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Abstract: Chaos is a kind of nonlinear system response that has a dense set of unstable 

periodic orbits (UPOs) embedded in a chaotic attractor. The idea that chaotic behavior 

may be controlled by small perturbations applied in some system parameters allows this 

kind of behavior to be desirable in different applications. This paper considers different 

chaos control methods, including discrete and continuous, to stabilize some desired 

UPOs of a mechanical system. Essentially, a control rule is of concern and each 

controller needs to follow this rule. Noisy time series is treated establishing a robustness 

analysis of control methods. The main goal is to establish a comparative analysis of 

chaos control methods evaluating the capability of each one of them to stabilize a desired 

UPO analyzing its performance. 
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1. Introduction 

Chaos is a kind of nonlinear system response that has a dense set of unstable 

periodic orbits (UPOs) embedded in a chaotic attractor. This set of UPO 

constitutes the essential structure of chaos. Besides, chaotic behavior has other 

important aspects as sensitive dependence to initial conditions and ergodicity. 

The idea that chaotic behavior may be controlled by small perturbations applied 

in some system parameters allows this kind of behavior to be desirable in 

different applications. 

In brief, chaos control methods may be classified as discrete and continuous 

methods. Semi-continuous method is a class of discrete method that lies 

between discrete and continuous method. The pioneer work of Ott et al. [1] 

introduced the basic idea of chaos control proposing the discrete OGY method. 

Afterwards, Hübinger et al. [2] proposed a variation of the OGY technique 

considering semi-continuous actuations in order to improve the original method 

capacity to stabilize unstable orbits. Pyragas [3] proposed a continuous method 

that stabilizes UPOs by a feedback perturbation proportional to the difference 

between the present and a delayed state of the system. 

This article deals with a comparative analysis of chaos control methods that are 

classified as follows: OGY methods – that includes discrete and semi-

continuous approaches [1,2]; multiparameter methods – that also includes 

discrete and semi-continuous approaches [4,5]; and time-delayed feedback 
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methods that are continuous approaches [3,6]. In order to consider a system with 

high instability, a nonlinear pendulum treated in other references is considered 

[5,7,8]. 

 

2. Chaos Control Methods 

Control of chaos can be treated as a two-stage process. The first stage is called 

learning stage where it is performed the identification of UPOs and system 

parameters necessary for control purposes. A good alternative for the UPO 

identification is the close return method [9]. This identification is not related to 

the knowledge of the system dynamics details. The estimation of system 

parameters is done in different ways for discrete, semi-continuous and 

continuous methods. After the learning stage, the second stage starts promoting 

the UPO stabilization. 

2.1. OGY Method 

The OGY method [1] is described by considering a discrete system of the form 

of a map ),(
1 nnn

pF ξξ =+ , where p ℜ∈  is an accessible parameter for control. 

This is equivalent to a parameter dependent map associated with a general 

surface, usually a Poincaré section. Let ),( 0
1 pF n

C
n
C

ξξ =+  denote the unstable 

fixed point on this section corresponding to an unstable periodic orbit in the 

chaotic attractor that one wants to stabilize. Basically, the control idea is to 

monitor the system dynamics until the neighborhood of this point is reached. 

When this happens, a proper small change in the parameter p causes the next 

state ξn+1 to fall into the stable direction of the fixed point. In order to find the 

proper variation in the control parameter, δp, it is considered a linearized 

version of the dynamical system in the neighborhood of the equilibrium point.  

2.1.1. Semi-continuous Method 

The semi-continuous method (SC) lies between the continuous and the discrete 

time control because one can introduce as many intermediate Poincaré sections, 

viewed as control stations, as it is necessary to achieve stabilization of a desired 

UPO [2]. Therefore, the SC method is based on measuring transition maps of 

the system. These maps relate the state of the system in one Poincaré section to 

the next. 

2.2. Multiparameter Method 

Proposed by De Paula & Savi [4,5], the multiparameter chaos control method 

(MP) was developed based on the OGY approach. Different from the original 

idea, this procedure considers Np different control parameters, pi (i=1,…,Np). 

Two important points considered in the formulation of MP method are: only one 

of the control parameters actuates in each control station; and system response 

to all control parameters actuations is given by a linear combination of its 

individual effect. Moreover, two approaches are considered, the coupled and the 

uncoupled approach.  

The difference between the multiparameter method (MP) [4] and the semi-

continuous multiparameter method (SC-MP) [5] is that the first considers only 
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one control station per forcing period while the other considers as many control 

stations as necessary to stabilize the system per forcing period. Therefore, the 

SC-MP is the general case that can represent the MP when only one control 

station per period is of concern. In the same way, the OGY can be seen as a 

particular case when only one control station and only one control parameter are 

considered. 

2.3. Time-delayed Feedback Methods 

Continuous methods for chaos control were first proposed by Pyragas [3] and 

are based on continuous-time perturbations to perform chaos control. Socolar et 

al. [6] proposed a control law named as the extended time-delayed feedback 

control (ETDF) considering the information of time-delayed states of the system 

represented by the following equations: 
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where nnRK ×∈  is the feedback gain matrix, 10 <≤ R , )( ττ −= tSS  

and )( ττ mtxxm −= . 

An important difference between continuous and discrete methods is that in 

continuous methods it is not necessary to wait the system to visit the 

neighborhood of the desired orbit. Another particular characteristic related to the 

learning stage is that, besides the UPO identification common to all control 

methods, it is necessary to establish proper values of the control parameters for 

each desired orbit. In ETDF method this choice is done by analyzing Lyapunov 

exponents of the UPO, establishing negative values of the largest Lyapunov 

exponent. De Paula & Savi [7] discussed a proper procedure to evaluate the 

largest Lyapunov exponents necessary for the controller parameters. 

 

3. Comparative Analysis 

As an application of the general chaos control methods, a system with high 

instability characteristic is of concern: a nonlinear pendulum actuated by two 

different control parameters discussed in De Paula et al. [10]. The mathematical 

model for the pendulum dynamics describes the time evolution of the angular 

position, φ, assuming that ϖ is the forcing frequency, I is the total inertia of 
rotating parts, k is the spring stiffness, ζ represents the viscous damping 

coefficient and µ the dry friction coefficient, m is the lumped mass, a defines the 

position of the guide of the string with respect to the motor, b is the length of the 

excitation arm of the motor, D is the diameter of the metallic disc and d is the 

diameter of the driving pulley. The equation of motion is given by: 
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where )()sin(2)cos(2)( 2
2

2
22 batlbtablbatf −−∆−−∆++=∆ ϖϖ  and ∆l1 

and ∆l2 correspond to actuations. Numerical simulations of the pendulum 

dynamics are in close agreement with experimental data by assuming 

parameters used in De Paula et al. [10]: a=1.6×10−1m; b = 6.0×10−2m; d = 

4.8×10−2m; D = 9.5×10−2m; m = 1.47×10−2 kg; I=1.738×10
−4
kg.m2; k=2.47 

N/m; ζ=2.368×10−5kg.m2
.s
-1
; µ=1.272×10−4N.m; ω=5.61rad/s. 

Due to system instability, some OGY methods are not capable to perform the 

system stabilization. Thus, the comparative analysis deals with only four 

different controllers: SC, SC-MP and TDF methods. A control rule is defined 

for the stabilization of 4 different UPOs in the following sequence considering 

500 periods for each orbit: a period-5, a period-3, a period-8 and a period-1.  

Figure 1(a) shows the desired trajectory, and the system time evolution at 

control station (CS) #1 controlled by parameter ∆l1, while Figure 1(b) presents 

the same results by assuming parameter ∆l2. It should be noticed that in both 

procedures only three of the four UPOs are stabilized. Moreover, before the 

stabilization of UPO is achieved it can be observed a region related to chaotic 

behavior that corresponds to the wait time that system dynamics takes to reach 

the neighborhood of desired control point. 
 

 
Fig. 1. System controlled using SC with parameter at CS #1: (a) ∆l1; (b) ∆l2. 

 

The coupled and the uncoupled approaches of the SC-MP are now employed 

using both control parameters. Figure 2(a) shows the desired trajectory and 

system time when applying the coupled approach, while Figure 2(b) presents the 

same results for the uncoupled approach. 
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Fig. 2. System controlled using SC-MP at the CS #1: (a) Coupled approach;    

(b) Uncoupled approach. 

 

Finally, the ETDF method is employed to follow the control rule considering the 

use of parameter ∆l1. Figure 3 shows the desired trajectory and the system time 

evolution at control station #1. Note that the ETDF is not able to stabilize the 

first and the third orbits of the control rule. Besides, the second orbit is different 

from the stabilized orbit. 

 

 
Fig. 3. System controlled using ETDF at the control station #1. 

 

3.1. Chaos Control Performance Considering Noisy Signals 

Since noise contamination is unavoidable in experimental data acquisition, it is 

important to evaluate its effect on chaos control procedures. In general, noise 

can be expressed as follows: 
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where x represents state variables, y represents the observed response and 

),( txQ  and ),( txP  are nonlinear functions. µd and µo are, respectively, 

dynamical and observed noises. Notice that µd has influence on system 

dynamics in contrast with µo. In this work, it is considered only an observed 

noise, simulating noise in experimental data due to instrumentation apparatus 

and, therefore, noise does not have influence in system dynamics. 
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The noise level can be expressed by the standard deviation, σ, of the system 

probability Gaussian distribution, that is parameterized by the standard 

deviation of the clean signal, σsignal, as follows: 

100(%)
signal

×=
σ

σ
η

 
A different control rule is assumed in order to compare the control methods 

performance considering noisy signals. This control rule is defined in order to 

choose orbits that can be stabilized by all control methods for an ideal signal: a 

period-6, a period-2, a period-3 and, finally a period-1. 

By considering a noisy signal with 1% of amplitude all analyzed methods can 

achieve the stabilization of some orbits. When increasing the noise level to 2% 

few methods have a satisfactory performance. Considering this noise level, 

Figure 4 shows the desired trajectory imposed by the control rule and the system 

time evolution at CS #1 when the SC is employed considering the isolated 

actuation performed by the parameters ∆l1 and ∆l2. Figure 5 presents the same 

pictures for the SC-MP, coupled and uncoupled approaches, while Figure 6 

presents results of the ETDF.  

 
Fig. 4. System controlled using SC at the CS #1 with η=2%: (a) ∆l1; (b) ∆l2. 

 
Fig. 5. System controlled using SC-MP at CS #1 with %2=η : (a) Coupled 

approach; (b) Uncoupled approach. 
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Fig. 6. System controlled using ETDF at the CS #1 with %2=η . 

 

Note that with 2% of noise level the single-parameter SC and the coupled 

approach SC-MP do not have a good performance. The uncoupled SC-MP 

presents better results when compared with the preceding methods and the 

ETDF successfully stabilize all UPOs of the control rule. 

 

3. Conclusions 

This paper presents a comparative analysis of chaos control methods 

performances, including OGY, multiparameter and time-delayed feedback 

methods. In general, systems with high instability need a greater number of 

actuations which makes the semi-continuous and continuous methods more 

effective for chaos control. By defining efficacy as the capability to stabilize 

desired orbits, the coupled and the uncoupled approaches of the SC-MP method 

are more effective to perform system stabilization. The continuous methods 

present low efficacy but avoid the wait time necessary in the case of discrete 

methods. Moreover, continuous methods present a difficulty for the stabilization 

of orbits with high instability and of high periodicity since different orbits can 

be stabilized instead of the desired one. Results from comparative analysis point 

that the SC methods present good performance for ideal time series, free of 

noise. When noisy time series is of concern, continuous methods present greater 

robustness being associated with better performances; however, the uncoupled 

approach of the SC-MP method also presents a good performance. 
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