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Abstract: A hollow vortex core in shallow liquid, produced inside a cylindrical reservoir 

using a rotating disk near the bottom of the container, exhibits interfacial polygonal 

patterns. These pattern formations are to some extent similar to those observed in various 

geophysical, astrophysical and industrial flows. In this study, the dynamics of rotating 

waves and polygonal patterns of symmetry-breaking generated in a laboratory model by 

rotating a flat disc near the bottom of a cylindrical tank is investigated experimentally. 

The goal of this paper is to describe in detail and to confirm previous conjecture on the 

generality of the transition process between polygonal patterns of the hollow vortex core 

under shallow water conditions. Based on the image processing and an analytical 

approach using power spectral analysis, we generalize in this work – using systematically 

different initial conditions of the working fluids – that the transition from any N-gon to 

(N+1)-gon pattern observed within a hollow core vortex of shallow rotating flows occurs 

in an universal two-step route: a quasi-periodic phase followed by frequency locking 

(synchronization). The present results also demonstrate, for the first time, that all 

possible experimentally observed transitions from N-gon into (N+1)-gon occur when the 

frequencies corresponding to N and N+1 waves lock at a ratio of (N-1)/N. 
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1    Introduction 

Swirling flows produced in closed or open stationary cylindrical containers are 

of fundamental interest; they are considered as laboratory model for swirling 

flows encountered in nature and industries. These laboratory flows exhibit 

patterns which resemble to a large extent the ones observed in geophysical, 

astrophysical and industrial flows. In general, the dynamics and the stability of 

such class of fluid motion involve a solid body rotation and a shear layer flow. 

Because of the cylindrical confining wall, the shear layer flow forms the outer 

region while the inner region is a solid body rotation flow. The interface 

between the flow regimes can undergo Kelvin-Helmholtz instability because of 

the jump in velocity at the interface between the inner and outer regions, which 

manifests as azimuthal waves. These waves roll up into satellite vortices which 

impart the interface polygonal shape, e.g., see [5, 9, 11-13]. The inner solid 

body rotation region can also be subjected to inertial instabilities which manifest 



A. Mandour et al.  258

as Kelvin’s waves and it is this type of waves that will be investigated in this 

paper. In our experiment a hollow core vortex, produced by a rotating disk near 

the bottom of a vertical stationary cylinder, is within the inner solid body 

rotation flow region and acts as a wave guide to azimuthal rotating Kelvin’s 

waves. The shape of the hollow core vortex was circular before it breaks into 

azimuthal rotating waves (polygonal patterns) when some critical condition was 

reached. 

A fundamental issue that many research studies were devoted to the study of 

rotating waves phenomena is the identification and characterization of the 

transition from symmetrical to non-symmetrical swirling flows within 

cylindrical containers. Whether confined or free surface flow, the general 

conclusion from all studies confirmed that, the Reynolds number and aspect 

ratio (water initial height H / cylinder container radius R) are generally the two 

dominant parameters influencing the symmetry breaking phenomenon’s 

behavior. Escudier [7] and Vogel [16] studied the transitional process in 

confined flows and found that symmetry breaking occurs when a critical 

Reynolds number was reached for each different aspect ratio. Vogel [16] used 

water as the working fluids in his study where he observed and defined a 

stability range, in terms of aspect ratio and Reynolds number, for the vortex 

breakdown phenomenon which occurred in the form of a moving bubble along 

the container’s axis of symmetry. Escudier [7] later extended the study by using 

an aqueous glycerol mixture (3 to 6 times the viscosity of water) and found that 

varying the working fluid viscosity caused changes in the critical Reynolds 

number values. He also observed that for a certain range of aspect ratio and 

viscosity, the phenomenon of vorticity breakdown has changed in behavior, 

revealing more vortices breakdown stability regions than the conventional 

experiments using water as the working fluid. Where in open free surface 

containers under shallow liquid conditions using water as the working fluid, 

Vatistas [14] studied the transitional flow visually and found that the range of 

the disc’s RPM where the transitional process occurs shrinks as the mode shapes 

number increased. Jansson et al. [10] concluded that the end-wall shear layers as 

well as the minute wobbling of the rotating disc are the main two parameters 

influencing the symmetry breaking phenomenon and the appearance of the 

polygonal patterns. Vatistas et al. [15] studied the transition between polygonal 

patterns from N to N+1, using image processing techniques, with water as the 

working fluid and found that the transition process from N to a higher mode 

shape of N+1 occurs when their frequencies ratio locks at (N-1)/N, therefore 

following a devil staircase scenario which also explains the fact that the 

transition process occurs within a shorter frequency range as the mode shapes 

increase. Speculating the transition process as being a bi-periodic state, the only 

way for such system to lose its stability is through frequency locking [4]. From 

nonlinear dynamics consideration, Ait Abderrahmane et al. [2] proposed the 

transition between equilibrium states under similar configurations using 

classical nonlinear dynamic theory approach and found that the transition occurs 

in two steps being, a quasi-periodic and frequency locking stages, i.e., the 

transition occurs through synchronization of the quasi-periodic regime formed 
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by the co-existence of two rotating waves with wave numbers N and N+1. Their 

studies however was built mainly on the observation of one transition, from 3-

gon to 4-gon. 

In the present paper, we provide further details on the symmetry-breaking 

pattern transitions and confirm the generalized mechanism on the transition 

from N-gon into (N+1)-gon using power spectra analysis. This study 

systematically investigates different mode transitions, the effect of working 

fluid with varying viscosity, liquid initial height on the polygonal pattern 

instability observed within the hollow core. 

 

2    Experimental Setup and Measurement Technique 

The experiments were conducted in a 284 mm diameter stationary cylindrical 

container with free surface (see Figure 1). A disk, located at 20 mm from the 

bottom of the container, with radius Rd = 126 mm was used and experiments 

with three initial water heights above the disk, ho = 20, 30 and ho = 40 mm, were 

conducted.  Similar experiment was conducted by Jansson et al. [10] within a 

container of different size where the distance of the disk from the bottom of the 

container is also much higher than in the case of our experiment. In both 

experiments similar phenomenon − formation of a polygonal pattern at the 

surface of the disk − was observed. It appears therefore that the dimension of the 

container and the distance between the disk and the container bottom do not 

affect the mechanism leading to the formation of the polygon patterns. In our 

experiment, the disk was covered with a thin smooth layer of white plastic sheet. 

It is worth noting that the roughness of the disk affects the contact angle 

between the disk and the fluid; this can delay the formation of the pattern. 

However, from our earlier observation in many experiments, roughness of the 

disk does not seem to influence prominently the transition mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Experimental setup. 
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Fig. 2. The variation of dynamic viscosity as a function of glycerol 

concentration (by weight %wt). 

 

The disk speed, liquid initial height and viscosity were the control parameters in 

this study. The motor speed, therefore the disc’s speed, was controlled using a 

PID controller loop implemented on LABVIEW environment. Experiments with 

tape water and aqueous glycerol mixtures, as the working fluids, were 

conducted at three different initial liquid heights of 20, 30 and 40 mm above the 

rotating disc. The viscosity values of the used mixtures were obtained through 

technical data provided by a registered chemical company - Dow Chemical 

Company 1995-2010 [6]. Eight different aqueous glycerol mixtures were used 

in the experiments with viscosity varying from 1 to 22 (0 ~ 75% glycerol) times 

the water’s at room temperature (21°C). The detailed points of study were: 1, 2, 

4, 6, 8, 11, 15 and 22 times the water’s viscosity (µwater) at room temperature. 

Although the viscosity of the mixture varied exponentially with the glycerol 

concentration (see Figure 2), closer points of study were conducted at low 

concentration ratios since significant effects have been recognized by just 

doubling the viscosity of water as it will be discussed later. The temperature 

variation of the working fluid was measured using a mercury glass thermometer 

and recorded before and just after typical experimental runs and was found to be 

stable and constant (i.e. room temperature). Therefore, the viscosity of the 

mixture was ensured to be constant and stable during the experiment. Phase 

diagrams had been conducted and showed great approximation in defining the 

different regions for existing patterns in terms of disc’s speed and initial height 

within the studied viscosity range. 

A digital CMOS high-speed camera (pco.1200hs) with a resolution of 1280 x 

1024 pixels was placed vertically above the cylinder using a tripod. Two types 

of images were captured: colored and 8-bit gray scale images, at 30 frames per 

second, for the top view of the formed polygonal patterns (see Figure 3 for 

example). The colored images were used as illustration of the observed 

stratification of the hollow vortex core where each colored layer indicates a 

water depth within the vortex core. It is worth noticing that the water depth 

increases continuously as we move away from the center of the disk (due to the 
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applied centrifugal force). The continuous increase in the water depth, depicted 

in the Figure 3 by the colored layers, indicates momentum stratification in the 

radial direction (i.e., starting with the central white region which corresponds to 

a fully dry spot of the core and going gradually through different water depth 

phases until reaching the black color region right outside the polygonal pattern 

boundary layer). For subsequent quantitative analysis, the data was conducted 

with grey images as those are simpler for post-processing. 

The transition mechanism is investigated using image processing techniques. 

First the images were segmented; the original 8-bit gray-scale image is 

converted into a binary image, using a suitable threshold, to extract the 

polygonal contours [8]. This threshold value is applied to all subsequent images 

in a given run. In the image segmentation process, all the pixels with gray-scale 

values higher than the threshold were assigned 1’s (i.e., bright portions) and the 

pixels with gray-scale values lower than or equal to the threshold were assigned 

0’s (i.e., dark portions). The binary image obtained after segmentation is filtered 

using a low-pass Gaussian filter to get rid of associated noises. In the next step, 

the boundaries of the pattern were extracted using the standard edge detection 

procedure. The pattern contours obtained from the edge detection procedure 

were then filtered using a zero-phase filter to ensure that the contours have no 

phase distortion. The transformations of the vortex core are analyzed using Fast 

Fourier Transform (FFT) of the time series of the radial displacement for a 

given point on the extracted contour, defined by its radius and its angle in polar 

coordinates with origin at the centroid of the pattern; see [1-3] for further 

details. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Polygonal vortex core patterns. The inner white region is the dry part of 

the disk and the dark spot in the middle of the image is the bolt that fixes the 

disk to the shaft. The layers with different colors indicate the variation of water 

depth from the inner to the outer flow region. 
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  (a)            (b) 

 

 
  (c)            (d) 
 

Fig. 4.  (a), (b), (c) Oval pattern progression and corresponding Power spectra; 

and (d) oval to triangular transition N = 2 to N = 3 and corresponding power 

spectrum. 

 
3    Results and Discussion 

We first discuss results obtained at an initial height hi = 40 mm where 

transitions from N = 2 → N = 3 and N = 3 → N = 4 were recorded and analyzed 

using power spectral analysis. Starting with stationary undisturbed flow, the disc 

speed was set to its starting point of 50 RPM and was then increased with 

increments of 1 RPM. Sufficient buffer time was allowed after each increment 

for the flow to equilibrate. At a disc speed of 2.43 Hz the first mode shape 

(oval) appeared on top of the disc surface. At the beginning of the N = 2 

equilibrium state, the vortex core is fully flooded. While increasing the disc 

speed gradually, several sets of 1500 8-bit gray-scale images were captured and 

recorded. Recorded sets ranged 3 RPM in between. Systematic tracking of the 

patterns speed and shape evolution were recorded and the recorded images were 

processed. The evolution of the oval equilibrium state shape and rotating 

frequency is shown in Figures 4a to 4d. Starting with a flooded core at fp = 

0.762 Hz in figure 4a where the vertex of the inverted bell-like shape free 

surface barely touched the disc surface, Figure 4b then shows the oval pattern 

after gaining more centrifugal force by increasing the disc speed by 9 RPM. The 

core became almost dry and the whole pattern gained more size both 

longitudinally and transversely with a rotating frequency of fp = 0.791 Hz. It is 
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clearly shown that at this instance, one of the two lobes of the pattern became 

slightly fatter than the other. Figure 4c shows shape development and rotational 

speed downstream the N = 2 range of existence. It is important to mention that 

once the oval pattern is formed, further increase in the disc speed, therefore the 

centrifugal force applied on the fluid, curved up the oval pattern and one of the 

lobes became even much fatter giving it a quasi-triangular shape. Figure 4d 

features the end of the oval equilibrium pattern in the form of a quasi-triangular 

pattern and therefore the beginning of the first transition process (N = 2 to N = 

3). The transition process is recorded, processed and the corresponding power 

spectrum was generated (see Figure 4d). The power spectral analysis revealed 

two dominant frequencies from the extracted time series function of the 

captured images; frequency fm corresponds to the original oval pattern and 

frequency fs corresponds to the growing subsequent wave N = 3, which is a 

travelling soliton-like wave superimposed on the original oval pattern therefore 

forming the quasi-triangular pattern [2]. Further increase of the disc speed 

resulted in the forming and stabilizing of the triangular mode shape (N = 3) with 

a flooded core; both the troughs and apexes of the polygonal pattern receded and 

the core area shrank significantly. 

Following the same procedure, the development of the triangular pattern and its 

transition to square (N = 4) shape were recorded, image processed and analyzed. 

Figures 5a to 5e show the power spectra plots and their corresponding sample 

image from the set recorded and used in generating each of the power spectra. 

The behaviour of the oval pattern’s shape development and transition was also 

respected for the triangular pattern evolution. 

Ait Abderrahmane et al. [2] described the transition process in the form of a 

rotating solid body N shape associated with a traveling “soliton”-like wave 

along the vortex core boundary layer. The evidence of such soliton-like wave is 

revealed here. Figure 6 shows a sample set of colored RGB images during the 

transition process described above; these images feature the quasi-periodic state 

during N = 3 to N = 4 transition described earlier. Giving a closer look at the 

sequence of images, one could easily figure out the following: the three lobes or 

apexes of the polygonal pattern are divided into one flatten apex and two almost 

identical sharper apexes. Keeping in mind that the disc, therefore the polygonal 

pattern, is rotating in the counter clockwise direction and that the sequence of 

images is from left to right, by tracking the flatten lobe, one could easily 

recognize that an interchange between the flatten lobe and the subsequent sharp 

lobe (ahead) takes place (see third row of images). In other words, now the 

flattened apex receded to become a sharp stratified apex and the sharp lobe 

gained a more flattened shape. Such phenomenon visually confirms the fact that 

transition takes place through a soliton-like wave travelling along the vortex 

core boundary but with a faster speed than the parent pattern. This first stage of 

the transition process was referred to as the quasi-periodic stage by Ait 

Abderrahmane et al. [2]. The quasi-periodic stage takes place in all transitions 

until the faster travelling soliton-like wave synchronizes with the patterns 

rotational frequency forming and developing the new higher state of equilibrium 

pattern. Vatistas et al. [15] found that the synchronization process takes place 
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when the frequencies ratio of both pattern (N) and the subsequent pattern 

developed by the superimposed soliton wave (N+1) lock at a ratio of (N-1)/N. 

Therefore, for transition from N = 2 to N = 3, the synchronization takes place 

when the frequencies ratio is rationalized at 1/2. And the transition N = 3 to N = 

4, takes place when the ratio between both frequencies are equal to 2/3. In the 

above illustrated two transition processes, the frequency ratio for first transition 

was equal to fN / fN+1 = fm / fs = 1.69/3.04=0.556 ≈ 1/2. On the other hand, the 

second transition took place when fN / fN+1 = fm / fs = 3.28/4.92=0.666 ≈ 2/3.  

 

 

 

 
  (a)            (b) 

 
  (c)            (d) 

 

 
(e) 

 

 

Fig. 5. (a), (b), (c) Triangular pattern progression and corresponding power 

spectra; (d) Transitional process from triangular to square pattern; and (e) square 

pattern and corresponding power spectra. 
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Fig. 6. Quasi-periodic state during triangular to square transition. 

 

Following the same trend, the second experiment was conducted using water at 

an initial height of 20 mm. At this low aspect ratio, transition between higher 

mode shapes was tracked and recorded. Using similar setup and experimental 

procedure, the transition from square mode (N = 4) to pentagonal pattern (N = 5) 

and from pentagonal to hexagonal pattern (N = 6) were recorded and image-

processed for the first time in such analysis. Following the same behavior, the 

transition occurred at the expected frequency mode-locking ratio. Figure 7a 

shows the third polygonal transition, from N = 4 to N = 5. The frequency ratio of 

the parent pattern to the soliton-like wave is fm/fs = 4.102/5.449 = 0.753 ≈ 3/4. 

Similarly, Figure 7b shows the transition power spectrum for the last transition 

process observed between polygonal patterns, which is from N = 5 to N = 6 

polygonal patterns. The frequency ratio fm/fs = 5.625/6.973 = 0.807 which is 

almost equal to the expected rational value 4/5. With these two experimental 

runs, the explanation of the transition process between polygonal patterns 

observed within hollow vortex core of swirling flows within cylinder containers 

under shallow water conditions is confirmed for all transitional processes. 
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(a)             (b) 

 

Fig. 7. (a) Square to pentagonal transition; and (b) pentagonal to hexagonal 

transition. 

 

 

Initial height (hi ) hi = 20 mm hi = 30 mm hi = 40 mm 

Transition  

(N) - ( N+1) 3 - 4 4 - 5 5 - 6 2 - 3 3 - 4 4 - 5 2 - 3  3 - 4 

0.697 0.787 0.829 0.545 0.68 0.74 0.558 0.69 
1 

4.6% 4.9% 3.6% 9.0% 2.0% 7.5% 11.6% 3.5% 

0.667 0.747 -- 0.558 0.671 -- 0.557 0.678 
2 

0.1% 0.4% -- 11.6% 0.7% -- 11.4% 1.7% 

0.64 -- -- -- 0.671  0.557 0.686 
4 

4.0% -- -- -- 0.7%  11.4% -- 

-- -- -- -- 0.6667  0.55 -- 
6 

    0.0%  10.0%  

    --  0.536  
8 

      7.2%  

      0.58  
11 

      16.0%  

      0.552  
15 

      10.4%  

      0.559  
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22 

      11.8%  

fm/fs 

%error 

 

Table 1. Transition mode-locking frequencies for different liquid viscosities. 
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Fig. 8. Power spectrum for N = 2 pattern replica 

 

The influence of the liquid viscosity on the transitional process from any N 

mode shape to a higher N+1 mode shape is also investigated. As described 

earlier, eight different liquid viscosities were used in this study ranging from 1 

up to 22 times the viscosity of water. All transitional processes between 

subsequent mode shapes were recorded, and acquired images were processed. 

Using the same procedure as in the last section, the frequency ratio of the parent 

pattern N and the subsequent growing wave N+1 has been computed and 

tabulated in Table 1. As shown in Table 1, the maximum deviation from the 

expected mode-locking frequency ratio (fm/fs) always appeared in the first 

transition (N = 2 to N = 3). A reasonable explanation for such induced error is 

the fact that, the higher the number of apexes per full pattern rotation, the more 

accurate is the computed speed of the pattern using the image processing 

technique explained before. Therefore, throughout the conducted analysis, the 

most accurate pattern’s speed is the hexagon and the least accurate is the oval 

pattern. Apart from that significant deviation, one can confidently confirm that 

even at relatively higher viscous swirling flows, the transition between 

polygonal patterns instabilities takes place when the parent pattern (N) 

frequency and the developing pattern (N+1) frequency lock at a ratio of (N-1)/N, 

Vatistas et al. [15]. 

As explained earlier, transition has been found to occur in two main stages 

being the quasi-periodic and the frequency-locking stages [2]. It is also 

confirmed that frequency mode-locking does exist in polygonal patterns 

transition irrelative of the mode shapes, liquid heights and the liquid viscosity 

(within the studied region). In this section, the quasi-periodic phase will be 

further elucidated and confirmed. Earlier in this paper the quasi-periodic state in 

the transition of N = 3 to N = 4, using water as the working fluid, was 

observably described in Figure 6. To further analyze the quasi-periodic stage, a 

technique has been developed which animates the actual polygonal patterns 

instabilities but without the existence of the speculated travelling soliton-like 

wave along the patterns boundary layer. Using MAPLE plotting program, all 

mode shapes replica have been plotted and printed. Table 2 shows the plots and 

their corresponding plotting functions. Printed images were glued to the rotating 

disc under dry conditions one at a time. The disc was rotated with corresponding 

pattern’s expected speeds under normal working conditions. Such technique 
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gave full control of the rotating pattern. Therefore, both speed and geometry of 

the patterns were known at all times. Sets of 1500 8-bit images were captured 

and processed using similar computing procedure. 

 

 

N Pattern plot Plot function 

2 

 

r =1+ 0.2 sin(2 θ) 

2 - 3 

 

r =1+ 0.2 sin(2 θ) + 0.1 sin(3 θ +1) 

3 

 

r =1+ 0.1 sin(3 θ) 

3 - 4 

 

r =1+ 0.1 sin(3 θ) + 0.15 sin(4 θ  +1) 

4 

 

r =1+ 0.15 sin(4 θ ) 

 

Table 2.  Patterns replica with corresponding functions. 

 



Chaotic Modeling and Simulation (CMSIM)  1:  257-271 269

 

  
(a)         (b) 

 

Fig. 9. Power spectrum of transition processes using patterns replica (a) N = 2 to 

N = 3; and (b) N = 3 to N = 4 

 

 

Power spectra of the processed sets of images revealed similar frequency plots. 

Starting with the oval-like shape, the disc was rotated at a constant speed of 1 

Hz and the power spectrum was generated from the extracted images and 

plotted as shown in Figure 8. Since the oval pattern speed is controlled in this 

case (by disc speed), the frequency extracted could have been presumed to be 

double the disc frequency (2 Hz). The actual frequency extracted is shown in 

Figure 8, fm = 1.934 Hz (3.3% error). Following the same procedure, other 

polygonal patterns replica were printed to the disc, rotated, captured and 

processed subsequently. Figures 9a and 9b show the power spectra generated 

from rotating the quasi-triangular and the quasi-square patterns, respectively. 

Figure 9a shows a power spectrum generated from the set of pictures featuring a 

quasi-triangular pattern captured at 30 fps. The power spectrum revealed two 

dominant frequencies being fm = 3.809 Hz and fs = 5.742 Hz corresponding to 

the oval and triangular patterns, respectively. Since the quasi-triangular pattern 

is stationary and under full control, it could have been presumed that the 

frequency ratio would have a value of 2/3 since the replica pattern is generated 

by superimposing the oval and triangular functions. The actual extracted 

frequency was fm/fs = 3.81/5.74 = 0.663 ≈ 2/3. Comparing this frequency ratio 

with the real polygonal patterns mode-locking ratio of 1/2 described earlier, it is 

clear that the ratio is totally different which proves that both patterns are not 

behaving equivalently although having generally similar instantaneous 

geometry. Therefore, the actual rotating pattern does not rotate rigidly as the 

pattern replica does, but rather deforms in such a way that the ratio of the two 

frequencies is smaller which confirms the idea of the existence of the fast 

rotating soliton-like wave (fs). Moving to the second transition process, 

triangular to square, as shown in Figure 9b, the frequency ratio was found to be 

3/4 as expected since the function used to plot the quasi-square pattern is the 

superposition of both functions used in plotting the pure triangular and square 

patterns given in Table 2. Comparing this ratio with the actual mode-locking 

ratio of 2/3 observed with real polygonal patterns, it is obvious that the ratio is 
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still smaller which respects the existence of a faster rotating wave along the 

triangular pattern boundary that eventually develops the subsequent square 

pattern as visualized earlier using the colored images. From these two 

experiments, along with the visual inspection discussed earlier, the existence of 

the fast rotating soliton-like wave (N+1) along the parent pattern boundary layer 

(N) is verified, therefore, the quasi-periodic stage. 

 

4    Conclusions 

Through the analysis of the present experimental results from different initial 

conditions, we confirmed with further evidences and generalized the mechanism 

leading to transition between two subsequent polygonal instabilities waves, 

observed within the hollow vortex core of shallow rotating flows. The transition 

follows the universal route of quasi-periodic regime followed by 

synchronization of the two waves’ frequencies. We shows, for the first time, all 

observed transitions from N-gon to a subsequent (N+1)-gon occur when the 

frequencies corresponding to N and N+1 waves lock at a ratio of  (N-1)/N.  The 

effect of varying the working fluid viscosity on the transitional processes 

between subsequent polygonal patterns was also addressed in this paper. 

Both stages of the transitional process were further explored in this work. The 

quasi-periodic stage was first tackled using two different techniques, a visual 

method and an animated method. The deformation of the colored stratified 

boundary layers of polygonal patterns were inspected during transition process 

of polygonal patterns and the existence of a fast rotating wave-like deformation 

was recognized which confirms the idea of the co-existence of a soliton-like 

wave that initiates the quasi-periodic stage at the beginning of the transition. In 

order to further materialize this observation, experiments were re-conducted 

using fixed patterns replica featuring the quasi-periodic geometry of polygonal 

patterns under dry conditions. Such technique allowed full control of the 

patterns geometry and speed at all time, therefore working as a reference to the 

real experiment performed under wet conditions. The experiments revealed an 

interesting basic idea that was useful when addressing the significant difference 

in behavior associated with the real patterns transitions. The second part of the 

transition process included the frequency mode-locking ratio of subsequent 

patterns. Dealing with the first part of the transition process as being a bi-

periodic state or phase, in order for such state to lose its stability, a 

synchronization event has to occur [4]. This synchronization has been confirmed 

to occur when the frequency ratio of the parent pattern N to the subsequent 

pattern N+1 rationalized at (N-1)/N value [15]. The frequency mode-locking 

phenomenon was found to be respected even at relatively higher viscosity fluids 

when mixing glycerol with water. 
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