neural networks for 

closed loop stability. In our paper we use the controller designed by Kaynak et 

al. [4]. The design procedure is described in 3 steps because in the pump model 

above we have 3 states. Each backstepping stage results in a new virtual control 

design obtained from the preceding design stages. When the procedure ends, the 

feedback design for the control input is obtained, which achieves the original 

design objective. 

Step1: In this step we want to make the error between x1 and ( )1  
 

d d
x y= as 

small as possible. 

The previous is described by the following equation: 
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by using 
2

x as the virtual control input. The previous equation can be changed 

by multiplication and division with 
1 1
( )g x  to the following form: 

 1 1

1 1 1 1 1 1 1 2 1 1 1
( )[ ( ) ( ) ( ) ]

d
e g x g x f x x g x x− −= + −& &        (17)    
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We choose the virtual controller as: 

 
1 1

2 2 1 1 1 1 1 1 1 1 1
( ) ( ) ( )

d d
x x g x f x g x x k e− −= = − + −&      (18) 

 

where k1 is a positive constant. In order to approximate the unknown 

nonlinearities (functions ( )1 1
f x and ( )1 1

g x ) we use RBF Neural Networks. A 

Neural Network based virtual controller is used as follows: 

 

2 1 1 1 1 1 1 1 1 1
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where we have substituted the unknown nonlinearities  ( ) ( )1

1 1 1 1
 g x f x

−
and 

( ) 1

1 1
 g x

−
with the RBF Neural Networks 

1 1 1
( )xθ ξΤ  and 

1 1 1
( )n xδ Τ  respectively 

based on Lyapunov stability [2]. 

 

 

We take the following adaptation laws (σ-modification) in order to avoid 

large values of the weights: 

 

1 11 1 1 1 1 1
[ ( ) ]e xθ ξ σ θ= Γ −&  

1 12 1 1 1 1 1 1
[ ( ) ]

d
e n x xδ γ δ= Γ − −& &              (20) 

 

with 
1 1
,  σ γ small and positive constants and

11 11
0ΤΓ = Γ > , 

12 12
0 ΤΓ = Γ > are 

the adaptive gain matrices. 

 

Step 2: In this step we make the error between x2 and x2d as small as possible. 

The previous is described by the following equation: 

 

2 2 2d
e x x= −                            (21) 

 

We take the derivative of e2. After that we have:  
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By taking the 
3d

x as a virtual control input and by substituting the unknown 

nonlinearities 1

2 2 2 2
( ) ( )g x f x−  and 1

2 2
( )g x −  with the RBF Neural Networks 

2 2 2
( )xθ ξΤ  and 

2 2 2
( )n xδ Τ  respectively based on Lyapunov stability [2], we have: 

 

3 1 2 2 2 2 2 2 2 2 2
( ) ( )

d d
x e x n x x k eθ ξ δΤ Τ= − − + −&        (23) 

 



Chaotic Modeling and Simulation (CMSIM)  1:  109-122, 2012 117 

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

2 21 2 2 2 2 2
[ ( ) ]e xθ ξ σ θ= Γ −&  

2 22 2 2 2 2 2 2
[ ( ) ]

d
e n x xδ γ δ= Γ − −& &  (24) 

 

with 
2 2 
,  σ γ small and positive constants and 

21 21 22 22
0, 0 Τ ΤΓ = Γ > Γ = Γ > are 

the adaptive gain matrices. 

 

 

Step 3 (Final): In this step we make the error between 
3
 x and 

3
 

d
x as small as 

possible. 

The previous is described by the following equation: 

 

3 3 3d
e x x= −                                   (25) 

 

 We take the derivative of e3. After that we have:  

 

3 3 3 3 3 3 3 3
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3 3 3 3 3 3 3 3 3
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d d
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e x x f x g x u x
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Where u is the control input and by substituting the unknown nonlinearities 
1

3 3 3 3
( ) ( )g x f x−  and 1

3 3
( )g x −  with the RBF Neural Networks 

3 3 3
( )xθ ξΤ  and 

3 3 3
( )n xδ Τ  respectively, we have: 

 

2 3 3 3 3 3 3 3 3 3
( ) ( )

d
u e x n x x k eθ ξ δΤ Τ= − − + −&          (27) 

 

 We take the following adaptation laws (σ-modification) in order to avoid 

large values of the weights: 

 

3 31 3 3 3 3 3
[ ( ) ]e xθ ξ σ θ= Γ −&  

3 32 3 3 3 3 3 3
[ ( ) ]

d
e n x xδ γ δ= Γ − −& &     (28) 

with 
3 3 
,  σ γ small and positive constants and 

31 31 32 32
0, 0 Τ ΤΓ = Γ > Γ = Γ > are 

the adaptive gain matrices. 

 

 

3 Simulation 
 

     In order to show the effectiveness and apply the above approach a simulation 

is presented for the pump model: 
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( )
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where 
1 2 3 
,  ,  x x x and y are states and output of the system respectively. The 

initial conditions are
0 10 20 30

[ ,  ,  ] [0.3,  0.2,  0.1]  T Tx x x x= = and the desired 

output signal of the system is ( )( )( 10* 10 / ) 0.5dy atan t π= − + .  These 

selections are not based on any experiments in the lab. 

We make the assumption that all the basis function of the NNs [12] have the 

form 
2

( ) ( )
( ) exp[ ]

T

i i i i

i

i

x u x u
G x

v

− −
= −  (as described in [6]) where 

1 2,  ,  ,  
T

i i i iju u u u = …  are the centers of the receptive field and vi are the widths 

of the Gaussian function. 
The Neural Networks 

1 1 1
( )xθ ξΤ and 

1 1 1
( ) xδ ηΤ have 5 nodes with centres uj 

evenly spaced in [-6, 6] and widths 
2 2 2

1,  ( )
j

v xθ ξΤ= and 
2 2 2

( )xδ ηΤ have 25 

nodes with centres uj evenly spaced in [-6, 6] x [-6, 6] and widths vj=1 

and
3 3 3

( )xθ ξΤ , 
3 3 3

( )xδ ηΤ have 125 nodes with centers uj evenly spaced in [-6, 6] 

x [-6, 6] x [-6, 6] and widths vj=1. We select the  design parameters of the above 

controller as { }1 2 1 2 1 2 1 2
3.5,  2 ,  0.2k k diag σ σ γ γ= = Γ = Γ = = = = = . The 

initial weights θ1, θ2, θ3 are arbitrarily taken in [-1.2, 1.2] and δ1, δ2, δ3 in [0, 

1.2].  

Figs. 3-8 show the simulation results of applying the controller for tracking 

the desired signal yd. From figure 3 we can see that good tracking performance is 

obtained. Figure 4 shows the trajectory of the controller. Figure 5 shows the 

phase plane of the system. Figure 6 shows the error
1

e , Figure 7 shows the error 

2
e  and finally Figure 8 shows the error

3
e . 
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Fig. 3: The output of the system under adaptive controller. 

 

Fig. 4: The trajectory of the adaptive controller. 
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Fig. 5: The phase plane plot of the system. 

 

 

 

 
Fig. 6: Error e1. 
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Fig. 7: Error e2. 

 
Fig. 8: Error e3. 

 

 

 

4 Conclusion 
 

In this paper, we apply a backstepping controller scheme to control the output 

of the pump model to reach a specific pressure behavior without knowing the 

dynamics. The tracking error is bounded and is established on the basis of the 

Lyapunov approach. Simulation results show the effectiveness of this algorithm 

in controlling the mechanical pump. Future research will be focused on 

implementing this algorithm in the real experimental model.           
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