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Abstract: This paper examines how neural networks that use simulating annealing for 

training is relative to linear and polynomial approximations to forecast a time series that 

is generated by the chaotic Mackey-Glass differential delay equation. The forecasting 

horizon is one step ahead. A series of regressions with polynomial approximators and 

neural networks that use genetic algorithms and simulating annealing for training are 

taking place and compare the multiple correlation coefficients. The experimental results 

confirm that neural networks using simulating annealing algorithm perform well as a 

global search algorithm. Furthermore, it is shown that using the genetic algorithms to 

determine their values can improve the forecasting effectiveness of the resulting model 

when applied to a chaotic time series problem. 
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1  Introduction 

 
Chaotic theory is developing in a new way that influences the world around us 

and consequently also influences our ways of approaching, analyzing and 

solving problems. It is not surprising that one of the central models in the chaos 

literature, the Hénon-Heiles model, is presented in a paper with the title “The 

applicability of the third integral of motion: Some numerical experiments.” 

Numerical experiments in 1964 were the basis for many significant changes in 

astronomy in the decades that followed. In 1963 Edwin Lorenz, in his 

pioneering work on “Deterministic Nonperiodic Flow”, proposed a more 

prominent title for chaotic modelling, by including the term “deterministic”. His 

work spearheaded numerous studies on chaotic phenomena (Skiadas, 2009). On 

the one hand, according to Wikipedia, simulated annealing (SA) is a generic 

probabilistic metaheuristic for the global optimization problem of locating a 

good approximation to the global optimum of a given function in a large search 

space. It is often used when the search space is discrete (e.g., all tours that visit a 

given set of cities). For certain problems, simulated annealing may be more 

efficient than exhaustive enumeration— provided that the goal is merely to find 
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an acceptably good solution in a fixed amount of time, rather than the best 

possible solution. On the other hand, time series prediction is a very important 

practical problem with a wide variety of applications ranging from economic 

and business planning to weather forecasting and signal processing and control. 

A difficulty that characterizes a chaotic time series is that if the data is not 

generated by a high dimensional process, it should have short-term 

predictability and so the use of linear forecasting models is not appropriate. This 

led to the development of several mathematical tools, such as neural networks 

and neuro-fuzzy systems which deal with nonlinearity and nowadays they are 

widely used by many researchers. More specific, artificial neural networks 

(ANNs) have received more and more attention in financial time series 

forecasting in recent years. This popularity springs from their capability of 

performing highly complex mappings on nonlinear data. Nonetheless, they have 

some significant drawbacks such as the lack of any restrictive assumptions 

about the functional relationships between the predictor variables and the 

predicated variable, the difficulty to deal with qualitative information and the 

‘black box’ syndrome. On the other hand, fuzzy inference systems incorporate 

human knowledge by using the if-then rules and expertise for inference and 

decision making. However, the disadvantage of fuzzy logic is the lack of self 

learning capability.  This is the reason why the integration of these two 

approaches is preferred in order to overcome the disadvantages not only of the 

neural networks but also of the fuzzy systems and results in neuro-fuzzy system 

models. Moreover, many forecasting algorithms have also been developed in 

order to approximate initially, general continuous functions, such as polynomial 

approximation, local linear approximation, radial basis functions and neural 

networks. However, these algorithms still present some limitations as far as the 

power of prediction is concerned and this is due to the irregularity of chaotic 

behaviour related to the complication of geometric structures that chaotic 

attractors possess and the sensitive dependence on initial conditions in chaotic 

systems. This study is examining the predictability of a simulated annealing 

algorithm that is used to training an neural network, as far as a time series 

generated by the chaotic Mackey-Glass differential delay equation. The results 

are compared with linear and polynomial approximations. The rest of the paper 

is organized as follows: Section 2 reviews related research and Section 3 

discusses the proposed methodology of simulated annealing. Section 4 presents 

the models and Section 5 reports the empirical findings, while Section 6 

includes the conclusions and some further discussions about the future research 

in this sector. 

 

 

2  Related research   
 

Many researchers have worked on the chaotic Mackey-Glass differential delay 

equation and have forecasted time series using different methods including 

artificial neural networks, fuzzy logic, stochastic models, simulated annealing 

and even integration of two or more methods. Related researches are the 
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following: Skiadas C. Rompogianakis G. Atsalakis G., (2001) with the paper 

titled “Chaotic Aspects of a Generalized Rational Model and Application in 

Innovation Management” , Atsalakis, G., Skiadas C. and Braimis I., (2007) with 

the paper titled “Probability of trend prediction of exchange rate by neuro-fuzzy 

techniques”, L.P. Maguire, B. Roche, T.M. McGinnity and L.J. McDaid (1998) 

have forecasted a chaotic time series using a fuzzy neural network, Atsalakis G., 

Skiadas C. and Nezis D., (2008) have forecasted chaotic time series using a 

neural network, J. Doyne Farmer and John J. Sidorowich (1987) have forecasted 

chaotic time series using a forecasting technique, George G. Szpiro (1997) has 

forecasted chaotic time series using genetic algorithms, L. Studer and F. Masulli 

(1996) have forecasted chaotic time series using a neuro-fuzzy system, Ajoy 

Kumar Palit and D. Popovic (1999) have forecasted chaotic time series using 

neuro-fuzzy approach, Liang Zhao and Yupu Yang (2009) have used PSO-based 

single multiplicative neuron model for time series prediction, Hirotaka Inoue, 

Yoshinobu Fukunaga and Hiroyuki Narihisa (2001) have used efficient hybrid 

neural network for chaotic time series prediction, Rahib H. Abiyev (2006) has 

forecasted time series using a fuzzy wavelet neural network model, Junhong Nie 

(1994) has forecasted time series using a fuzzy-neural approach, M.R. Hassan, 

B. Nath and M. Kirley (2006) have forecasted time series using HMM based 

fuzzy model, Mohammad Assaad, Romuald Bone and Hubert Cardot (2006) 

have forecasted chaotic time series using boosted recurrent neural networks, 

Ding Gang, Zhong Shi-Sheng and Li Yang (2008) have forecasted time series 

using a wavelet process neural network, Catherine Vairappan, Hiroki Tamura, 

Shangce Gao and Zheng Tang (2009) have forecasted time series using batch 

type local search-based adaptive neuro-fuzzy inference system (ANFIS) with 

self-feedbacks, Xieping Gao and Fen Xiao (2004) have forecasted chaotic time 

series using multiwavelet networks, Cui Wan, Zhao Zhu, Chang Chun, Bao 

Wen, Xing Liu and Jun Hua (2005) have forecasted chaotic time series using 

support vector machines for fuzzy rule-based modeling, W.K. Wong, Min Xia 

and W.C. Chu (2010) have forecasted time series using an adaptive neural 

network model, Hong-Wei Wang, Hong Gu and Zhe-Long Wang (2005) have 

forecasted chaotic time series based on SVD matrix decomposition, Muhammad 

Ardalani-Farsa and Saeed Zolfaghari (2010) have forecasted chaotic time series 

with residual analysis method using hybrid Elman-NARX neural networks, Ping 

Liu and Jian Yao (2009) have forecasted chaotic time series using least square 

support vector machine based on particle swarm optimization, H.J. Song, C.Y. 

Miao, Z.Q. Shen, W. Roel, D.H. Maja and C. Francky (2010) have forecasted 

chaotic time series using neural networks, Hongwei Wang and Hong Gu (2009) 

have forecasted chaotic time series based on neural network with Legendre 

polynomials, Yuehui Chen, Feng Chen and Qiang Wu (2007) have forecasted 

time series using an artificial neural networks based dynamic decision model, F. 

Pan, H. Zhang and M. Xia (2009) have forecasted time series using a hybrid 

forecasting model and Meiying Ye (2007) has forecasted chaotic time series 

using LS-SVM with simulated annealing algorithms. 

 

 



G. Atsalakis and K. Tsakalaki 84

3  Simulated Annealing 
 

This paper considers the development of neural network that uses a simulated 

annealing algorithm in order to forecast a time series generated by the chaotic 

Mackey-Glass differential delay equation. Simulated annealing is a stochastic 

search method, which does not rely on the use of first- and second-order 

derivatives, but starts with an initial guess 0Ω  and proceeds with random 

updating of the initial coefficients until a “cooling temperature” or stopping 

criterion is reached. This method starts with a candidate solution vector, 0Ω , 

and the associated error criterion, 0Ψ . A shock to the solution vector is then 

randomly generated, 1Ω  , and the associated error metric , 1Ψ is calculated. If 

the error metric decreases the new solution vector is always accepted. However, 

since the initial guess 0Ω may not be very good, there is a small chance that the 

new vector, even if it does not reduce the error metric, may be moving in the 

right direction to a more global solution. So with a probability )( jP conditioned 

by the Metropolis ratio )( jM the new vector may be accepted, even though the 

error metric actually increases. The rationale for accepting a new vector 

iΩ even if the error iΨ is greater than 1−Ψi  , is to avoid the pitfall of being 

trapped in a local minimum point. According to Robinson (1995), simulated 

annealing consists of running the accept/reject algorithm between the 

temperature extremes. As the temperature )( jT  cools, changes are more and 

more likely to be accepted only if the error metric decreases and with gradually 

decreasing temperature, the algorithm becomes “greedy”. Simulated annealing 

is a random search that moves to a better minimum point, escaping from a likely 

local minimum rather than a global search and this is the reason why the best 

one has to do after the convergence to a given point is to see if there are better 

minimum points in the neighbourhood of the initial minimum. Moreover, the 

current state of the system or coefficient vector jΩ̂ , depends only on the 

previous state 1
ˆ

−
Ω j , and a transition problem )1( −jP  and is thus independent of 

all previous outcomes. This system has the Markov chain property and as 

Haykin points out, an important property of this system is asymptotic 

convergence, even though resort to finite-time approximation of the asymptotic 

convergence properties does not guarantee the finding of the global optimum 

with probability one (McNelis, 2005). 
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4  Models Presentation 
 

This paper proposes a chaotic time series model, which predicts a time series 

one step ahead and is generated by the following Mackey-Glass time-delay 

differential equation. 
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The time series value was obtained by applying the conventional fourth-order 

Runge-Kutta algorithm. This model shows how efficient simulated annealing is 

relative to linear and polynomial approximations. Figure 1 depicts the Mackey-

Glass chaotic time series. 
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Figure 1. Mackey-Glass chaotic time series 

 
Due to the fact that the time series is chaotic, there is no clearly defined period. 

Additionally, in time series prediction known values of the time series up to the 

point in time are used to predict the value at some point in the future. A series of 

regressions with polynomial approximators and neural networks combined by 

simulating annealing model is taking place and the multiple correlation 

coefficients are compared. In this paper, the neural network that is selected uses 

simulated annealing for training. 

 

 Apart from a neural network that uses simulated annealing for training, which 

was analyzed in section 2, this paper includes the use of linear regression model, 

power polynomial-order 2 approximation, orthogonal-order 2 approximation 

(Tchebeycheff, Hermite, Legendre and Lagueree polynomials) and a simple 

neural network with two neurons and one layer, which uses genetic algorithms 

for training. Specifically, the linear regression model seeks for a set of 
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parameters for the regression model to minimize the sum of squared differences 

between the actual observations y and the observations predicted by the linear 

model, 
∧

y . In contrast to the linear regression model, a polynomial expansion 

around a set of inputs x with a progressively larger power P is capable of 

approximating to a given degree of precision any unknown but continuous 

function y  = g( x ).
5
 and the parameters here are neither limited in number, nor 

do they have a straightforward interpretation, as the parameters do in linear 

models. The orthogonal polynomials, such as the Tchebeycheff, Hermite, 

Legendre and Lagueree polynomials, unlike the typical polynomial based on 

raising the variable x  to powers of higher order, they are based on sine, cosine 

or alternative exponential transformations of the variable x  and they have 

proven to be more efficient approximators than the power polynomial. Finally, 

the genetic algorithm is an evolutionary search process, which reduces the 

likelihood of landing in a local minimum by starting with a population N
*
 (an 

even number) of random vectors. The next step is to select two pairs of 

coefficients from the population at random, with replacement and evaluate the 

fitness of these four coefficient vectors, in two pair-wise combinations, 

according to the sum of squared error function. Coefficient vectors that come 

closer to minimizing the sum of squared errors receive better fitness values and 

are retained for “breeding” purposes. Then, crossover takes place in which the 

two parents “breed” two children and following this operation, each pair of 

parent vectors is associated with two children coefficient vectors. If crossover 

has been applied to the pair of parents, the children vectors will generally differ 

from the parent vectors. The fifth step is mutation of the children where with 

some small probability, which decreases over time, each coefficient of the two 

children’s vectors is subjected to a mutation. The last step is the election 

tournament, in which the four members of the “family” engage in a fitness 

tournament with the children being evaluated by the same fitness criterion used 

to evaluate the parents. The two vectors with the best fitness, whether parents or 

children, survive and pass to the next generation, while the two with the worst 

fitness value are extinguished. The above process is repeated, with parents i and 

j returning to the population pool for possible selection again, until the next 

generation is populated by N
* 

vectors and the convergence is evaluated by the 

fitness value of the best member of each generation. Once the next generation is 

populated, elitism can be introduced where all the members of the new 

generation and the past generation are evaluated according to the fitness 

criterion. If the best member of the older generation dominates the best member 

of the new generation, then this member displaces the worst member of the new 

generation and is thus eligible for selection in the coming generation (McNelis, 

2005). 

 

 

 

5  Results 
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Table 1 summarizes the results for the goodness of fit or R
2
 statistics for this 

base set of realizations. Linear model, second-order polynomials are compared 

with simple neural networks with two neurons and one layer trained by genetic 

algorithms and simulating annealing. 

 

Table 1: Goodness of fit or R
2
 

Approximation R
2
 

Linear 0.65 

Polynomial-Order 2 0.89 

Tchebeycheff Polynomial-

Order 2 

0.89 

Hermite-Order 2 0.89 

Legendre-Order 2 0.89 

Lagueree-Order 2 0.89 

Neural Network: FF, 2 neurons, 

1 layer-genetic algorithm 

0.98 

Neural Network: FF, 2 neurons, 

1 layer-simulated annealing 

0.99 

      
 

This table shows several important results as far as the prediction of a chaotic 

time series is concerned. First, there are definite improvements in abandoning 

pure linear approximation. Second, the power polynomial and the orthogonal 

polynomials give the same prediction results and so there is no basis for 

preferring one over the other. Third, the neural network, a very simple neural 

network genetically evolved, is superior to the polynomial expansions and 

delivers a very good result. However, this section clearly demonstrates the 

effectiveness of the proposed neural network, a very simple neural network 

using simulated annealing for training for the prediction of the Mackey-Glass 

time series. This neural network prevails among all polynomial expansions and 

the genetically evolved neural network and delivers an excellent result, 

indicating that this neural network is much more precise relative to the other 

methods across a wide set of realizations. 

 

 

6  Conclusion 
 

This paper presents a neural network with two neurons and one layer, which 

uses simulated annealing to forecast the chaotic Mackey-Glass time series. The 

model is developed using Matlab software and it is compared with polynomial 

expansions and a genetically evolved neural network with two neurons and one 

layer. The results of the prediction are very satisfactory, indicating that this 

model can predict well as far as chaotic time series modeling is concerned. This 

research shows that neural networks in general are designed to mimic very well 

the ability of the human brain to process data and information and comprehend 
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patterns and have the ability to analyze and solve business problems and 

implement those solutions, resulting in being a really helpful tool for forecast 

purposes. Moreover, according to Paul Coddington from Northeast Parallel 

Architectures Center at Syracuse University, simulated annealing and its use to 

predict the chaotic Mackey-Glass time series have the following advantages, 

which make it an attractive option for optimization problems where heuristic 

methods are not available: 

 

a) It is relatively easy to code, even for complex problems. 

b) It can deal with arbitrary systems and cost functions. 

c) It statistically guarantees finding an optimal solution. 

d) It generally gives a ‘good’ solution. 

 

 Yet, further research is recommended by using various time series data in order 

to reduce the long training times and improve the forecast results. 
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