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Abstract: It is generally difficult to synchronize a ring network that features chaotic 

behaviour, especially if the system’s order is too large. In this paper, we consider a ring 

network of three identical nonlinear and non-autonomous circuits of fourth order, which 

are bidirectionally coupled through three coupling linear resistances RC. We present 

simulation and experimental results for synchronization of such a network in low 

frequency area, and derive a sufficient condition for chaotic synchronization of this type 

of network. 
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1    Introduction 

Synchronization is an important property of chaotic dynamical systems. In the 

past decades the synchronization in large scale complex networks has attracted 

lots of attention in various fields of science and engineering [2, 3, 5, 14, 15, 16]. 

In general, a complex network is a large set of interconnected nodes, where a 

node is a fundamental unit-joint with detailed contents, which lines intersect or 

branch. 

The nonlinear electric circuits are veritable tools to study the fundamental 

mechanisms underlying the onset of chaos. A variety of autonomous [7, 8, 12] 

and non-autonomous [6, 10] circuits have been reported in the literature in 

recent times. A plethora of bifurcation and chaos phenomena, such as period 

doubling routes to chaos, intermittency, quasi periodicity, chaotic 

synchronization and so on, have been studied extensively.      

In this paper, theoretical and experimental results of chaos synchronization of 

three identical non-autonomous circuits, bidirectionally coupled in ring 

connection network are presented. The system’s evolution from non 

synchronized oscillations to synchronized ones, when its individual circuit 

exhibits chaotic behaviour, is studied. 

 

2    The Nonlinear, Non-Autonomous Circuit 

Chaotic performance of the fundamental non-autonomous circuit has been 

investigated in the past [4]. It is based on a third order autonomous piecewise 
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linear circuit, which introduced by Chua and Lin [1], and is capable of realizing 

every member of Chua's circuit family. A second inductor L2 has been added in 

the branch of the voltage source vs(t), in order to enrich circuit’s dynamics. The 

circuit also consists of two active elements, a nonlinear resistor RN, which has a 

v-i characteristic of N-type with Ga=-0.35mS, Gb=5.0mS and Bp=0.8V, and a 

negative conductance Gn=-0.50mS. In recent papers, circuit’s dynamics in low 

frequency area has been studied extensively [10, 11, 13]. The circuit’s 

parameters are considered unchangeable during our study. More particularly: 

L1=L2=100mH, C1=33nF, C2=75nF and R1=1KΩ. We use sinusoidal input 

signal vs(t) with amplitude Vo equal to 0.60V or 0.75V, while the frequency f 

ranges from 30Hz to 50Hz. Using the above parameters circuit exhibits chaotic 

behaviour. In Figures 1a) and b) theoretical and experimental phase portraits vC2 

vs. vC1 for Vo=0.75V and f=35Hz are presented, respectively. The maximum 

Lyapunov exponent for the above parameters is positive (LEmax=0.0156), 

which indicates that the system exhibits chaotic behavior. 

 

 

 
 

a) theoretical b) experimental 
 

  Fig. 1. Phase portrait vC2 vs. vC1 for Vo=0.75V and f=35Hz. 
 

 

3    Dynamics of Ring Connection Topology 

In a recent paper [9] we have seen that chaotic synchronization of two identical 

non-autonomous, unidirectionally coupled, nonlinear, fourth order circuits is 

possible. In this work, chaotic synchronization of three bidirectionally coupled 

circuits in ring connection, as seen in Figure 2, is studied.  

More particularly, as illustrated in Figure 2, circuits NA1C1, NA1C2 and 

NA1C3 are bidirectionally coupled through three identical linear resistances RC. 

The connection points are in capacitances C2i, where i=1, 2 and 3 denotes circuit 

NA1C1, NA1C2 and NA1C3, respectively.  
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  Fig. 2. Three non-autonomous, nonlinear fourth order circuits in ring 

connection. 

 

 

The resulting set of system’s differential equations is derived using Kirchhoff’s 

circuit laws. 
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Where the current iRNi through the nonlinear element i, with i=1, 2, 3 for circuit 

1, 2 and 3 respectively, and input signal vs(t) are given by equations: 

 

( ) ( )1 1 10 5RNi b C i a b C i p C i pi G v . G G v B v B= + − + − −  

2s ov ( t ) V cos( ft )π=  

 
In figures 3a) and b) bifurcation diagrams vC21(t)-vC22(t) vs. eC and vC22(t)-vC23(t) 

vs. eC are presented, where eC is the coupling parameter and is given by 

equation. 

1C Ce R / R=  

where RC is the coupling resistance. 

We can see that chaotic synchronization of the three identical circuits in ring 

connection is observed for coupling parameter eC>0.568, or for coupling 

resistance RC<1.8kΩ 

  
 

a) vC21(t)-vC22(t) vs. eC b) vC22(t)-vC23(t) vs. eC 
 

  Fig. 3. Bifurcation diagrams for Vo=0.75V and f=35Hz. 
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In figure 4 simulation and experimental results of waveforms vC21(t)-vC22(t) for 

various values of coupling resistance RC are presented. More particularly, in 

figures 4a), c) and e) simulation vC21(t)-vC22(t) for RC=1.0MΩ (eC→0),  

RC=10.0kΩ (eC=0.1) and RC=1.8kΩ (eC=0.568) are shown, while in figures 4b), 

d) and f) experimental vC21(t)-vC22(t) for the same parameters are illustrated.  

 

 

  
 

a) RC=1.0MΩ (simulation) b) RC=1.0MΩ (experimental) 

 

  

  

c) RC=10.0kΩ (simulation) d) RC=10.0kΩ (experimental) 

  

  
  

e) RC=1.8kΩ (simulation) f) RC=1.8kΩ (experimental) 

  

 
  Fig. 4. a), c), e) Simulation and b), d), f) Experimental waveforms vC21(t)-

vC22(t) (x: 1ms/ div, y: 1V/ div). 
 

 

In figures 4e) and f) we can see that chaotic synchronization occurs for coupling 

resistance RC=1.8kΩ (eC=0.568). This threshold synchronization value of RC is 
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lower than in the case of chaotic synchronization of two bidirectionally coupled 

identical circuits, with the same circuit’s settings, which is RC=2.28 (eC=0.479) 

[9]. 

In figures 5 and 6 a collection of results are displayed. Specifically, in figure 5 

we can see the threshold synchronization value of coupling parameter eC versus 

frequency f, for amplitude of the input sinusoidal signal Vo=0.60V and 

Vo=0.75V. We can see that the values of eC in the case of Vo=0.60V are lower 

than in the case of Vo=0.75V. In figure 6 the threshold synchronization value of 

coupling resistance RC versus frequency f for the same parameters as in figure 5 

is presented. 

 

 

Fig. 5. Threshold synchronization value of coupling parameter eC vs. f. 

 

 

Fig. 6. Threshold synchronization value of coupling resistance RC vs. f. 
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4    Conclusions 

In this paper, we have studied chaos synchronization of three identical non-

autonomous circuits, bidirectionally coupled in ring connection network, in low 

frequency area. Simulation and experimental results of the system’s evolution 

from non synchronized oscillations to synchronized ones, when its individual 

circuit exhibits chaotic behaviour, were presented. Both, theoretical calculations 

and experimental results appear to be in complete agreement. We have seen that 

the values of threshold synchronization coupling parameter eC in the case of 

Vo=0.60V are lower than in the case of Vo=0.75V, for various values of input 

frequency f, but higher than in the case of two bidirectionally coupled identical 

circuits with the same setup.  

 

 

References 

1. L.O. Chua and G.N. Lin. Canonical Realization of Chua’s Circuit Family, IEEE Trans. 

on Circuits and Systems, vol. 37, no. 7, 885–902, 1990. 

2. 2. O. Gaci and S. Balev. A General Model for Amino Acid Interaction Networks, 

World Academy of Science Engineering and Technology 44: 401–405, 2008. 

3. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai and A.-L. Barabási. The Large-Scale 

Organization of Metabolic Networks, Nature 407: 651–654, 2000. 

4. I.M. Kyprianidis and I. N. Stouboulos. Chaotic and Hyperchaotic Synchronization of 

Two Nonautonomous and Nonlinear Electric Circuits, IEEE 8th Int. Conf. on 

Electronics, Circuits and Systems 3: 1351–1354, 2001.  

5. I.M. Kyprianidis and I.N. Stouboulos. Chaotic Synchronization of Three Coupled 

Oscillators with Ring Connection, Chaos Solitons and Fractals, vol. 17, no. 2-3, 

327–336, 2003. 

6. E. Lindberg, L. Member, K. Murali and A. Tamasevicius. The Smallest Transistor-

Based Nonautonomous Chaotic Circuit, IEEE Trans. on Circuits and Systems—II: 

Express Briefs, vol. 52, no. 10, 661–664, 2005. 

7. E. Lindberg, E. Tamaseviciute, G. Mykolaitis, S. Bumeliene, T. Pyragiene, A. 

Tamasevicius and R. Kirvaitis. Autonomous Third−Order Duffing−Holmes Type 

Chaotic Oscillator, European Conference on Circuit Theory and Design, 663–666, 

2009. 

8. H. Nakano and T. Saito. Basic Dynamics from a Pulse-Coupled Network of 

Autonomous Integrate-and-Fire Chaotic Circuits, IEEE Trans. on Neural Networks, 

vol. 13, no. 1, 92–100, 2002. 

9. M.S. Papadopoulou, I.M. Kyprianidis and I.N. Stouboulos. Chaos Synchronization and 

its Application to Secure Communication, Journal of Concrete and Applicable 

Mathematics, vol. 9, no. 3, 205–212, 2011. 

10. M.S. Papadopoulou, I.M. Kyprianidis and I.N. Stouboulos. Complex Chaotic 

Dynamics of the Double-Bell Attractor, WSEAS Trans. on Circuits and Systems, vol. 

7, no. 1, 12–21, 2008. 

11. M.S. Papadopoulou, I.N. Stouboulos and I.M. Kyprianidis. Study of the Behaviour 

of a Fourth Order Non-Autonomous Circuit in Low Frequency Area, Nonlinear 

Phenomena in Complex Systems, vol. 11, no. 2,  193–197, 2008. 



Papadopoulou et al. 184

12. I.N. Stouboulos, I.M. Kyprianidis and M.S. Papadopoulou, Antimonotonicity and 

Bubbles in a 4th Order Non Driven Circuit, Proc. of the 5th WSEAS Int. Conf. on 

Non-Linear Analysis Non-Linear Systems and Chaos, 81–86, 2006. 

13. I.N. Stouboulos, I.M. Kyprianidis and M.S. Papadopoulou. Genesis and Catastrophe 

of the Chaotic Double-Bell Attractor, Proc. of the 7th WSEAS Int. Conference on 

Systems Theory and Scientific Computation, 139–144, 2007. 

14. S.H. Strogatz. Exploring Complex Networks, Nature 410: 268–276, 2001. 

15. X. Wang and G. Chen. Synchronization in Small-World Dynamical Networks, Int. 

J. Bifur. Chaos, vol. 12, no. 1, 187–192, 2002. 

16. W. Yu, J. Cao, G. Chen, J. Lü, J. Han and W. Wei. Local Synchronization of a 

Complex Network Model, IEEE Trans. on Systems Man and Cybernetics, vol. 39, 

no. 1, 230–241, 2009. 

 


