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Abstract: We have analyzed experimental temperature time series from a horizontal 

turbulent heated jet, in order to identify the jet axis location using non linear measures. 

The analysis was applied on both, the original time series as well as on the extreme value 

(minimum and maximum values) time series. In our analysis we employed mainly non-

linear measures such as mutual information and cumulative mutual information. The 

results show that the analysis of the extreme values time series using cumulative mutual 

information permits to distinguish the jet axis time series from the rest of the jet, as well 

as discriminate regions of the jet located close to jet axis or close to the boundaries. 

Furthermore, it is of interest that the application of simple statistical measures and 

clustering techniques shows that the use of extremes time series let us distinguish with 

greater confidence the jet axis than the use of the original one. 

Keywords: Non-linear time series analysis, turbulence, mutual information, cumulative 

mutual information, clustering. 
 

1    Introduction 

Jet flow is a very important research subject that has attracted scientific interest 

due to extensive applications in environmental engineering. So far a large 

number of investigations have been carried out to locate the trajectory and 

understand the turbulence properties of the flow using statistical methods which 

do not necessarily lead to understanding the dynamics of the flow [3, 19]. 

The transition from laminar to turbulent flow in a jet has been extensively 

studied as a fundamental non linear dynamical problem [4, 5, 17, 25]. The study 

of dynamical systems by analysis of the time series of a variable measured in a 

physical system, is of particular interest over the last decades, and gives the 

possibility of comprehension the underlying system dynamics. Time series 

analysis may include linear and non linear methods. The linear analysis includes 

simple statistical measures such as autocorrelation function and power 

spectrum, while non linear analysis methods based on the reconstruction of 

phase through spaces include the mutual information and correlation dimension. 

For a concise review of these methods one can consult the book by Kantz and 

Schreiber (1995) [10] and Abarabnel (1996) [1]. These more complex methods 
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allow us to extract more detailed characteristics of the underlying dynamical 

system. 

In this paper linear and non linear measures are used to analyze temperature 

fluctuation time series. Our aim was to study the dynamic characteristics of the 

temperature fluctuation experiment. More specifically we analyze the 

temperature fluctuation measurements recorded using fast response thermistors 

along a horizontal line in order to investigate if one can discriminate time series 

corresponding to regions close to the jet axis, where conditions of fully 

developed turbulence are expected, from time series corresponding to regions 

that are more distant and from those close to the boundary with the ambient 

water. Horizontal buoyant jet investigations [2, 6, 9, 18] are mainly concerned 

with the structure of the flow. 

The novelty of the present work is that the analysis was applied both on the 

original time series as well as on the extreme value (minimum and maximum 

values) time series. The initial time series is reduced to a series (extreme time 

series) of successive pairs of minimum and maximum values. The objective of 

our analysis is to investigate whether it is possible that a time series of extreme 

values can reveal dynamic characteristics of the underlying system in the same 

or better way as the analysis of the original time series. One can easily 

understand that the interest is important, since this would permit us to study 

dynamical systems using reduced information.  
 

The structure of the paper is as follows. In Sec. 2 we discuss briefly the 

theoretical background and the experimental set-up for the temperature 

measurements. In Sec.3 we present the methodology employed for data analysis 

along with the linear and nonlinear measures. The results and discussion are 

presented in Sec. 4.  Finally the conclusions are presented in Sec. 5.  

 

2    Theory and Experimental Set-up 

2.1 Theory  

A horizontal heated round jet of diameter D  and density ορ  flows out of a 

nozzle with velocity U  in a calm ambient fluid of density αρ . The specific 

volume, horizontal momentum and buoyancy fluxes are defined as 
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respectively, where g  is the gravitational acceleration and '

og  the effective 

gravity that will subsequently produce vertical momentum flux. Fisher et al. 

(1979) [7] have defined two characteristic length scales as:  

 

3 / 4

1 / 2 1 / 2Q M

Q M
l and l

M B
= =

            (2) 

 

the ratio of which is the initial jet Richardson number  
oR :
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where 
oF  is the initial densimetric Froude number.  

The temperature difference between the jet and ambient fluid produces the 

density deficiency that is responsible for the initial jet specific buoyancy flux. 

The dilution S  at a point of the jet flow field is defined to be the ratio:  
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Where 
oT  is the initial jet temperature 

aT  the ambient temperature and the T  

the local time-averaged temperature. Jirka (2004) [8] has defined the jet axis to 

be the point of minimum dilution Sc: 
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where 
cT  is the maximum time-averaged (centerline) temperature. We define 

cx  and cy  the horizontal and vertical distances from the nozzle where the jet 

axis is located. Near the nozzle ( )1/ <Mlx  the jet trajectory is horizontal, the 

flow is mainly driven by the initial momentum flux and it is characterized as jet-

like [18]. When ( )2/ >Mly  the trajectory of the flow is altered to vertical and 

the flow is characterized as plume-like. The flow regime ( )5/1 << Mlx  is the 

transition from jet-like to plume-like flow [18], [21]. 
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2.2 Experimental setup 

The experiments were performed at the Hydromechanics and Environmental 

Engineering Laboratory of the University of Thessaly [20]. The dispersion tank 

is made of 12.5mm thick Lucite with orthogonal horizontal section 0.90m x 

0.60m and 0.80m depth. A perspective view of the experimental setup is shown 

in Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig. 1. Perspective view of the experimental setup 
 

The tank was equipped with a peripheral overflow to remove excess water. In 
this mater the depth of water is fixed at 77 cm. The hot water jet supply consists 
of a water heater made of stainless steel, which is well insulated and pressurized 
by air at 2 atm, to provide adequate constant head pressure to drive to jet. 
During the water heating, a recirculating pump was used to ensure that the hot 
water is well mixed and there are no temperature gradients. An insulated pipe 
drives the water from the heater into the jet plenum, through a calibrated flow 
meter. A jet nozzle of 0.65cm diameter was used. The jet water temperature was 
around 60 ºC, while the ambient water temperature ranged between 18 to 20 ºC. 
Temperature measurements were obtained by an array of eight fast response 
thermistors spaced equally at 1cm apart, positioned at constant elevation from 
the nozzle, on the plane of symmetry of the buoyant jet. The jet was made 
visible by means of a slide projector on a semitransparent paper sheet 
(shadowgraph) in order to place the rake of thermistors properly. In this paper, 
we use the data recorded at an elevation of 5cm above the nozzle axis. The 
initial parameters of the flow are shown in table 1. We analyzed 24 recordings 
of temperature time series, one for each location of measurement, where the 
sampling time at each location was 30s at a frequency of 200Hz. 
Comprehensive details about the experimental setup can be found in 
Karakasidis et al (2009) [11]. 
 

Table 1. Experimental conditions  

D(cm) W(cm/s) To(
oC) Ta(

oC) M(cm4/s2) B(cm4/s3) Re lm(cm) Ro yc/lm 

0.65 29.25 60 17.8 284 149 1646 5.66 0.102 0.883 

X=7.5 X=30.5 

Close to jet 

axis 
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3.    Time series analysis 

3.1  Methodology 

In an effort to discriminate the jet axis time series from the rest of the jet we 

used linear and nonlinear measures applied both on the original time series as 

well as on the extreme value (minimum and maximum values) time series. The 

initial time series is reduced to a series (extreme time series) of successive pairs 

of minimum and maximum values following the methodology by D.Kugiumtzis 

et al., 2006 [14]. The goal of this work was to examine if simple linear and non 

linear methods such as cumulative mutual information, can discriminate 

different states of systems from the analysis of the reduced length time series, 

instead of the full original time series. 
 

3.2 Data set – Extreme time series model 

As already mentioned 24 time series of temperatures have been recorded using 

fast response thermistors along a horizontal line of a fully developed turbulent 

heated jet. Consequently some of the time series correspond to conditions of 

turbulent flow (time series derived close to centerline of the jet) while other time 

series, obtained close to the boundary between the heated jet and the ambient 

water, have intermittent (laminar and turbulent) flow characteristics. Each time 

series consist of 6000 observations.  

We derived new extreme time series of successive maximum and minimum 

values from each initial time series. Suppose we have a time series of length N , 

( )tχ , 1,2,....t N= . If  
1 1

( )y tχ=  the first minimum, 
2 1 ...

( )y tχ +=  the first turning 

point (maximum), 
3 2 ...

( )y tχ +=  the second turning point (minimum) etc we 

extract from the initial time series the time series
1 2 3

( ) , , ,.....
n

y t y y y y=  called 

extreme time series. The extracted time series have lengths varying from N=130 

to 1500 depending on the structure of the initial time series. 

An example of a whole initial and extreme time series is shown in Fig. 2(a). In 

Fig. 2 (b) a zoom of a segment of the initial temperature time series of Fig 2(a) 

is presented.  
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Fig. 2. (a)  Initial and extreme time series. (b)  Segment of initial and extreme 

time series. 
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3.3 Nonlinear measures 

The most widely known nonlinear measure, which is used to select the 

appropriate delay time τ for state space reconstruction is the Mutual Information 

Ι(τ) and is defined as: 

x(ti),x(ti+ )

P(x(ti),x(ti+ ))
I( )= P(x(ti),x(ti+ ))*log[ ]

P(x(ti))*P(x(ti+ ))τ

τ
τ τ

τ
∑                      (6) 

Where ( )ix t is the i
th

 data point of time series, max
( 1, 2,..... )k t k kτ = ∆ = ; 

( )( )
i

P x t  is the probability density at ( )
i

x t ; ( )( , ( ))
i i

P x t x t τ+  is the joint 

probability density at ( ) ( ),
i i

x t x t τ+ ; τ is the delay time. 

The delay τ of the first minimum is chosen as a delay time for the reconstruction 

of phase space. 

We also used a new nonlinear measures the Cumulative Mutual Information  

max
( )M τ , defined as the sum of mutual information Ι(τ)  D.Kugiumtzis et al., 

2007 [14] for a number of delay τ. 

 

    

max

max

1

( ) ( )M I
τ

τ

τ τ
=

= ∑                                                 (7) 

 

3.4 Clustering analysis using the Cumulative Mutual Information 

function 

Clustering is an important technique that groups together similar data sets. 

Several studies used clustering methods based on mutual information [23, 24]. 

In our study we used single linkage hierarchical clustering algorithm in order to 

classify our data. The clustering techniques applied both on the original time 

series as well as on the extreme value (minimum and maximum values) time 

series. As a measure of similarity we used the Cumulative Mutual Information.  

One of the main advantages of hierarchical clustering is that a dendrogram can 

be drawn to find the appropriate number of clusters in a dataset. Briefly we 

propose the following clustering algorithm steps: 

o We compute the Euclidean distance y between pairs of objects in n-by-p 

data matrix X. Rows of X correspond to observations; columns correspond 

to variables. 

o We create a hierarchical cluster tree z from the distances in y (y is a 

Euclidean distance matrix or a more general dissimilarity matrix, formatted 

as a vector). 

o Finally we group the data set into clusters. The most dependent data are 

grouped together. 
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4. Results and Discussion 

During the experiment the jet axis (at elevation 5cm above the nozzle axis) was 

located by optical measurements nearly at the midpoint between the jet 

boundaries (x=16.5 – 17.5 cm). This was also supported by the behavior of the 

average temperatures observed in these time series, as well as from Recurrence 

Plot analysis [11]. It is well known from the theory of fluid mechanics that 

turbulence near the center of the jet is fully developed. There appear many 

short-lived small scale turbulent structures, while near the jet boundary the large 

scale flow structures live longer.  

We calculated the mutual information function for both, the original as well as 

for the extreme data series and the results are presented in Figs. 3(a)-(b). In Fig. 

3 (b) we observe that for the extreme time series reported at x=16.5 cm and 

x=17.5 cm (points which are near jet axis) the mutual information function 

clearly attains the lowest values for any value of the time delay, if compared to 

the results for the rest of the time series. Such behavior is consistent with what 

we expected since close to the jet centreline the memory of the flow structures is 

lost fast.  

             (a) 
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Fig. 3. (a)  Mutual information of the Initial time series along the horizontal line. 

(b) Mutual information of the Extreme time series along the horizontal line 

 

In Fig. 3(a) we can see that there are time series presenting the smallest local 

minimum but not the lowest values of average mutual information which 
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correspond in fact to regions in or close to the ambient water, while time series 

close to the jet axis (close to x=17.5cm) present the lowest values of average 

mutual information although for larger lags. As we get far from the jet axis ,but 

always in the turbulent jet region, average mutual information increases and 

time lags of the minimum are shifted toward larger times. We must however 

bear in mind that the time lags are not directly compared for the original and the 

extreme time series, since the distance between successive points varies. 

 

In Fig.4 (a) and (b) we summarize results for the cumulative mutual information 

for the original and extreme time series. A close look in Fig. 4(b), where the 

cumulative mutual information for the extreme time series is presented, 

indicates that we can discriminate three main regions corresponding to time 

series. The first region corresponds to a set of time series toο far from the 

centerline of jet (x=7.5cm, x=27.5cm, x=28.5cm, x=29.5cm, x=30.5cm). The 

second region corresponds to a set of time series very close to the center of jet 

(x=16.5cm, x=15.5cm, x=17.5cm, x=18.5cm, x=19.5cm). The third region 

corresponds to a set of time series (x=9.5cm, x=21.5cm, x=22.5cm, x=23.5cm) 

far from the center of jet but not as much as the time series from the first region.  
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(b) 
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Fig. 4. (a)  Cumulative Mutual information of the Initial time series along the 

horizontal line. (b) Cumulative Mutual information of the Extreme time series 

along the horizontal line 

 

It is of interest to note that such a detailed discrimination of the three regions is 

not so straightforward in Fig. 4(a) where the cumulative mutual information 

from the original time series is presented. 

 

Furthermore we evaluate the discriminating power of cumulative mutual 

information, applying a clustering algorithm to the set of our cumulative mutual 

information time series. For the clustering we used the algorithm described in 

paragraph 3.4. The hierarchy built by the clustering algorithm based on 

cumulative mutual information from reduced and original time series is 

represented by the dendrograms given in Fig. 5 and Fig.6. 
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Fig. 5. (a), (b), and (c)  Dendrogram Cumulative Mutual information of 

the Extreme time series along the horizontal line at different cut point 
 

 

In Figure 5(a) we present the hierarchy clustering of each extreme time series. 

We decided to make two ΄΄cuts΄΄ at the dendrogram at different levels of 

distance (vertical axis). In Fig. 5(b), the first ΄΄cut΄΄ is made at distance~16, 

where one can clearly see two main partitions. One main group consisted from 

the time series at x=7.5cm, x=26.5cm, x=27.5cm, x=28.5cm, x=29.5cm, 

x=30.5cm. This group corresponds to the region toο far from the axis of the jet. 

The second main cluster includes the remaining time series. This first step is 

important because we can exclude the time series time series corresponding to 

the edges of the measuring area.  

 

In Fig. 5 (c) we can see the dendrogram which results in from the second ΄΄cut΄΄ 

at distance~3.5. We can see more clearly some major cluster and some smaller. 

Specifically the time series at x=23.5cm, x=24.5cm, x=20.5cm and at x=9.5cm, 
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x=21.5cm, 22.5cm join and at x=21.5cm, x=10.5cm, x=19.5cm is joined with 

x=18.5cm. These above partitions correspond to a set of time series far from the 

center of jet but not as much as the time series from the first step (x=7.5cm, 

x=26.5cm, x=27.5cm, x=28.5cm, x=29.5cm, x=30.5cm). 

Moreover in Fig. 5 (c) we can distinguish other some small clusters which 

include the time series at x=15.5cm, x=14.5cm, x=20.5cm and x=13.5cm, 

x=12.5cm, x=17.5cm. We can notice that the time series at x=16.5cm 

correspond close to the centerline of jet is separate from other.  
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Fig. 6. Dendrogram Cumulative Mutual information of the Initial time series 

along the horizontal line. 

 
As we can see in Fig 6 where the results for the cumulative mutual information 

resulting from the analysis of the original time series are presented, there are 

several clusters without the same discriminating structure observed from the 

analysis of the extremes time series (Fig.5). 

 

5. Conclusions  

In this work we have investigated a new approach in order to detect the jet axis 

of temperature time series derived from experimental data. The novelty of this 

study is that the analysis was applied both on the original time series as well as 

on the extreme value (minimum and maximum values) time series. More 

specifically we focus to a new measure the Cumulative Mutual Information, and 

we showed that it can discriminate the underlying dynamics from one time 

series to another. Another important issue is that the performance of the 

Cumulative Mutual Information was applied to a reduced length time series 

(extreme time series) and showed that it has higher discriminating power than in 

the original time series. This issue is very important if we take into account the 
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size of the computational analysis of original data due to the length of the time 

series.  
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