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Abstract. Metric tensor and Christoffel symbols are revised and the equation of
geodesic is derived from two possible definitions: based on zero tangent acceleration
and on minimal length. Geodesics on a torus are shown to split into two distinct
classes. Dynamical systems approach is used to investigate these two classes. Appli-
cation of geodesics in optics and in mechanics are given.
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1 Introduction

In Euclidean space a segment of a line is the shortest connection of two given
points. The segment has also the property that a point moving along the
segment with velocity of constant magnitude has zero acceleration. A geodesic
(a geodesic curve) is a generalization of the term segment for spaces that are
not Euclidean. An example of such a space is a two dimensional surface in a
three dimensional Euclidean space.

Historically perhaps the oldest example of such a surface is the sphere (the
surface of a ball) because our space for living was limited to the surface of the
Earth for a long time. Here comes the origin of the word geodesic. Geo- is the
first part of compound words meaning the Earth.

These curved surfaces can be studied in two ways. Either as subsets of an
Euclidean space of higher dimension, or as independent curved spaces without
any reference to a higher dimensional Euclidean space. The intrinsic geometry
of such a curved space can be described by certain matrix depending on the
point in the space. This matrix function is called the metric tensor. A space
with a constant metric tensor is called a flat (Euclidean) space, while a space
with a non-constant metric tensor is called a curved space.

In chapter 2 a metric tensor is introduced and its examples for a sphere and
for a torus are given.

In chapter 3 the geodesic is defined as the curve such that a point moving
along the curve with the velocity of constant magnitude (i.e. the velocity
can change its direction but not its magnitude) has the acceleration vector
perpendicular to the given surface, i.e. the acceleration component tangent to
the given surface is zero. Such a motion can be expressed by a non-scientific
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expression “follow your nose”. Given this condition the equation of geodesic
is derived. It is a second order differential equation for the functions that
parametrically describe the curve.

In chapter 4 alternatively the geodesic is defined as the shortest curve be-
tween two given points. Given this condition the same equation of geodesic is
derived.

In chapter 5 we show that the magnitude of velocity remains constant for
the solution of the equation of geodesic.

In chapter 6 the first integral (i.e. a constant function of state variables) is
derived for certain simplified cases.

In chapter 7 the equation of geodesic is applied for a sphere. We show that
geodesics on a sphere are the great circles i.e. the circles with the center in the
center of the sphere.

In chapter 8 geodesics on a torus are investigated. The geodesics on a
torus fall into two classes. Roughly speaking, one class contains geodesics that
remain mainly on the outer part of the torus (see Fig. 6) while the other class
contains geodesics that wind around the tube of the torus along a spiral (see
Fig. 7). Another difference between these two classes is that a geodesic in the
first class is either closed or it has self-intersections, while a geodesic in the
other class is either closed or it has no self-intersections.

In chapter 9 a physical application of geodesics is given, namely the prop-
agation of light in optically non-homogeneous medium, i.e. where the index
of refraction depends on the point in the space. We find the metric tensor
appropriate for investigation of the shape of the light ray and the Snell law of
refraction is derived from the equation of geodesic found in chapter 3 and 4.
This example is interesting in that it is convenient to replace the three dimen-
sional Euclidean space by a curved space described by a non-constant metric
tensor for the study of the propagation of light (or in general any wave with
varying speed).

In chapter 10 the results of chapter 9 are applied for the study of the
shape of the path that brings a mass point from a given initial point to another
given point in the shortest possible time (assuming a homogeneous gravitational
field). This path is called a brachistochrone and we show that it can be found
as a geodesic with appropriate metric tensor.

There are many more examples of geodesics. Besides being an interesting
mathematical question of its own, they have many physical and technological
application. Spanning from general relativity to cases that seem to have nothing
in common with mathematics or physics such as winding a ribbon round handle-
bars of a bicycle or dressing an injured knee.

Geodesics are sometimes illustrated as the equilibrium position of a spring
on a slippery surface. This is a good example for convex parts of the surface;
near concave parts of the surface a real spring would go through the air while
the geodesic must stay in the given surface. To see this, imagine a thin rubber
around an apple. There is a little pit near the stem of the apple. The rubber
crosses this pit through the air which the geodesic is not allowed to do.
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2 Metric tensor

Consider a M -dimensional manifold embedded into a N -dimensional Euclidean
space with parametric equations

y = r(x),

where r : RM → RN .
E.g. a sphere with unit radius can be given by

y1 = r1(x1, x2) = r1(ϑ, ϕ) = sinϑ cosϕ (1)

y2 = r2(x1, x2) = r2(ϑ, ϕ) = sinϑ sinϕ

y3 = r3(x1, x2) = r3(ϑ, ϕ) = cosϑ

and a torus by

y1 = r1(x1, x2) = r1(u, v) = (a+ cosu) cos v (2)

y2 = r2(x1, x2) = r2(u, v) = (a+ cosu) sin v

y3 = r3(x1, x2) = r3(u, v) = sinu,

where a > 1 is the radius of the axis of the tube; the radius of the tube being 1.
The comma before an index will denote the partial derivative with respect

to the variable given by the index after the comma. Thus e.g. for rk (the k-th
component of the vector r) its partial derivative is

rk,i =
∂rk
∂xi

.

Then the differential of y is
dyk = rk,idxi

(we sum over each index appearing twice in a product) and the square of its
norm is

||dy||2 = dykdyk = rk,irk,jdxidxj = gijdxidxj ,

where
gij = rk,irk,j (3)

are the components of the metric tensor.
E.g. for a sphere putting (1) into (3) gives

g =

(
1 0
0 sin2 ϑ

)
and for a torus putting (2) into (3) gives

g =

(
1 0
0 (a+ cosu)2

)
.

Later we will need another relation between g and r. We can differentiate

gij(x) = rm,i(x)rm,j(x)
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with respect to xk to yield

gij,k = rm,ikrm,j + rm,irm,jk.

We add and subtract to this equation its two cyclic permutations

gjk,i = rm,ijrm,k + rm,jrm,ik.

gki,j = rm,kjrm,i + rm,krm,ij

and we get
gij,k + gjk,i − gki,j = 2rm,ikrm,j .

3 Geodesic as the curve with zero tangent acceleration

Consider a curve
α = α(t) = r(x(t)),

where α : I → RN is a sufficiently smooth function, I is the interval I = [t1, t2].
When we call t the time, we can call

α̇k(t) = rk,iẋi(t)

the velocity and
α̈k(t) = rk,ij ẋiẋj + rk,iẍi.

the acceleration. We want to find the shape of the curve, so that the accelera-
tion has zero projection to the plane tangent to the given surface

α̈krk,n = 0 for n = 1, . . . ,M

(rk,ij ẋiẋj + rk,iẍi)rk,n = 0

rk,irk,nẍi + rk,ijrk,nẋiẋj = 0

ginẍi +
1

2
(gin,j + gnj,i − gji,n)ẋiẋj = 0.

It is convenient to denote gnm the element of the inverse matrix to the matrix
with elements gin (i.e. ging

nm = δim is the element of the unit matrix). Then

ẍm +
1

2
gnm(gin,j + gnj,i − gji,n)ẋiẋj = 0

and finally
ẍm + Γmij ẋiẋj = 0, (4)

where

Γmij =
1

2
gnm(gin,j + gnj,i − gji,n) (5)

is called the Christoffel symbol.
From (3) it follows that the metric tensor g is symmetric, i.e.

gij = gji
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and as a result the Christoffel symbol is also symmetric

Γmij = Γmji .

We call (4) the equation of geodesic. In this equation the properties of the
surface appear only through the metric tensor g and its derivatives (via the
Christoffel symbol Γmij ). This allows us to work in the M -dimensional space
with the metric g without any reference to the N -dimensional Euclidean space.

If the metric tensor g as a function of the point in the space is constant,
its derivatives vanish and so do all the Christoffel symbols. The equation of
geodesic is then

ẍm = 0

and the geodesic is the straight line in this special case.

4 Geodesic as the shortest curve

Consider a curve
x = α(t)

where α : I → Rn is a sufficiently smooth function and the interval I is I =
[t1, t2].

If g is the metric tensor, then the magnitude of the velocity of a point
traveling along the curve α is

vα(t) =
√
gij(α(t)) α̇i(t) α̇j(t).

Let us denote

V (x1, . . . , xn, ẋ1, . . . , ẋn) =
√
gij(x1, . . . , xn) ẋi ẋj

in short

V (x, ẋ) =
√
gij(x) ẋi ẋj . (6)

Similarly we will write α instead of α1, . . . , αn and α̇ instead of α̇1, . . . , α̇n.
Then the length of the curve α is

L(α) =

t2∫
t1

vα(t) dt =

t2∫
t1

V (α(t), α̇(t)) dt.

For ε ∈ R and β : I → Rn such that β(t1) = β(t2) = 0 we denote

L̃(ε) = L(α+ εβ) =

t2∫
t1

V (α(t) + εβ(t), α̇(t) + εβ̇(t)) dt

and

L̃′(ε) =
dL̃

dε
.
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We want

L̃′(0) = 0,

meaning that a small change in the shape of the curve does not make it shorter.
Thus

0 =

t2∫
t1

(Vxiβi + Vẋi β̇i) dt.

We integrate by parts and we use the assumption β(t1) = β(t2) = 0 (meaning
that the start point and the end point of the curve are fixed) to get

0 =

t2∫
t1

(Vxi
βi − V̇ẋi

βi) dt =

t2∫
t1

(Vxi
− V̇ẋi

)βi dt.

This must hold for arbitrary functions βi, thus the bracket must vanish

Vxi
− V̇ẋi

= 0 for i = 1, . . . , n,

thus

Vxi − (Vẋixk
ẋk + Vẋiẋk

ẍk) = 0. (7)

To get a unique solution we add the assumption of constant magnitude of the
velocity

V̇ = 0 (8)

thus

Vxk
ẋk + Vẋk

ẍk = 0. (9)

When putting (6) into (7) and using (9) the same equation of geodesic (4) is
derived. To do it by hand it is convenient to introduce W by

W (x, ẋ) = gij(x) ẋi ẋj (10)

i.e.

V =
√
W. (11)

Putting (11) into (7) yields

2WWẋmxs
ẋs + 2WWẋmẋr

ẍr −Wẋm
(Wxs

ẋs +Wẋr
ẍr) = 2WWxm

(12)

where the bracket vanishes because of (9) and (11). When we substitute W
from (10) into (12) we get again the equation of geodesic

ẍm + Γmij ẋiẋj = 0,

where

Γmij =
1

2
gnm(gin,j + gnj,i − gji,n).
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5 Constant magnitude of velocity

We have used the assumption of constant magnitude of velocity (8) to simplify
(12). It is not clear, however, whether the solution of the resulting equation of
geodesic (4) still satisfies the condition (8). We show it does. Let us write the
equation of geodesic (4) as a system of first order ODE’s

ẋm = Xm (13)

Ẋm = −Γmij XiXj .

The condition of constant square of the magnitude of velocity

W = gij(x) ẋi ẋj = gij(x) Xi Xj = const.

is the equation of a hyper-surface in the state space (of twice the dimension).
It is easy to show that the vector field f of (13) is orthogonal to the gradient
of W

f · ∇W =

(
Xm

−Γmij XiXj

)
·
(
gij,mXiXj

2gmkXk

)
=

= gij,mXiXjXm − 2gmkΓ
m
ij XiXjXk =

= gij,mXiXjXm − gmkgnm(gin,j + gnj,i − gji,n)XiXjXk =

= gij,mXiXjXm − (gin,j + gnj,i − gji,n)XiXjXn = 0.

Thus the square of the magnitude of velocity is constant and so is the magnitude
itself.

6 First integral

In this chapter we rewrite the equation of geodesic (4) for special cases and
then we find its first integral.

Assuming dimension 2, denoting x1 = x, x2 = y and assuming a diagonal
metric tensor g, i.e. g12(x, y) = g21(x, y) = 0 we arrive at

ẍ+
g11,1
2g11

ẋẋ+
g11,2
g11

ẋẏ − g22,1
2g11

ẏẏ = 0 (14)

ÿ − g11,2
2g22

ẋẋ+
g22,1
g22

ẋẏ +
g22,2
2g22

ẏẏ = 0. (15)

Further, assuming that g depends on x only and not on y, formally written

,2 = 0 meaning ∂
∂y = 0 or g11,2 = g22,2 = 0 we get even more simple equations

ẍ+
g11,1
2g11

ẋẋ− g22,1
2g11

ẏẏ = 0 (16)

ÿ +
g22,1
g22

ẋẏ = 0. (17)

We will use this result (assuming further g11 = g22) in chapter 9.
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In chapters 7 and 8 we will work with the metric tensor where one of its
diagonal elements is constant. Assuming g11(x, y) = 1 allows us to simplify the
equation of geodetic even more

ẍ− g22,1
2

ẏẏ = 0 (18)

ÿ +
g22,1
g22

ẋẏ = 0. (19)

Now we can find the first integral of this system of ODE’s. Multiplying (18)
by ẏ and multiplying (19) by ẋ and subtracting the second equation from the
first one we get

ẍẏ − ÿẋ− g22,1
2

ẏ3 − g22,1
g22

ẋ2ẏ = 0.

When multiplying this equation by 2ẋ
g222ẏ

3 we get (after simple manipulation)

d

dt

(
1

g22(x(t))2
(
ẋ

ẏ
)2 +

1

g22(x(t))

)
= 0

which is equivalent to
1

g222
(
dx

dy
)2 +

1

g22
= const. (20)

We will use this first integral of the equation of geodesic in chapters dealing
with the sphere and with the torus.

7 Geodesics on a sphere

Putting x1 = ϑ, x2 = ϕ and

g =

(
1 0
0 sin2 ϑ

)
into the equation of geodesic (4) yields

ϑ̈− sinϑ cosϑ ϕ̇2 = 0

ϕ̈+ 2 cotϑ ϕ̇ ϑ̇ = 0.

Its first integral (20) is

1

sin4 ϑ

(
dϑ

dϕ

)2

+
1

sin2 ϑ
=

1

sin2 ϑ0
, (21)

where ϑ0 = min(ϑ) and ϕ0 are the coordinates of “the north most” point of
the curve.

This is the equation of a circle lying in the plane going through the origin.
Such a plane has the equation

x · xP = 0,
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where

x =

 sinϑ cosϕ
sinϑ sinϕ

cosϑ


and

xP =

 sinϑP cosϕP
sinϑP sinϕP

cosϑP


where

ϕP = ϕ0 + π, ϑP =
π

2
− ϑ0

are coordinates of the normal vector to the plane. After some manipulation

ϕ = ϕ0 + arccos (tanϑ0 cotϑ).

Differentiating gives

dϕ

dϑ
=

1

sin2 ϑ

tanϑ0√
1− (tanϑ0 cotϑ)2

and
1

sin4 ϑ
(
dϑ

dϕ
)2 =

1

sin2 ϑ0
− 1

sin2 ϑ

which agrees with(21).

8 Geodesics on a torus
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Fig. 1. Geodesic (24).
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Fig. 2. Geodesic (25).
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Fig. 3. Geodesic (26).

Substituting x1 = u, x2 = v, and the metric tensor

g =

(
1 0
0 (a+ cosu)2

)
(22)

into the equation of geodesic (4) gives

ü+ (a+ cosu) sinu v̇2 = 0

v̈ − 2
sinu

a+ cosu
u̇ v̇ = 0.
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Fig. 4. The graph of the function (29) shows the minimum for (u, d) = (0, 0) and a
saddle for (u, d) = (π, 0).

This system of two differential equations of the second order can be written
as a system of four equations of the first order

u̇ = U (23)

U̇ = −(a+ cosu) V 2 sinu

v̇ = V

V̇ = 2
sinu

a+ cosu
U V.

The 4 dimensional state space (u, U, v, V ) of this system is divided by the
hyper-plane V = 0 into two half-spaces. The hyper-plane V = 0 contains the
solution

u = k1t+ k2 (24)

U = k1

v = k3

V = 0,

where k1, k2, k3 ∈ R.
Corresponding to each solution in one half-space there is one solution in

the other half-space. These two solutions are symmetrical with respect to the
hyper-plane V = 0. The theorem of the uniqueness of solution implies that
V (t) is either always positive or always zero or always negative. Meaning the
solutions neither cross nor touch the hyper-plane V = 0. Thus we can limit
our attention to solutions satisfying V (t) = v̇(t) > 0.
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Fig. 5. The contour-lines of the function (29) are closed curves near a minimum.
A separatrix (shown in red) going from the saddle separates a region with closed
contour-lines from the region with non-closed contour-lines. Closed contour-lines
correspond to geodesics that remain mainly in the outer part of the torus (see Fig. 6).
Non-closed contour-lines correspond to geodesics that wind around the tube of the
torus (see Fig. 7).

Among these solutions there are two special solutions satisfying u̇(t) = 0,
namely

u = 0 (25)

U = 0

v = k1t+ k2

V = k1,

and

u = π (26)

U = 0

v = k1t+ k2

V = k1.

The behavior of nearby trajectories can be studied by linear expansion.
The Jacobi matrix of partial derivatives of the system (23) evaluated on the
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trajectory (25) has two zero eigenvalues and two purely imaginary complex
conjugate eigenvalues

λ3,4 = ±ik1
√
a+ 1. (27)

This means it acts like a center; nearby trajectories rotate around it in the u-U
plane spanned by the corresponding eigenvectors.

The Jacobi matrix of partial derivatives of the system (23) evaluated on the
trajectory (26) has two zero eigenvalues and two real eigenvalues with opposite
signs

λ3,4 = ±k1
√
a− 1.

Thus the trajectory (26) is a saddle with one stable and one unstable directions
in the u-U plane. The saddle itself is not a stationary point but rather a closed
trajectory. In fact, there are no stationary points, the velocity has a constant
magnitude.

The first integral (20) for torus is

1

(a+ cosu)4
(
du

dv
)2 +

1

(a+ cosu)2
= const. (28)

Thus geodesics on a torus can be described by contour-lines of the function

f(u, d) =
1

(a+ cosu)4
(d)2 +

1

(a+ cosu)2
. (29)

The graph of the function (29) is shown in Fig. 4 and its contour-lines are
shown in Fig. 5. For fixed u it is a quadratic function of d with positive co-
efficients, thus having a minimum. For d = 0 it is a periodic function of u
with the period 2π having a minimum for u = 0 and a maximum for u = π.
As a function of two variables f has a minimum in u = 0, d = 0 and a saddle
in u = π, d = 0. The contour-lines near a minimum are closed curves, the
contour-line leaving a saddle is a separatrix separating a region with closed
contour-lines near a minimum (with bounded values of u) and a region with
contour-lines which are neither closed not bounded (here u(t) is a monotone
function). This is shown in Fig. 4 depicting the graph of the function (29) and
in Fig. 5 with its contour-lines.

We can find the equation of the separatrix. From

du

dv
= 0 for u = π

it follows
1

(a+ cosu)4
(
du

dv
)2 +

1

(a+ cosu)2
=

1

(a− 1)2
.

Thus for the separatrix for u = 0 it is

du

dv
= 2

a+ 1

a− 1

√
a.

The angle αC , formed by the critical geodesic and the plane z = 0 in u = 0
(i.e. on the outer edge of the torus) is

tanαC =
dz

dy
=

1

a+ 1

du

dv
=

2
√
a

a− 1
.
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Fig. 6. If the angle α, formed by the geodesic and the plane z = 0, is less than a
critical value αC , the geodesic remains mainly on the outer part of the torus. For this
graph α = 60◦, αC

.
= 64.6◦ and a = 5

2
. Only a finite part of the geodesic is shown.

E.g. for a = 5
2 the critical angle is αC

.
= 64, 6◦. Fig. 6 shows an example of a

geodesic for α < αC and Fig. 7 for α > αC .
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Fig. 7. If the angle α formed by the geodesic and the plane z = 0 on the outer part
of the torus is greater than the critical angle αC then the geodesic winds around the
tube of the torus. For this graph α = 69◦, αC

.
= 64.6◦ and a = 5

2
. Only a finite part

of the geodesic is shown.
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Are the geodesics on a torus closed curves? From (28) it follows that u as a
function of v is periodic for small u (i.e. for u0 < π). Let us denote its period T .
If T is a rational multiple of 2π (as the increase of v by 2π corresponds to the
same point) then the geodesic is a closed curve. The period T can be evaluated
as follows. From (28) we find

dv =
a+ cosu0

(a+ cosu)
√

(a+ cosu)2 − (a+ cosu0)2
du

and

T = 4

u0∫
0

a+ cosu0

(a+ cosu)
√

(a+ cosu)2 − (a+ cosu0)2
du.

It is sufficient to integrate over one quarter of the period because the func-
tion (29) is even in both u and d.

The period T is a continuous function of two variables: a (the ratio of the
radius of the axis of the tube of the torus and the radius of the tube of the
torus) and u0 (maximum of u on the geodesic) thus

T = T (a, u0).

When a or u0 is varied continuously then the ratio T
2π will achieve rational and

irrational values and in every neighborhood of a closed geodesic there will be
infinitely many non-closed ones and vice versa. Almost every geodesic will be
non-closed.

It is possible to compute the period T (a, u0) for small amplitude u0

lim
u0→0

T (a, u0) =
2π√
a+ 1

,

so that e.g. for a = 3 the geodesic for small u0 will almost close after two turns
around the torus. This is in agreement with (27).

Our results in this chapter differ from the classical ones based on the in-
trinsic geometry of the torus T 2 = R2/N inherited from the Euclidean plane
(u, v), where the geodesics are straight lines in the plane (u, v) and thus having
the constant slope. When wound on the torus a geodesic is either a closed
curve or it fills densely the entire surface of the torus. We, however, assume
the metric tensor (22) based on the geometry of the torus as embedded into a
three dimensional Euclidean space. This non-constant metric tensor gives rise
to two distinct classes of geodesic curves (cf. Fig. 6 and Fig. 7).

9 Geodesic as the light beam

If the optical index of refraction

n =
c

v
,
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where c is the speed of light in vacuum and v is the speed of light in the given
medium, is independent of the point in space, then the light propagates along
a straight line. If the index of refraction depends of the point in space

n = n(x, y, z),

refraction of light takes place. This is of fundamental importance for the human
eye and for a large range of optical devices.

The light beam propagates along such a curve, to minimize the time neces-
sary to reach a given point from another given point. This is called the Fermat
principle. The element of time is

dt =
dl

v
,

where dl is the element of length. Then

c dt =
c

v
dl = ndl

(c dt)2 = n2((dx)2 + (dy)2 + (dz)2),

meaning the shape of the beam is a geodesic in the space with metric

g =

n2 0 0
0 n2 0
0 0 n2

 .

Let us consider a special case when the index of refraction depends on a single
space variable (say, y)

n = n(y).

Then it is sufficient to consider the shape of the beam in a plane. Using the
equation of geodesic (4) for x1 = x, x2 = y we get

ẍ+ 2
n′

n
ẋẏ = 0 (30)

ÿ +
n′

n
(ẏẏ − ẋẋ) = 0. (31)

Multiplying (30) by ẏ and multiplying (31) by ẋ and subtracting the first
equation from the second one we get

ÿẋ− ẍẏ − n′

n
ẋ(ẋ2 + ẏ2) = 0.

When multiplying this equation by 2ẏn2

ẋ3 we get (after simple manipulation)

d

dt

(
1

n(y(t))2
((
ẏ

ẋ
)2 + 1)

)
= 0

which is equivalent to
1

n2
((
dy

dx
)2 + 1) = const.
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1

n2
(dl)2

(dx)2
= const.

1

n2
1

sin2 α
= const.

and finally
n sinα = const (32)

where α is the angle formed by the beam and the normal vector to the plane
of constant index of refraction.

A special case

n(y) =
1

y

i.e.

g =

( 1
y2 0

0 1
y2

)
for y > 0 is called the Poincare metric. Then (32) gives

1

y
sinα = K.

Comparing with the equation of a circle with radius R

sinα =
y

R

shows that the geodesics in Poincare metric are semicircles for K = 1
R > 0 and

straight lines
α = 0

i.e.
x = const.

for K = 0.

10 Brachistochrone

Brachi- is the first part of compound words meaning short and chronos means
time. Brachistochrone is the name for the curve bringing a mass point from
a given point to another given point in the shortest possible time (assuming
homogeneous gravitational field). To find it we make use of the results from
the previous chapter.

The conservation of mechanical energy

1

2
mv2 +mgh = mgh0

lets us introduce a quantity playing a similar role as the index of refraction for
light

n =
c

v
=

const√
y0 − y

.
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Using the law of refraction
n sinα = const

we get
sinα√
y0 − y

= const.

When we describe the curve as the graph of a function

y = y(x)

we get the equation
(1 + y′2)(y0 − y) = const.

It is easy to show that this is the cycloid. Starting with the parametric
equation of cycloid

x = Rωt+R cosωt

y = R sinωt

and differentiating with respect to time

ẋ = Rω −Rω cosωt

ẏ = Rω cosωt

we find

y′2 = (
ẏ

ẋ
)2 =

cos2 ωt

(1− sinωt)2

and
(1 + y′2)(y0 − y) = 2R = const.

Meaning that the cycloid is also a geodesic with a suitable metric.
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