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Abstract. We study the bifurcation scenario appearing in systems of two coupled
rings of cells with Z3 × Z5 exact symmetry, and Z3 interior symmetry. This study
was motivated by previous work by Antoneli, Dias and Pinto, on two rings of cells
coupled through a ‘buffer’ cell, with Z3 × Z5 and D3 × D5 exact and interior sym-
metry groups. There, quasi-periodic behavior was found through a sequence of Hopf
bifurcations. We questioned if an analogous mechanism could explain the appearance
of quasi-periodic motion in the examples considered here. Surprisingly, we observe
periodic and quasi-periodic states appearing also through Hopf bifurcations. We com-
pute the relevant states numerically.
Keywords: Hopf bifurcation, exact symmetry, interior symmetry, coupled cells sys-
tems.

1 Introduction

Stewart, Golubitsky and Pivato [24] and Golubitsky, Stewart and Török [17]
have developed a new theory for networks of coupled cells systems. They
focused in patterns of synchrony and associated bifurcations.

Networks of coupled cells may be represented schematically by a directed
graph, where the nodes correspond to the individual cells and the edges to the
couplings between them. The term ’cells’ means nonlinear dynamical systems
of ordinary differential equations.

There has been considerable development on the study of synchrony, phase-
relations, quasi-periodic motion, synchronized chaos, amongst others, in net-
works of coupled cells [5,6,12,20,18]. Graphs architecture appear to be an
important part in the explanation of these phenomena.

Networks of coupled cells may arise as models of animal and robot locomo-
tion, speciation, visual perception, electric power grids, internet communica-
tion [8,9,21,11,22,23,10,7], and many others.

There are special networks of coupled cells that possess some degree of
symmetry. We divide these networks in two groups: (i) networks with exact
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symmetry group; and (ii) networks with interior symmetry group. A symmetry
of a network is a permutation on the nodes that preserves the network architec-
ture (including cell-types and arrow-types). An interior symmetry generalizes
the notion of symmetry. It has been introduced by Golubitsky et al [13]. It
is a permutation in a subset of the cells that partially preserves the network
architecture. In this case, ‘forgetting’ about some arrows leads to a subnetwork
whose symmetry group is the interior symmetry group of the entire network.

In this paper we study interesting dynamical features occurring in two cou-
pled systems of two unidirectional rings, with Z3 × Z5 exact symmetry and
Z3 interior symmetry, see Fig. 1. We were motivated by previous work in
the study of quasi-periodic motion in four examples of networks of two rings
coupled through a ‘buffer’ cell, with Z3 × Z5 and D3 ×D5 exact and interior
symmetry [2–4]. We questioned if the bifurcation scenario observed in those
cases was seen in the networks considered here. Surprisingly, here too, we find
quasi-periodic states appearing through a sequence of Hopf bifurcations, anal-
ogously to what was found in [2–4]. We also obtain a curious feature appearing
further away of the third Hopf bifurcation point, similarly to what was found
in [2–4] and [12].
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Fig. 1. Networks of two coupled unidirectional rings, one with three cells and the
other with five.The network on the left (a) has exact Z3 ×Z5-symmetry, the network
on the right (b) has interior Z3-symmetry.

1.1 Outline of the paper

In section 2, we give a brief summary of the coupled cells networks formalism.
In section 2.2, we simulate the coupled cells systems associated to the networks
of two coupled rings of cells in Fig. 1. We consider the cases of exact and
interior symmetry. In section 3, we state the main conclusions and unravel
future research directions.



Chaotic Modeling and Simulation (CMSIM) 1: 25–34, 2012 27

2 Coupled cells network

A coupled cells network consists of a (i) finite set of nodes (or cells) C; (ii) an
equivalence relation on cells in C, where the equivalence class of c is the type
of cell c; (iii) an input set of cells I(c), that consists of cells whose edges have
cell c as head; (iv) an equivalence relation on the edges (or arrows), where the
equivalence class of e is the type of edge e; (v) and satisfies the condition that
‘equivalent edges have equivalent tails and edges’.

We define, for each cell c an internal phase space Pc, the total phase space
of the network being P =

∏n
i=1 Pc. Coordinates on Pc are denoted by xc, and

thus coordinates on P are (x1, x2, . . . , xn). At time t, the system is at state
(x1(t), x2(t), . . . , xn(t)).

A vector field f on P that is compatible with the network architecture is
said to be admissible for that network, and satisfies two conditions: (1) the
domain and (2) the pull-back condition. Moreover, condition (1) states that
each component fi corresponding to cell ci is a function of the cells in I(ci).
Condition (2) says that if cells ci and cj have isomorphic input cells then their
corresponding components fi and fj are identical up to a suitable permutation
of the relevant variables [14].

2.1 Symmetry groups

A symmetry of a coupled cells system is the group of permutations of the
cells (and arrows) that preserves the network structure (including cell-types
and arrow-types) and its action on P is by permutation of cell coordinates.
Formally, we have a coupled system given by

ẋ = f(x) (1)

where f(x) is an admissible vector field for the a given network. If f is Γ
symmetric, then f(γx) = γf(x), γ ∈ Γ (equivariance condition). It follows
from the “pull-back condition” that this equivariance condition is satisfied for
all γ ∈ Γ , with respect to the action of the symmetry group Γ on the phase
space P , by commuting cells coordinates. A symmetry is thus a transformation
of the phase space that sends solutions to solutions.

The network in Figure 1(a) is an example of a network with exact Z3 ×Z5

symmetry.

An interior symmetry generalizes the concept of exact symmetry and it was
introduced by Golubitsky et al [13]. It is a group of permutations that acts in
a subset of cells (but not on the entire set of cells) and partially preserves the
network structure (cell-types and edges-types).

The network in Figure 1(b) is an example of a coupled cells system with Z3

‘interior symmetry’. Moreover, if we ignore the couplings from cells x1, x2, x3
to cells y1, y2, y3, y4, y5, then the resulting network is Z3-exactly symmetric.
Moreover, the network has interior Z3-symmetry on the set of cells {x1, x2, x3}.
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2.2 Numerical results

In this section we simulate the coupled cells systems associated with the two
networks depicted in Fig. 1. We use the following function for the internal
dynamics of each of the eight cells [2,12]:

f(x) = µx− 1

10
x2 − x3

where µ is a real parameter.
The coupled cells system of equations associated to the network (a) in Fig. 1

is given by:

ẋj = f(xj) + c1 (xj − xj+1), j = 1, . . . , 3
ẏj = f(yj) + c2 (yj − yj+1) + d (yj − x1) + d (yj − x2) + d (yj − x3),

j = 1, . . . , 5
(2)

where c1 = 0.75, c2 = 0.60, d = 0.2, and the indexing assumes x4 ≡ x1 and
y6 ≡ y1.

The coupled cells system of equations associated to the network (b) in Fig. 1
is given by:

ẋj = f(xj) + c1 (xj − xj+1), j = 1, . . . , 3
ẏj = f(yj) + c2 (yj − yj+1) + d1 (yj − x1) + d2 (yj − x2) + d3 (yj − x3),

j = 1, . . . , 5
(3)

where d1 = 0.1, d2 = 0.2, d3 = 0.3 and all other parameters and indexes are
as above.

Note that if d1 = d2 = d3 then the structure of the coupled cell system (3) is
consistent with the network of Figure 1(a) and thus has Z3×Z5 exact symmetry.

We vary parameter µ ∈ [−1.0, 2.0], going from positive values to negative
values. We obtain a branching pattern similar to the schematic bifurcation
diagram presented in Fig. 2.

HB1

HB2

RO

HB3

Fig. 2. Schematic (partial) bifurcation diagram for the coupled cell systems in Fig. 1,
near the equilibrium point. Solid lines represent stable solutions, dashed lines corre-
spond to unstable solutions [2].

In Table 1, we give a summary of the values of the Hopf bifurcation points
and the corresponding solutions in the two rings for the networks in Fig. 1.
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branch µ 3-ring 5-ring network Figure

trivial 2.0 equilibrium equilibrium equilibrium

2.0 equilibrium equilibrium equilibrium

1st (HB1) 1.66 equilibrium rotating wave periodic Fig 3

1.66 equilibrium rotating wave periodic Fig 3

2nd (HB2) 1.04 rotating wave rotating wave quasi-periodic Fig. 4

1.04 rotating wave rotating wave quasi-periodic Fig. 5

3rd (HB3) 1.015 rotating wave rotating wave quasi-periodic Fig. 6

1.015 rotating wave rotating wave quasi-periodic Fig. 7

3rd (RO) −0.5 relax. osc. relax. osc. quasi-periodic Fig. 8

−0.5 relax. osc. relax. osc. quasi-periodic Fig. 9

Table 1. Summary of the dynamical behavior of coupled cell systems associated to
the networks in Fig. 1. In the first column we indicate some branches of solutions with
the respective bifurcation points. The second, third and fourth columns show the type
of asymptotic stable solutions in the rings and the full systems in the corresponding
branch. See text for more details.

The first branch of Hopf bifurcation, 1st (HB1), comes from a trivial branch
of equilibria. The solutions corresponding to the primary branch can be ex-
plained using the Equivariant Hopf Theorem [16] for coupled cells systems in
the symmetric case, and the Interior Symmetry Breaking Hopf Theorem [1] for
coupled cells systems with interior symmetry.

Fig. 3 shows the time series after (HB1) in the coupled cells systems (2)-(3).
On the panel on the left we plot the time series for the network with Z3 × Z5

exact symmetry and on the right panel we plot the time series for the network
with Z3 interior symmetry. In both cases, we observe a rotating wave on the 5-
ring (periodic solution in which the cells in the 5-ring have the same wave form
but they are 1/5 out of phase) and the cells in the 3-ring stay in equilibrium.

By varying further the parameter µ, there is a secondary Hopf bifurcation
point (HB2) where the time series of the cells in the 3-ring appear to show a
rotating wave (periodic solution in which the cells in the 3-ring have the same
wave form but they are 1/3 out of phase). Figures 4-5 (left) show the time series
after the secondary Hopf bifurcation (HB2) in the coupled cell systems (2)-(3).
The Hopf bifurcation “occurs” in the 3-ring, leading to a rotating wave on the
3-ring. Cells in both rings appear to be at a rotating wave state. The full
solution is quasi-periodic (solution fills in the visible region), see Figures 4-5
(right).

Figures 6-7 show the time series after the tertiary Hopf bifurcation (HB3)
in the coupled cells systems (2)-(3). Cells in the 3- and 5- rings appear to be
at a rotating wave state. The full solution is quasi-periodic.

Figures 8-9 show the time series further away from the tertiary Hopf bifur-
cation (HB3) in the coupled cell systems (2)-(3). In Figures 8-9, we plot, on
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Fig. 3. Simulation of the coupled systems (2) and (3). Time series from the eight
cells after the first Hopf bifurcation point (HB1). (Left) Exact symmetry Z3 × Z5.
Cells in the 3-ring are at equilibrium and cells in the 5-ring display a rotating wave.
(Right) Interior symmetry Z3. Cells in the 3-ring are at equilibrium and cells in the
5-ring display a rotating wave.
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Fig. 4. Simulation of the coupled system (2) with Z3×Z5 exact symmetry, after the
second Hopf bifurcation point (HB2). (Left) Time series from the eight cells. (Right)
Cell x1 vs cell y5.
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Fig. 5. Simulation of the coupled system (3) with Z3 interior symmetry, after the
second Hopf bifurcation point (HB2). (Left) Time series from the eight cells. (Right)
Cell x1 vs cell y5.
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Fig. 6. Simulation of the coupled system (2) with Z3×Z5 exact symmetry, after the
third Hopf bifurcation point (HB3). (Left) Time series from the eight cells. (Right)
Cell x1 vs cell y5.
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Fig. 7. Simulation of the coupled system (3) with Z3 interior symmetry, after the
third Hopf bifurcation point (HB3). (Left) Time series from the eight cells. (Right)
Cell x1 vs cell y5.

the left panel, the time series for the eight cells and on the right panel cell x1 vs
cell y5, for the cases with exact symmetry and interior symmetry, respectively.
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Fig. 8. Simulation of the coupled system (2) with Z3 × Z5 exact symmetry, further
away of the third Hopf bifurcation point (HB3). (Left) Time series from the eight
cells. (Right) Cell x1 vs cell y5.
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Fig. 9. Simulation of the coupled system (3) with Z3 interior symmetry, further away
of the third Hopf bifurcation point (HB3). (Left) Time series from the eight cells.
(Right) Cell x1 vs cell y5.

The full solution is quasi-periodic that is, the time series on the 3-ring
looks like a (approximate) rotating wave and the time series on the 5-ring a
(approximate) rotating wave.

3 Conclusion

In this paper we study the dynamical behavior of two networks consisting of
two coupled rings of cells that admit Z3 × Z5 exact and Z3 interior symmetry
groups.

We find equilibria, rotating waves, quasi-periodic motion, and relaxation
oscillations. The bifurcation diagram that explains the occurrence of these
phenomena is similar to the one found in Antoneli et al [2–4]. There, authors
study two rings coupled through a ‘buffer’ cell with Z3×Z5 and D3×D5 exact
and interior symmetry groups. Analogously of what was found in [2–4], here
too, the exotic behavior found further away of the third Hopf bifurcation point,
reveals itself when a relaxation oscillation occurs. Relaxation oscillations are
solutions that appear through canard explosions [19,25].
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